

The Effect of Medicinal Plants Mixture and Organic Acid on Growth Performance, Blood Parameters, Immune System Status, Carcass Characteristics and Nutrient Digestibility in Moghani Male Lambs

Research Article

F. Mirzaei Aghjehgheshlagh^{1*}, H. Rahmani¹, B. Navidshad¹ and M. Jamali¹

¹ Department of animal science, Faculty of Agricultural Science, University of Mohaghegh Ardabili, Ardabil, Iran

Received on: 29 Nov 2024 Revised on: 26 May 2025 Accepted on: 30 May 2025 Online Published on: Sep 2025

*Correspondence E-mail: f mirzaei@uma.ac.ir

© 2010 Copyright by Islamic Azad University, Rasht Branch, Rasht, Iran

Online version is available on: www.ijas.ir https://doi.org/10.71798/ijas.2025.1224081

ABSTRACT

This study was performed to investigate the effect of medicinal plants and organic acid on growth performance, blood parameters, immune system, carcass characteristics and nutrient digestibility in Moghani lambs. For this, 30 Moghani male lambs (28±2 kg average weight) were used in 6 treatments and 5 replications as a completely randomized design in factorial (2*3*3). experimental treatments include: basic diet (control), basic diet + 2 g organic acid, basic diet + 2% medicinal plants mix, basic diet + 4% medicinal plants mix, basic diet + 2% medicinal plants mix + 2 g organic acid, and basic diet + 4% medicinal plants mix + 2 g organic acid. The results showed that the main effect of organic acid and medicinal plants and the interaction between them on dry matter intake, feed conversion ratio and carcass characteristics were not significant. The daily weight gain was higher in the group receiving 2 g of organic acid than the 0 g and it was higher in the group receiving 2 and 4% of the medicinal plants mix than the group receiving 0%. The groups receiving 2 and 4% medicinal plants mix had the lowest blood cholesterol, triglycerides, and urea. The serum total protein increased compared to group receiving 0%. The groups receiving 4% medicinal plants mix + 2 g organic acid had the highest level of total antioxidant activity and the lowest concentration of malondialdehyde. The activity of superoxide dismutase enzyme was improved by receiving of 2% medicinal plants mix + 2 g organic acid. The apparent digestibility of nutrients was improved by receiving 4% medicinal plants mix + 2 g organic acid.

KEY WORDS blood parameters, immune system, lamb, medicinal plant, organic acid.

INTRODUCTION

The world's population is growing exponentially and is estimated to reach 9 billion by 2050 (Matzuk and Lamb, 2002). With this population growth, the powerful technology to supply food is necessary and the agricultural industry as the most central industry plays a very important role. in this regard, animal husbandry as one of the main branches of agriculture in the supply of animal protein are very important (Rashidi et al. 2008). The most important sources of meat are beef, sheep and goats. Due to the climatic, cultural and religious conditions in Iran, fattening lamb is one of the main sources of protein, so that the meat produced by sheep and goats is about 57% of red meat produced in the country.

Because of the ban on the use of growth-promoting antibiotics by the European Union in 2006 for livestock and poultry (Melendez et al. 2006), it is therefore essential to identify alternatives to growth-promoting antibiotics in the food industry. Suitable alternatives include Medicinal plant, plant essential oils, organic acids, probiotics, prebiotics, enzymes, etc. (Wezyk et al. 2000). Numerous studies in Africa, Asia, Europe, Latin America, and North America show that medicinal plants are commonly used to treat livestock diseases (Yinegar et al. 2007) as well as They can be used as precursors for the synthesis of beneficial drugs (Farjani et al. 2014). The industry has stimulated interest in secondary compounds of plants or plant extracts such as essential oils as potential alternatives to antibiotic growth in livestock production (Thakare, 2004; Westendarp, 2005). These compounds exhibit selective antimicrobial activity and can prevent protein breakdown in the rumen, thus potentially increasing the supply of amino acids in the intestines of host animal (Wallace, 2004). The plant compounds, when added as feed components, have a wide range of effects on digestibility and blood parameters in ruminants. They can affect other blood parameters in sheep by maintaining plasma glucose concentration (Raghuvansi et al. 2007), while some other plants can increase plasma glucose concentrations in calves (Mohammed et al. 2004). Most medical plants are safe and affordable and have no problems with drug resistance.

These plants are used as digestive stimulants, anti-diarrhea, disinfectant, anti-inflammatory, anti-parasitic, appetite stimulant and growth in animal. They also act as antibacterial, antioxidant, anticancer, antifungal, analgesic, and insecticidal and antioxidant agents (Tipu *et al.* 2006). Plants can help livestock nutrient requirements and stimulate the endocrine system and nutrient metabolism (Wenk, 2003). In addition to medicinal plants, the use of organic acids has recently been recommended in animal nutrition to improve performance.

