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Abstract: 

In this article, the application of artificial neural networks in predicting the degree of concrete compressive strength 

of High Strength Concrete (HSC) was investigated. For this purpose, use was made of the pattern recognition neural 

network and the obtained data from the experimental tests for predicting the compressive strength degree of HSC. 

Five inputs from the HSC mix design were utilized for predicting the degree of compressive strength, by application 

of the scaled conjugate gradient backpropagation algorithm in neural network. The outputs were classified into 5 

strength groups of M1, M2, M3, M4 and M5. The simulation results shows 97.9% accuracy in classifying the 

different predefined degrees of HSC using the confusion matrix diagram. Moreover, the cross-entropy error obtained 

from testing the neural network (NN) model and correlation coefficient (R2) of GEP for predicting compressive 

strength of the HSC were evaluated at 0.042096 and 0.9795, respectively, indicating high accuracy of the model. 

Application of this model could greatly help the persons, companies and research centers in terms of preparation and 

making of HSC with desired compressive strength, that are in need of this type of concrete. 

Keywords: High strength concrete, Neural network, Pattern recognition, Confusion matrix, Cross-entropy error. 

 
Introduction 
Concrete is the most important and widely used 
construction material [1-5]. As shown by reports, the 
considerable high cement demand increased by 12% 
in 2019, expected to be doubled by 2050 [6]. A 
mixture of water, cement, and fine and coarse 
aggregates make up the conventional concrete [7]. 
Considering the great advancements in concrete 
technology, today, making high strength concrete is 
not a difficult task and just the construction cost might 
increase with respect to the type and amount of used 
additives. However in practice, making concrete with 
a compressive strength higher than 60 to 70 MPa 
having proper workability is difficult and costly. 
Concrete strength (CS) can be regarded as a critical 
performance parameter highly effective in the 
concrete structure design [8]. Increase of the concrete 
strength reduces its ductility and causes brittle 
behavior in concrete. Considering the importance of 
strength characteristics, especially the compressive 
strength in concrete, and preventing short term 
damages and the high cost of maintenance, today high 
strength concrete due to its high strength 
characteristics is widely used in the civil projects with 
high importance.  
In 1992, the ACI 363 committee defined the high 
strength concrete as a concrete with 41 MPa or higher 
strength. Then this committee in the year 2001 
approved a new definition for HSC where the specific 
compressive strength is 55 MPa or higher. The new 
value of 55 MPa was selected for this reason that this 
shows a strength level which needs special care in 
producing and testing the concrete, also it requires 
special design considerations for the structure [9]. 
The high strength concrete was first utilized in 
Chicago in the year 1965 [10]. Among the advantages 
of this type of concrete one could refer to the high 

compressive strength, high tensile strength, higher 
modulus of elasticity, lower permeability, higher 
durability due to lower porosity and greater bond 
strength between concrete and rebars. Among the 
effective factors to reach such high strengths one 
could mention the use of high strength gravel and 
sand with proper shapes, increase in the amount of 
used cement, limited size of the maximum aggregates, 
use of sand with proper modulus of softness and 
proper sand to cement ratio for better homogeneity. 
Furthermore, using the very fine grained materials 
with sizes less than 0.1 microns such as silica fume 
one could prepare a more compact concrete with very 
low porosity [11]. 
High strength concrete is mainly used for construction 
of columns in high rise buildings, offshore structures, 
road pavements, special purpose concrete structures 
and pre-stressed concrete bridges. Use of this type of 
concrete in the columns of high rise buildings reduces 
the column dimensions and increases the number of 
stories. Also this type of concrete is used for 
construction of bridge piers, and roof of spectator 
stands in the stadiums [12]. 
Artificial neural networks and genetic algorithms 
have currently had wide applications in different 
fields, particularly by civil engineers, for the 
prediction of the desired results. One of the main areas 
of interest is predicting concrete mechanical 
characteristics due to the considerable time and 
energy spent to obtain the intended laboratory 
outcomes [13]. 
Table 1 presents the details on the application of 
artificial neural networks and genetic algorithms for 
the CS prediction, obtained from relevant literature.7 
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Table 1. Application of ANN and GA approaches for the prediction of concrete strength 