The organic acids are known as an organic carboxylic acid with R-COOH structure, including fatty acids and amino acids that have antimicrobial activities similar to antibiotics and cause significant benefits in livestock (Partanen, 2001; Óverland et al. 2007). The most common organic acids are acetic, benzoic, butyric, citric, formic, lactic, malic, propionic, and tartaric acids. The effects of organic acids on increasing of growth have been confirmed, especially in young animals (Tung and Pettigrew, 2006). Many organic acids with positive effects on livestock performance are also known as food preservatives (Chaveerach et al. 2002). Bacterial depletion is associated with the feeding of organic acids, especially to non-acid-producing species such as Escherichia coli, Salmonella and Campylobacter, and due to the broad effects, they are effective on livestock performance, including improved protein and energy utilization, reduced production ammonia and other microbial metabolites reducing the growth and regulation and secretion of immune mediators.

The organic acids have several side effects, including decreased digestive pH, increased pancreatic secretion, and trophic effects on the gastrointestinal mucosa. By lowering the pH in the stomach, they optimize the conditions for pepsin activity and increase the digestion of nitrogen, phosphorus, and minerals (Dibner and Buttin, 2002). According to above, medicinal plants and organic acids are types of additives that are easily available and it is necessary to evaluate their effects on the nutrition of the country's livestock as food additives. So, the aim of the present study was to investigate the effect of a mixture of medicinal plants and organic acid on growth performance, blood parameters, immune system, nutrient digestibility and carcass characteristics in male lambs..

MATERIALS AND METHODS

Raw materials

The medicinal plants were including Echinacea purpurea, Mint, Thyme and Eucalyptus, which is prepared by Paya Tejarat Setareh Sabz Company located in Tehran, Iran. The organic acid used in this study was AND CID 1 made by AND GROUP Spain, has eight key acids including: formic acid, propionic acid, lactic acid, citric acid, acetic acid, phosphoric acid, butyric acid and other Short and medium chain fatty acids.

The place and the time of study

This study was conducted in the sheep farm of Mohaghegh Ardabili University, Iran. It lasted from early August 2019 to mid-November 2019 for 12 weeks, including 2 weeks of adaptation and 10 weeks of experimental period.

Animals and experimental treatments

This experiment was performed by 30 male Moghani lambs with an average initial weight of 28 ± 2.2 kg in a completely randomized design in the form of factorial (2*2*2) with six treatments and five repeat for 12 weeks (two weeks adaptation period and 10 week experimental period). During the adaptation period, the animals were given the required vaccines and antiparasite drugs. Lambs had been fed a basic diet (Table 1) formulated using sheep CNCPS software (version 21.0.10) and based on the nutritional requirement of a 28 kg lamb according to NRC (2007) and according to the chemical composition of available food. The treatments were including: 1) control (basal diet), 2) basal diet + 2 g organic acid/day/head, 3) basal diet + 2% medicinal plants mix/kg DM, 4) basal diet + 4% medicinal plants mix/kg DM, 5) basal diet + 2% medicinal plants mix/kg DM + 2 g organic acid/day/head, 6) Treatment containing basal diet + 4% medicinal plants mix/kg DM + 2 g organic acid/day/head.

Experimental diets were given to lambs at two times in the morning and in the afternoon. At the same time, clean and healthy water was always provided freely to the lambs.

The performance characteristics

The feed intake was recorded daily based on the feed given and the remaining feed of the previous day. The daily feed intake was adjusted so that the remaining feed in the stall was about 10% of the feed given to the livestock each day. The weight gain was measured on the first day and then every two weeks before the morning meal. The feed conversion ratio was calculated using the average ratio of feed intake per weight gain. Measurement of apparent nutrient digestibility was also measured using the AOAC (2000) method.

The blood parameters

The blood samples of lambs were obtained on days 35 and 70, 3 hours after feeding in the morning. The obtained serum and plasma were stored at -20 °C until laboratory tests. Concentrations of glucose, creatine, urea, total protein, cholesterol and triglycerides were measured using Pars Azmoun kits by Alpha Classic-AT plus system. Immune system parameters including glutathione peroxidase, superoxide dismutase, malondialdehyde and total antioxidant activity were measured using the related kits by ELISA spectrophotometer.

The carcass characteristics

After slaughtering the lambs, the weight of the head, legs, testicles, liver, lungs, kidneys and heart were measured. After complete emptying of the viscera, the weight of the hot carcass was determined and to determine the weight of the cold carcass, the carcasses were kept at 4 °C for 24 hours and weighed again. Subcutaneous fat thickness was measured with a caliper. The carcasses were divided into different parts including thigh, head, row, trunk and neck and weighed to examine the characteristics of the carcass.

Statistical analysis

The data were analyzed using a completely randomized design in factorial and GLM procedure of SAS software (SAS, 2003). Duncan's multiple range test (P<0.05) was used to compare the mean.

$$Y_{ij} = \mu + b (Xi-X) + A_i + B_j + AB_{ij} + e_{ij}$$

Where:

Yij: observed value.

μ: mean.

b (Xi-X): covariate factor.

A_i: organic acid.

B_i: medicinal plants.

 AB_{ij} : interaction of organic acid and medicinal plants. e_{ij} : experimental error.