Sr. No Algorithm used Year References 

1 ANN, GEP 2022 [14] 

2 GEP 2021 [15] 

3 ANN, GA 2021 [16] 

4 ANN, bagging and boosting 2021 [17] 

5 GEP 2021 [18] 

6 SBRS, GEP, ANFIS 2021 [19] 

7 GEP 2021 [20] 

8 GEP, DT and Bagging 2021 [21] 

9 GEP 2020 [22] 

10 ANN, GA 2020 [23] 

11 GEP 2020 [24] 

12 GEP and RF 2020 [25] 

13 RSM, GEP 2020 [26] 

14 GEP 2019 [27] 

15 GEP 2019 [28] 

16 ANN 2019 [29] 

17 ANN 2019 [30] 

18 GA 2019 [31] 

19 ANN, ANFIS 2019 [32] 

20 ANFIS 2018 [33] 

21 ANN 2018 [34] 

22 ANN 2018 [35] 

23 GEP 2018 [36] 

24 ANN, GEP 2018 [37] 

25 ANN 2018 [38] 

26 ANN 2017 [39] 

27 ANN, MRA 2017 [40] 

28 ANN, MLR, ANFIS 2017 [41] 

29 ANN 2017 [42] 

30 ANN 2017 [43] 

Notes: GEP: Gene expression programming, 

ANN: Artificial neural network, GA: Genetic 

algorithm, SBRS: Step-By-Step Regression, ANFIS: 

Adaptive neuro fuzzy inference system, DT: 

Decision tree, RF: Random Forest, RSM: Response 

surface methodology, MRA: Multivariable 

regression analysis, MLR: Multiple linear 

regression. 

The five compressive strength grades of high strength 

concrete during experimentation adopted target 

compressive strength ranges as presented in Table 2.  

In neural networks for classification problem solving, 
pattern recognition model can be created with 
utilization of scaled conjugate gradient back 
propagation algorithm [44]. In this study, pattern 
recognition neural network model created to classify 
output as compressive strength grade of high strength 
concrete from inputs. 

1. Materials and methods 
2-1- Experimentation and neural network model 
for high strength concrete mixtures 
The optimal mix design for concrete is obtained by 
selecting the available materials which make the 
concrete executable and ensure reaching the expected 
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strength and other characteristics required for a 
hardened concrete by the designer. Some basic 
principles that should be considered for the high 
strength concretes are as follows: 
2-1-1 Materials for high strength concrete 
mixtures 
Correct In making the high strength concrete, it is 
recommended to use a sand with higher modulus of 
softness (about 3), as in this type of concrete often 
high amounts of fine grained cement and pozzolans 
are used  and fine grained aggregates would not 
improve the mix workability. On the other hand, a 
coarser sand requires less water to reach a similar 
workability. The other reason is the effect of coarse 
sand during mixing operation which causes large 
shear stresses and prevents coagulation of cement 
paste [45]. 
The hydration rate increases in cements with higher 
softness and the desired strength reaches sooner. 
Therefore use of Portland cement type I is 
recommended. But too much softness requires much 
water, therefore there is no need for a cement with 
high softness (cement type II), unless where there is 
need for early strength of concrete. The compressive 

strength of aggregates in high strength concrete is 
very important and the aggregates strength should be 
minimum equal to the cement paste strength. A 
rounded shaped sand improves workability and 
reduces the amount of cement paste. But, crushed 
sand improves the bond strength between the 
aggregates and cement paste [9]. 
2-2- Proportioning and preparation of high 
strength concrete mixtures 
If the amount of used cement for making high strength 
concrete is too much, it causes intense shrinkage of 
concrete [46] and reduces its ductility. On the other 
hand the obtained concrete in this way would be 
uneconomical. Therefore a cement with 390-560 
kg/m3 density is appropriate. Where this amount of 
cement is not enough to achieve the required strength 
one could use mineral additives or reduce the water to 
cement ratio. To reach a higher strength there is need 
for a smaller maximum size of aggregates. For a 
compressive strength of 70 MPa, the maximum size 
of 20-28mm is appropriate. For producing a concrete 
with 100 MPa strength, the maximum size of 
aggregates in the range of 10-14mm is desirable [45]. 

Table 2. Grades and target compressive strength range of high strength concrete mixtures 

Compressive strength grade Target compressive strength range (MPa) 

M1 55-59.9 

M2 60-64.9 

M3 65-69.9 

M4 70-74.9 

M5 75-80 

2-3- Pattern recognition neural network model for 

high strength concrete mixtures 

In this multi-layer pattern recognition model, nine 

inputs including the Water-Cementitious Material 

Ratio (w/cm), Silica fume, Slag cement, High-

reactivity metakaolin, Fly ash, Water, Cement, Fine 

aggregates and Coarse aggregates are assumed for 

classifying the degree of concrete compressive 

strength. They include 5 sets of the target groups 

named as M1, M2, M3, M4 and M5, shown 

schematically in Fig.1. In this model, 10 hidden layers 

were utilized. Also 70% of the data is assumed for 

training, 15% for validation and 15% for testing. 