RESULTS AND DISCUSSION

The results of experimental treatments on the dry matter intake and daily weight gain in different periods are shown in Table 2 and the results of experimental treatments on total dry matter intake, total weight gain and feed conversion ratio are shown in Table 3. Based on these results, the main effect of organic acid, the main effect of medicinal plants mixture and the interaction between them did not have a significant effect on the dry matter intake, but the amount of dry matter intake in the second period increased significantly compared to the first period. The results of the main effect of organic acid showed that 2 g organic acid caused a significant increase in daily weight gain (P<0.05). The daily weight gain was significantly increased in 4% medicinal plants mixture compared to the others (P<0.05). The periodic weight gain and overall weight gain were significantly increased in the group receiving 4% medicinal plants mixture, but did not make a significant difference in feed intake and feed conversion ratio.

The reason of more weight gain by consuming the same food can be due to the effect of medicinal plants in increasing the ratio of propionate to acetate, which is involved in energy metabolism (Chaves et al. 2008). The effect of medicinal plants and their essential oils on dry matter intake can vary depending on the type of medicinal plant and diet, dietary interaction or adaptation of the rumen microbial population to plants and essential oils (Yang et al. 2010a; Yang et al. 2010b; Geraci et al. 2012). In addition, it has been reported that dry matter intake can be affected by a number of dietary or managerial factors such as body weight, animal growth stage, physical and chemical properties of feed, or rumen fermentation metabolites (Yang et al. 2010b). The findings of the present study for dry matter intake were consistent with previous research on growing lambs (Chaves et al. 2008), sheep (Distel et al. 2007) and cattle (Benchaar et al. 2007).

According to Seifzadeh *et al.* (2017), adding 3% of a mixture of medicinal plants including pennyroyal, mint, eucalyptus, garlic, cumin, thyme and thyme didn't have a significant effect on feed intake in calves. The effect of organic acids in livestock can be very different due to various factors such as the type of acid and its pKa, the amount of intake, feed composition, buffering capacity, feed taste, etc. (Decuypere and Dierick, 2003). According to Nematpour *et al.* (2014), fattening calves fed diets containing barley grains treated with lactic acid and citric acid did not make a significant difference in daily dry matter intake compared to the control group.

Table 1 Diet ingredient and chemical composition

Ingredient	Percent	Chemical composition	
Alfalfa	45	Dry matter (%)	87.39
Barley	33	Metabolizable energy (Mcal/kg)	2.3
Corn	10.5	Organic matter (%)	92.8
Molasses	5	Crude protein (%)	14.5
Wheat bran	5	Crude fat (%)	2.9
Calcium carbonate	0.2	NDF (%)	33.2
Sodium bicarbonate	0.5	Ash (%)	7.5
Salt	0.5	Calcium (%)	0.73
Vitamin-mineral premix ¹	0.3	Phosphorus (%)	0.32

¹ Contains: vitamin A: 500000 U; Vitamin D3: 100000 U; Vitamin E: 100 mg; Magnesium: 19000 mg; Sodium: 60000 mg; Phosphorus: 90000 mg; Selenium: 1 mg; Manganese: 2000 mg; Iron: 3000 mg; Copper: 300 mg; Calcium: 180000 mg; Zinc: 3000 mg; Cobalt: 100 mg and Iodine: 100 mg.

The means within the same solume with at least one common letter do not have given difference (PS 0.05).

Table 2 The effect of experimental treatments on the dry matter intake and daily weight of lambs

Treatments ¹		Dry matter intake (kg/d)	Daily body weight gain (g/d)
	0	42.85	180.76 ^b
0:12	2	45.98	195ª
Organic acid ²	SEM	1.48	4.182
	P-value	0.1475	0.0241
	0	43.43	174.36°
	2	44.11	186.86 ^b
Medicinal plant ³	4	45.71	202.43 ^a
	SEM	1.81	5.122
	P-value	0.6650	0.0029
	1	42.546	168
	2	44.314	180.71
	3	43.333	188.43
Onnania asid v Madiainal alaat	4	42.670	185.86
Organic acid × Medicinal plant	5	44.894	185.29
	6	48.743	219
	SEM	2.564	7.24
	P-value	0.6167	0.0609
	1	42.155 ^b	188.38
David d	2	46.680 ^a	187.38
Period	SEM	1.102	5.16
	P-value	< 0.0001	0.9071
Treat \times period		0.2030	0.8430

The treatments were including: 1) control (basal diet); 2) basal diet + 2 g organic acid/day/head; 3) basal diet + 2% medicinal plants mix/kg DM; 4) basal diet + 4% medicinal plants mix/kg DM; 5) basal diet + 2% medicinal plants mix/kg DM + 2 g organic acid/day/head and 6) treatment containing basal diet + 4% medicinal plants mix/kg DM + 2 g organic acid/day/head.

The results of the main effect of organic acid, the main effect of the medicinal plants mixture and the interaction between them on the blood parameters of lambs are presented in Table 4.

The results of the main effect of the mixture of medicinal plants on some blood parameters were significant. The level of 4% medicinal plants mixture caused a significant increase in the concentration of total protein and a significant decrease in the concentration of urea, cholesterol and triglycerides. The results related to the effect of period on blood parameters showed that the concentration of urea and creatine decreased and total protein increased significantly in the second period compared to the first period (P<0.05).

In a study by Soltan (2009), it was reported that the addition of eucalyptol oil, peppermint oil and crystalline menthol to the diet of Holstein calves had no significant effect on blood glucose concentration. Biricik *et al.* (2016) concluded that the carvacrol and thymol did not have effect on serum glucose concentrations of Merino sheep.

According to the results of Mohammadi *et al.* (2017) it was found that serum glucose concentration in Dalagh sheep was not affected by adding 110 mg of peppermint and peppermint essential oil to the basal diet. The results of Galbat *et al.* (2014) showed that 250 mg/kg_{BW} medicinal plant in goat diet did not cause a significant difference in blood creatine concentration, which indicates a healthy

The means within the same column with at least one common letter, do not have significant difference (P>0.05). SEM: standard error of the means.

² Organic acid: 0, 2 g organic acid/day/head.

³ Medicinal plant: 2%, 4% medicinal plants mix/kg DM.

The means within the same column with at least one common letter, do not have significant difference (P>0.05).

SEM: standard error of the means.

effect of medicinal plant mixtures. In line with the results of this study regarding the effect of medicinal plants on serum urea concentration, Odhaib *et al.* (2018) reported that adding 1% black seed, 1% rosemary leaf and a combination of 1% black seed and 1% rosemary leaf caused Significant decrease in serum urea concentration in Dorper lamb.

According to the results of Shams Al-deen and Abdalwahad (2015), it was found that adding 600 mg/d of black seed and fenugreek seeds based on body weight in Awasi male lambs diet caused a significant reduction in blood Urea concentration. A significant decrease in blood urea concentration may be due to the fact that the addition of medicinal plants increases the production of ammonia in the rumen, which can increase urea recycling (Atta Elmnan et al. 2013). The formation of urea produces detoxification of ammonia in the rumen and ultimately reduces ammonia nitrogen in the blood (Abo El-Nor et al. 2007), which indicates a higher efficiency of protein metabolism.

Similarly, dietary supplements of various medicinal plants reduce the concentration of blood urea nitrogen in cows (Wanapat *et al.* 2013). Medical plants and their essential oils can play an important role in the group of hypercholesterolemia, which may be due to the presence of antioxidants, high levels of omega-3 fatty acids and coenzyme Q10, which can reduce the concentration of serum lipoproteins (Changizi-Ashtiyani *et al.* 2013).

The pectin of Medical plants may be another reason for lowering blood cholesterol. The mechanism of possible action of pectin in lowering serum cholesterol may be due to their binding to bile acids in the intestine and subsequent reduction of cholesterol absorption and excretion through the feces (Ezekwe et al. 2011). Significant reductions in cholesterol and triglycerides may be due to the fact that Medical plants contain compounds such as steroidal saponins, which act as precursors of sex hormones along with cholesterol, thereby lowering blood cholesterol (Tiran, 2003). Saponins are rumen indigestible, so when they reach into the small intestine they bind to bile acids and reduce the absorption of cholesterol in the small intestine (Rao and Sharma, 1987). On the other hand, Medical plants stimulate the conversion of cholesterol to bile salts, which is a direct result of increased bile secretion and decreased serum cholesterol (Bhat et al. 1985). Medicinal plants also contain unsaturated fatty acids such as Linolenic and Linoleic acids (Thomas, 2002) and Glucosinolates (Al-Doghachi et al. 2010). These compounds have an inhibitory role in the absorption of fatty acids by inhibiting the enzyme hydroxymethylglutaryl coenzyme A, which is important in the formation of cholesterol (Bulbul et al. 2009) and thereby reduce the concentration of cholesterol in the blood (Al-Doghachi et al. 2010). In confirmation of the results of this study, Safari et al. (2016) reported that lambs that

received 10 and 15% of dried portulaca oleracea powder through the diet, had the lowest levels of triglycerides and blood cholesterol compared to the control group.

According to Barwary et al. (2019), the addition of 10 g/kg DM of Darmazu oak powder (tin oak) to the diet of Awasi ewes significantly reduced the cholesterol concentration compared to the control and other experimental treatments. Shams Al-din and Abdalvahed (2015) observed that the addition of 600 mg of black seed and fenugreek seeds based on body weight per day to the basic diet of male Awasi lambs significantly reduced cholesterol and triglycerides compared to the control group.