 

 
 Fig. 1. Architecture of neural network for pattern classification 

  

The data are given in Table 3. 
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 Table 3. Range of different variables used in this study [9] 

Variable Range 

w/cm (d0) 0.25-0.35 

Silica fume (d1) 19-32 (kg/m3) 

Slag cement (d2) 26-38 (kg/m3) 

High-reactivity metakaolin (d3) 38-54 (kg/m3) 

Fly ash (d4) 96-128 (lit) 

Water (d5) 192-214 (kg/m3) 

Cement (d6) 399-533 (kg/m3) 

Fine aggregate (d7) 954-974 (kg/m3) 

Coarse aggregate (d8) 1663-1705 (kg/m3) 

2-4- Pattern recognition neural network model for 

high strength concrete mixtures 
Gene expression programing (GEP) is a methodology 
for developing computer programs and mathematical 
modeling based on evolutionary computations 
inspired by natural evolutions [47]. In this method, a 
set of data is used to build a tree-like mathematical 
model [48]. Invented by Ferreira in 1999, this 
methodology was officially introduced in 2001 [49]. 
The basis of the algorithm used in GEP is to combine 
the dominant inheritance (i.e., genetic algorithm, GA) 
with genetic programing (GP) to cope with its own 
drawbacks. To this end, the GEP represents 
chromosomes in terms of expression trees (ETs) [47]. 
An ET resembles a protein in a natural cell, which 
determined the phenotype [50]. Ferreira further 
developed a simple yet efficient language, called 
Karva, for expressing the genes and generating ETs. 
Using this language, one can achieve a mathematical 
equation (program) composed of random terminal 
and operators extracted from each chromosome [48]. 
The five basic steps of designing a GEP algorithm are 

[47]: 

• Definition of the fit function 
• Defining terminals and functions 
• Determine the structure of chromosomes (number of 
generations, length, and number of genes) 
• Determining the linking function 
• Determine the characteristics of the operators and, 
finally, algorithm implementation.  
In this article, GeneXproTools 5.0 was utilized to 
investigate accuracy of some experimental data and 
present a model for estimating compressive strength 
of HSC. Four fundamental arithmetic operators (-, +, 
×, /) and several primary mathematical functions 
(Exp, 3Rt, Max2, Avg2, Atan, Tanh) were and root 
mean square error (RMSE) was used as fitness 
function.  
Fitness functions were used to maximize fitness and 
minimize estimation error measured as correlation 
coefficient (R2) and RMSE, as per Equations (1) and 
(2), respectively [51]. These criteria could evaluate 
the efficiency and power of the model for producing 
significant forecasts. 
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Where: x=observed value, y=calculated value, 
x ̅=Average of observed values, y ̅=Average of 
calculated values, i=data point number, and n=total 
number of data points. Importantly, generalizability 

of GEP is largely determined by the choice of 
parameters [52]. 
Table 4 shows the GEP configuration that was used 
for compressive strength high strength concrete 
simulation. 

 Table 4. Configuration settings for GEP algorithm 

 Parameter Description 

 

 

Fitness Function RMSE 

Number of chromosomes 30 
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General 

 

 

 

 

 

 

 

Genes 4 

Head size 10 

Tail size 11 

Gene size 32 

Linking function Addition 

Function set +,-,/,×, Tanh, Atan, Avg2, Max2, 3Rt, Exp 

 

 

 

 

 

Genetic Operators 

 

 

 

 

 

Mutation rate 0.00138 

IS Transposition rate 0.00546 

RIS Transposition rate 0.00546 

Inversion rate 0.00546 

One-point recombination rate 0.00277 

Two-point recombination rate 0.00277 

Gene recombination rate 0.00277 

Gene transposition 0.00277 

 

 

Numerical Constants 

 

 

Constants per gene 10 

Data type Floating-Point 

Lower bound -10 

Upper bound +10 

 
3- Result and discussion 

The cross-entropy error is shown in Fig.2, which 

depicts the error between the obtained results from the 

validation test and the expected results. The cross-

entropy error obtained from the neural network model 

in predicting the degree of HSC compressive strength 

was equal to 0.042096 at epoch 14. This shows high 

accuracy of the model. 

 

 
 Fig. 2. Cross-entropy error for neural network with 10 neurons in hidden layer 

 
The error histogram shown in Fig.3, depicts the 

artificial neural network performance. The training 

data are shown by the blue color, the validation data 

are shown by the green color and the test data are 

shown by the red color. According to Fig.3, for the 

compressive strength of HSC, all the error values are 

in the range of -0.5468 - 0.7197 which indicates a very 

negligible error. 
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 Fig. 3. Error histogram with 20 Bins

Fig.4 shows the confusion matrix. This matrix 

indicates the accuracy of classified data in the 

predefined groups in the training, validation and 

testing processes. The overall classification accuracy 

is equal to 97.9% which indicates correct 

classification percentage. 