Salem et al. (2019) reported by adding 25 mg black seed oil, 11 mg of chamomile oil and 25 mg of oregano leaf oil kg to the basic diet of Friesian cows, the cholesterol and triglyceride concentrations were reduced. Flavonoids, glycoproteins, polypeptides and steroids in medicinal plants can well show fat-reducing properties (Changizi-Ashtiyani et al. 2013). In this regard, the use of garlic in the diet of fattening lambs reduced blood serum cholesterol (Chaves et al. 2008). Also, by adding 0.2% of peppermint extract in the diet of male Atabai lambs, a significant reduction in cholesterol and triglyceride levels and no effect on blood glucose was observed (Shahabi et al. 2012). The results of the study by Galbat et al. (2014) showed that the addition of 250 mg/kg BW of medical plants mixtures in goat diet increased blood protein, which could improve synthesis of ruminal microbial protein. Increasing blood protein concentrations in experimental treatments may be due to the fact that medicinal plants contain essential amino acids required for protein production (Ahmed et al. 2004) or may be due to increased crude protein digestibility which increases total protein in the blood (Kassab, 2007). It may also be due to the fact that herbal supplements have a positive effect on the secretion of thyroid hormones (Sanad, 2010). Other reasons for increasing serum protein may be due to medical plants contain saponins that reduce the activity of microorganisms in the rumen, which increases the indigestible protein in the rumen and their entry into the intestine (Thomas et al. 1994). Whole blood protein can be used as indicators to assess ruminant nutritional status and physiological changes (Kummer Snigh and Verma, 1981). According to the study of Shams Al-din and Abdolvahead (2015), the total protein concentration increases by adding 600 mg of black seed and fenugreek seeds to the basic diet of Awasi male lambs. Hassan et al. (2013) reported that by adding black cumin and garlic powder to the diet of buffalo calves, the total protein concentration increased and cholesterol was decrease. Salem et al. (2019) found that by adding 25 mg/kg BW of black seed oil to the diet of Friesian cows, the concentration of total protein in serum increased.

Table 3 The effect of experimental treatments on overall performance of lambs

Treatments ¹		Weight gain (kg/ overall period)	Dry matter intake (kg/overall period)	Feed conversion ratio
	0	12.65 ^b	85.699	6.79
Organia asid ²	2	13.65 ^a	91.968	6.78
Organic acid ²	SEM	0.293	2.961	0.207
	P-value	0.0241	0.1475	0.9713
	0	12.20 ^b	86.86	7.13
	2	13.08^{ab}	88.23	6.75
Medicinal plant ³	4	14.17 ^a	91.41	6.48
	SEM	0.358	3.627	0.254
	P-value	0.0029	0.6646	0.2062
	1	11.76	85.09	7.24
	2	12.65	88.62	7.03
	3	13.19	86.66	6.58
	4	13.01	85.34	6.56
Organic acid ×	5	12.97	89.79	6.92
Medicinal plant	6	15.33	97.49	6.40
	SEM	0.5070	5.129	0.359
	P-value	0.0608	0.6171	0.6960

The treatments were including: 1) control (basal diet); 2) basal diet + 2 g organic acid/day/head; 3) basal diet + 2% medicinal plants mix/kg DM; 4) basal diet + 4% medicinal plants mix/kg DM; 5) basal diet + 2% medicinal plants mix/kg DM + 2 g organic acid/day/head and 6) treatment containing basal diet + 4% medicinal plants mix/kg DM +2 g organic acid/day/head.

SEM: standard error of the means.

Table 4 The effect of experimental treatments on blood parameters of lambs

Treatments ¹		Glucose (mg/dL)	Urea (mg/dL)	Creatine (mg/dL)	Total protein (mg/dL)	Cholesterol (mg/dL)	Triglyceride (mg/dL)
	0	77.08	40.65	0.87	76.40	37.68	15.62
Organic acid ²	2	77.20	39.37	0.93	80.56	36.38	15.25
Organic acid	SEM	1.26	0.881	0.033	2.32	1.45	0.468
	P-value	0.9482	0.3133	0.1862	0.2170	0.5315	0.5818
	0	75	43.55 ^a	0.92	67.66°	40.82^{a}	17.68 ^a
	2	76.40	39.60^{b}	0.86	75.62 ^b	37.45 ^b	15.55 ^b
Medicinal plant ³	4	80.25	36.87^{c}	0.91	92.16 ^a	32.82°	13.07 ^c
	SEM	1.539	1.079	0.0403	2.841	1.773	0.574
	P-value	0.0783	0.0008	0.5293	< 0.0001	0.0140	< 0.0001
	1	75.15	44.25	0.902	66.22	39.40	17.80
	2	74.85	42.85	0.940	69.10	42.25	17.57
	3	76.85	40.25	0.835	74.88	39.05	15.18
	4	79.25	37.45	0.863	88.10	34.60	13.89
Organic acid × Medicinal plant	5	75.95	38.95	0.887	76.36	35.85	15.93
	6	80.80	36.30	0.963	96.22	31.05	12.26
	SEM	2.1772	1.5261	0.0570	4.0183	2.5080	0.8115
	P-value	0.8430	0.9966	0.8508	0.6883	0.3725	0.3535
	1	75.82	41.40^{a}	1.004 ^a	75.73 ^b	37.183	15.047
Period	2	78.47	38.62^{b}	0.7933 ^b	81.23 ^a	36.883	15.830
Репод	SEM	1.1398	0.6458	0.0320	1.6608	1.0787	0.4654
	P-value	0.0756	< 0.0001	< 0.0001	< 0.0001	0.6625	0.2424
Treat × period		0.9997	0.0148	0.2977	0.0005	0.2218	0.9498

The treatments were including: 1) control (basal diet); 2) basal diet + 2 g organic acid/day/head; 3) basal diet + 2% medicinal plants mix/kg DM; 4) basal diet + 4% medicinal plants mix/kg DM; 5) basal diet + 2% medicinal plants mix/kg DM + 2 g organic acid/day/head and 6) treatment containing basal diet + 4% medicinal plants mix/kg DM +2 g organic acid/day/head.

² Organic acid: 0, 2 g organic acid/day/head.

³ Medicinal plant: 2%, 4% medicinal plants mix/kg DM.

Organic acid: 0, 2 g organic acid/day/head.
Medicinal plant: 2%, 4% medicinal plants mix/kg DM.

The means within the same column with at least one common letter, do not have significant difference (P>0.05).

The means within the same column with at least one common letter, do not have significant difference (P>0.05).

SEM: standard error of the means.

The results of main effect of organic acid, main effect of medical plant mixtures, and the interaction between them on the immune system parameters of male lambs including superoxide dismutase, glutathione peroxidase, malondialdehyde and total antioxidant capacity are shown in Table 5. The results of the main effect of organic acid showed that 2 g organic acid significantly reduced the total antioxidant activity compared to control group (P<0.05).

The activity of superoxide dismutase enzyme increased significantly in the group of 4% medicinal plants mixture compared to the control and 2% medicinal plants mixture (P<0.05). The 4% medicinal plants mixture caused a significant the concentration decrease in ofmalondialdehyde and significant increase total antioxidant activity compared to others (P<0.05).

According to the results of the interaction of organic acid and medicinal plants, the activity of superoxide dismutase, malondialdehyde level and total antioxidant activity were affected, so that the activity of superoxide dismutase in group of 4% medicinal plants was significantly more than the other experimental treatments (P<0.05). By increasing mixture medicinal plants and acid organic content, the malondialdehyde was significantly reduced compared to the control group (P<0.05). The glutathione peroxidase and superoxide dismutase are part of the body's first line of defense against free radicals (Harris, 1992), and total antioxidant capacity is also an indicator of anti-radical activity, enzymatic and non-enzymatic antioxidants. Improving the antioxidant status reduces the level of malondialdehyde, which is an indicator of lipid peroxidation in the body (Sen et al. 2010).

The lipid peroxidation can also be used as an indicator of reactive oxygen species damages (Kuhn and Borchert, 2002). Recently, the active ingredients of medicinal plants have been investigated as potential antioxidants (Halvorsen et al. 2002; Dragland et al. 2003; Wang et al. 2008a). The antioxidant activities of Echinacea (Gajalakshmi et al. 2012), Mint (Mairapetyan et al. 2016), Thyme (Tepe et al. 2005) and Eucalyptus (Iqbal et al. 2003), which are mixtures of medicinal plants used in this study, have been confirmed.

For example, due to the presence of phenolic compounds (thymol and carvacrol) in thyme, this plant has antioxidant, antimicrobial and antifungal effects that maintain health (Basilico and Basilico, 1999; Criag, 1999). Research has shown that thymol and carvacrol in thyme essential oil reduce lipid peroxidation in tissues (Nieto *et al.* 2011). It can act as dietary supplements; improve the body's condition in terms of Improving antioxidant, glutathione peroxidase and superoxide dismutase activity (Youdim and Deans, 2000; Tsai *et al.* 2007). According to the research of Fartashvand and Haji Sadeghi (2016), it was found that 1 g

dried ginger root powder to the diet of Ghezel sheep increased the total serum antioxidant capacity and superoxide dismutase. The results of Hosoda et al. (2006) showed that the use of a mixture of medical plants including mint, valerian and cloves in the diet of fattening calves increased the total antioxidant capacity compared to the control group. El-Far et al. (2014) reported that 3 g of dry ginger powder reduced malondialdehyde and significantly increased total antioxidant capacity and superoxide dismutase of ewes. In another study Wang and Wang (2016) also found that 15 g/kg of goat feed Chinese plants increased superoxide dismutase activity and total antioxidant capacity and the amount of malondialdehyde decreased. Habibi et al. (2014) reported that ginger root powder and ginger essential oil increased the total antioxidant capacity and decreased serum malondialdehyde concentration of heat stressed chickens. According to the research of Wang et al. (2008b), it was found yellow jasmine essential oil increased the total antioxidant capacity and superoxide dismutase and reduced malondialdehyde in broiler. Raeisi et al. (2015) found that adding 400 ppm of thyme essential oil to broilers diet increased total antioxidant activity and reduced malondialdehyde compared to the control group. The effect of organic acids on the immune system is still largely unknown. The organic matter can help the immune system by improving digestion and absorption of nutrients, as well as reducing harmful bacteria that reduce subclinical infections in animals (Skrivanova and Marounek, 2007).