 

 
 Fig. 4. Confusion matrix for 10 neurons in hidden layer respectively 

Effects of varying thresholds of normal values on the 
specificity of the test, receiver operating 
characteristics or ROC curve are shown separately for 
the training, validation, testing and all data in Fig.5. 
The X axis represents characteristic and the Y axis 
represents model sensitivity which exhibits model 

performance. The more the area under ROC curve 
approaches unity, or in other words the ROC curve is 
flat at the upper portion, then the model has a better 
performance. It means if the ROC curve reaches unity 
it would have 100% characteristic and 100% 
sensitivity. 
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According to the abovementioned issues, the 
performance of ROC curve in this research, due to 

having almost flat curves for classes of 1, 2, 3, 4 and 
5, exhibits desirable results. 

 

 
 Fig. 5. ROC cure for neural network with 10 neurons in hidden layer 

 
The final ET extracted using the GEP is demonstrated 

in Figure 6. It consists of four sub-ETs connected to 

one another through addition operator (+). Indeed, the 

figure shows the extracted associations between input 

data and outputs using the GEP algorithm. Using 

Figure 6, one can obtain a GEP-based equation, which 

is a complex mix of arithmetic operators, constants, 

and variables, for predicting compressive strength of 

HSC, CSHSC (Equation 3). 

 

 
 Fig. 6. Expression tree (ET) from the GEP model 
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The values of constant parameters in Figure 6 and Equation (3) are given in Table 5. 

 

 Table 5. Magnitudes of constant parameters in Fig. 6 and Eq. (3) 

Parameter Value 

C0 (Gene III) 2.6999 

C0 (Gene IV) 0.1596 

C3 (Gene II) -2.0322 

C3 (Gene IV) -3.4305 

C9 2.0234 

  
Figure 7 presents an analysis on the performance and 

validity of the GEP model by comparing the predicted 

values to corresponding experimental data. 

According to this table, prediction of compressive 

strength of HSC could be performed at an R2 value of 

0.9795, indicating very good correlation of 

predictions to experimental data. 

 

 

 
 

 Fig. 7. Actual versus predicted CSHSC using the GEP model 
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The conclusion 

 Although numerous studies have elaborated on the 

high-strength concrete so far, one can develop the 

existing models even further so that not only ease 

their application but also reduce their computational 

error. Accordingly, it is necessary to search for and 

utilize novel methods and software tools for 

presenting the model, as is investigated in the present 

research. Being among the newest evolutionary 

algorithms and providing adequate accuracy and high 

flexibility, the gene expression programming (GEP) 

has found more applications than similar techniques. 

Taking no assumption regarding the structure of the 

relationship between the dependent and independent 

variables, this technique utilizes the information 

contained in the data to establish a proper association 

between the variables and predict the output graph. 

On this basis, the core novelty of this research 

includes the use of artificial neural networks (ANNs) 

and a GEP-based software for identifying and 

presenting a new model for predicting compressive 

strength of high-strength concrete. Indeed, despite the 

comprehensiveness of this software, many 

researchers are yet to regard its powerful 

methodology, and only few practitioners in the field 

of concrete studies have actually acknowledged it 

recently. Elaborating on the presentation of a 

prediction model for compressive strength of high-

strength concrete, this research can greatly contribute 

to the calculation and determination of compressive 

strength of high-strength concrete. 

Selection of a proper mix design for making a 

concrete with the compressive strength desired by 

designer is of great importance. In this research, the 

experimental mix designs of HSC were successfully 

modelled using the pattern recognition neural 

network and by considering the scaled conjugate 

gradient propagation algorithm in the neural network. 

The input variables of HSC mix design for predicting 

the degree of target compressive strength were 

selected carefully based on the experimental results. 

The degrees of HSC compressive strength consisting 

of five classes were used during the training, 

validation and testing stages of the neural network. 

The degree of compressive strength resulted from the 

neural network model was assessed by cross-entropy 

error method yielding a value equal to 0.042096 

which is desirable  and indicates proper training and 

validation of the neural network. Moreover, 

correlation coefficient (R2) of the results of GEP in 

predicting compressive strength of HSC was 0.9795, 

reflecting the high accuracy of the model Analysis of 

the model simulation confirmed this assumption that 

by extracting the collected mix design parameters and 

regarding the experimental results and also using the 

artificial neural network one could classify the 

compressive strength degree for high strength 

concrete with a high accuracy equal to 97.9%. 

Moreover, the equation developed by this model can 

be conveniently used, with no limitation on input 

parameters, by other individuals, companies, and/or 

research centers who are seeking to use this type of 

concrete. 
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