The results of the effect of feeding organic acid and mixtures of medicinal plants on the apparent digestibility of nutrients in male Moghani lambs are shown in Table 6. According to these results, the main effect of medicinal plants mixtures in lamb was significant, 2% of medicinal plants mixtures significantly increased the apparent digestibility of crude fat, NDF, and ADF. 4% medicinal plants mixture also significantly increased apparent digestibility of all the nutrients compared to 0% medicinal plants mixture and also the apparent digestibility of organic matter, crude protein, crude fat and NDF compared to 2% medicinal plants mixture (P<0.05). The results of organic acid and medicinal plants mixtures interactions showed that supplementation of the diet with 4% medicinal plants mixture + 2 g organic acid significantly increased the apparent digestibility of dry matter compared to control and 2 g of organic acid. The apparent digestibility of organic matter in this treatment was significantly increased compared to the others (P<0.05).

The digestibility of crude protein in group of 4% medicinal plant mixed + 2 g organic acid and 4% medicinal plant mixed was significantly increased compared to control and other experimental treatments (P<0.05).

Table 5 The effect of experimental treatments on the immune system parameters of lambs

Treatments ¹		Superoxide dismutase (U/g Hb)	Glutathione peroxidase (U/g Hb)	Malone dialdehyde (Nmol/m)	Total antioxidant capacity (mmol/L)
	0	1391.1	51.44	1.45	0.291ª
O: 1 ²	2	1402.7	51.51	1.40	0.246 ^b
Organic acid ²	SEM	76.02	0.967	0.052	0.009
	P-value	0.9364	0.9769	0.4777	0.0023
	0	1212.7 ^b	52.14	1.53 ^a	0.234 ^b
	2	1323.3 ^b	51.87	1.45 ^{ab}	0.275a
Medicinal plant ³	4	1659.2a	50.57	1.30^{b}	0.297^{a}
	SEM	93.106	1.185	0.0640	0.0115
	P-value	0.006	0.6115	0.0531	0.0026
	1	1356.2 ^{ab}	49.80	1.58ª	0.218 ^b
	2	1069.2 ^b	54.48	1.48^{ab}	0.250^{b}
	3	1129.6 ^{ab}	53.56	1.44^{ab}	0.268^{b}
	4	1696.4ª	51.16	1.34^{ab}	0.252^{b}
Organic acid × Me-	5	1517 ^{ab}	50.18	1.46 ^{ab}	0.282^{ab}
dicinal plant	6	1622 ^{ab}	49.98	1.1 ^b	0.342^{ab}
	SEM	131.67	1.675	0.0872	0.0163^{a}
	P-value	0.0490	0.0639	0.7793	0.0700

The treatments were including: 1) control (basal diet); 2) basal diet + 2 g organic acid/day/head; 3) basal diet + 2% medicinal plants mix/kg DM; 4) basal diet + 4% medicinal plants mix/kg DM; 5) basal diet + 2% medicinal plants mix/kg DM + 2 g organic acid/day/head and 6) treatment containing basal diet + 4% medicinal plants mix/kg DM +2 g organic acid/day/head.

² Organic acid: 0, 2 g organic acid/day/head.

Table 6 The effect of experimental treatments on apparent digestibility of nutrients of lambs

Treatments ¹		Dry matter (%)	Organic matter (%)	Crude protein (%)	Crude fat (%)	NDF (%)	ADF (%)
	0	63.14	65.32	70.88	67.60	63.50	57.71
Organic acid ²	2	63.59	65.96	71.55	68.31	63.69	57.79
Organic acid	SEM	0.352	0.447	0.279	0.382	0.228	0.363
	P-value	0.3715	0.3220	0.1047	0.2037	0.5690	0.8814
	0	62.36 ^b	64.10 ^b	69.52 ^b	65.06°	62.42°	56.16 ^b
	2	63.22 ^{ab}	65.21 ^b	70.67 ^b	68.04 ^b	63.45 ^b	58.15 ^a
Medicinal plant ³	4	64.52 ^a	67.59 ^a	73.44 ^a	70.76^{a}	64.91 ^a	58.93 ^a
	SEM	0.432	0.548	0.342	0.468	0.279	0.444
	P-value	0.0060	0.0005	< 0.0001	< 0.0001	< 0.0001	0.0006
	1	62.17 ^b	63.84 ^b	69.63 ^b	64.95°	62.59 ^{bc}	56.37 ^b
	2	62.55 ^b	64.37 ^b	69.41 ^b	65.17°	62.25°	55.96 ^b
	3	63.6 ^{ab}	65.22ab	70.23 ^b	67.82 ^{bc}	64.04 ^b	58.64 ^{ab}
	4	63.67 ^{ab}	66.89 ^{ab}	72.78 ^a	70.04^{ab}	63.87 ^{bc}	58.11 ^{ab}
Organic acid × Me-	5	62.83 ^{ab}	64.81 ^b	70.72 ^b	68.27 ^b	62.86 ^{bc}	57.65 ^{ab}
dicinal plant	6	65.4ª	68.30^{a}	74.11 ^a	71.49 ^a	65.95 ^a	59.75 ^a
	SEM	0.6111	0.7656	0.4656	0.6623	0.3959	0.6280
	P-value	0.0154	0.0032	< 0.0001	< 0.0001	< 0.0001	0.0025

The treatments were including: 1) control (basal diet); 2) basal diet + 2 g organic acid/day/head; 3) basal diet + 2% medicinal plants mix/kg DM; 4) basal diet + 4% medicinal plants mix/kg DM; 5) basal diet + 2% medicinal plants mix/kg DM + 2 g organic acid/day/head and 6) treatment containing basal diet + 4% medicinal plants mix/kg DM +2 g organic acid/day/head.

² Organic acid: 0, 2 g organic acid/day/head.

³ Medicinal plant: 2%, 4% medicinal plants mix/kg DM.

NDF: neutral detergent fiber and ADF: acid detergent fiber.

³ Medicinal plant: 2%, 4% medicinal plants mix/kg DM.

The means within the same column with at least one common letter, do not have significant difference (P>0.05).

SEM: standard error of the means.

The means within the same column with at least one common letter, do not have significant difference (P>0.05).

SEM: standard error of the means.

Crude fat digestibility was significantly increased by adding 4% medicinal plants mixture + 2 g organic acid to the basal diet compared to the control and experimental treatments (P<0.05). The groups of 4% medicinal plants mixture and 2% medicinal plants mixture + 2 g of organic acid also had a significant effect on the digestibility of crude fat compared to the control treatment and the others (P<0.05).

Supplementation of basal diet with 4% medicinal plants mixture + 2 g organic acid significantly increased the apparent digestibility of NDF compared to control and other experimental treatments (P<0.05). Apparent digestibility of ADF was significantly increased in 4% medicinal plants mixture+2 g organic acid group compared to control and 2 g organic acid groups (P<0.05).

Digestibility is different in animals and this ability is also affected by the amount and composition of the diet (Van Soest, 1994) and generally increases with increasing feed intake and the use of nutrient supplements (Rajabi Aliabadi et al. 2017). Recently, there has been a new interest in using medicinal plants as dietary supplements in the diet of ruminants. Whereas, Significant increase was observed in dry matter, crude protein, crude fiber and crude fat digestion according to the results of Al-Ashry et al. (2006) in calves of buffalo and Abo El-Nor et al. (2007) in dairy buffaloes. In addition, some studies have shown that medicinal plants increase ruminal activity and nutrient digestibility (El-Saadany et al. 1996; Mohamed and El-Saidy, 2004). Hassan et al. (2013) observed that the apparent digestibility of dry matter, crude protein and crude fiber in calves of buffalo fed diets containing 2 g black seed or 2 g garlic powder or a mixture of both was significantly higher than the control group. Also, the digestibility of crude fat in the treatment of 2 g garlic powder had an increase compared to the control treatment. They attributed the improvement in nutrient digestibility to the effect of additives in maintaining proper liver function (Borek, 2001), increasing the activity of pancreatic lipase and amylase enzymes (Rao and Sharma, 1987), and modulating the number and species of rumen microorganisms (Gupta et al. 2005).

According to the study of Odhaib et al. (2018), lambs fed a diet containing 1% black seed based on dry concentrate had a significant increase in crude fat digestibility compared to other experimental treatments. Rongzhen et al. (2019) observed that the apparent digestibility of dry matter and crude protein was increased by supplementing diets with garlic powder in lambs. However, the apparent digestibility of lipids, NDF and ADF was not affected by garlic supplementation. Merkhan et al. (2019) concluded that the 1% Darmazu oak (tin oak) did not change the apparent digestibility of dry matter and organic matter in

Awasi ewes. Regarding the different results obtained from the use of medicinal plants and their effect on the apparent digestibility of nutrients, it can be said that medicinal plants and their essential oils are different in terms of source, chemical structure and activity, thus having different effects on ruminal function, fermentation, and digestibility of animals (Hamidi et al. 2013). Jamali et al. (2017) reported that the addition of 3 g or 4.5 g of organic acid to the Holstein calf diet had no effect on the digestibility of dry matter, organic matter, ADF, and NDF. According to the results of Laki et al. (2016), processing barley grains with lactic acid and citric acid, rolled barley and water had no effect on the apparent digestibility of nutrients in Holstein cows. The processing barley grains with lactic acid reduced the effective ruminal digestibility of barley grain dry matter in dairy cows, in a study by Iqbal et al. (2009). But soaking barley grains in lactic acid combined with heating barley to 55° C improved digestibility and increased milk production in mid-lactating cows in another study by Iqbal et al. (2012).

Nematpour *et al.* (2014) concluded that processing barley grains with organic acids could increase the digestibility of dry matter, organic matter, crude protein and cell wall in fattening calves consuming barley grains processed with lactic acid.

The results of the effect of organic acid and medicinal plants mixtures on the carcass characteristics of fattening lambs are presented in Table 7. According to this table, none of the carcass characteristics including the weight of hot carcass, cold carcass, liver, lung, heart, kidney, testes, head and legs not affected by the main effect of organic acid, the main effect of medicinal plants mixture and the interaction of them. In the study of Biricik et al. (2016), diets with different levels of carvacrol or thymol had no effect on the percentage of carcass, hot carcass, cold carcass, viscera, head weight, quadrupeds, heart, lungs, liver, testis, kidneys, spleen, and ventricular fat of Merino sheep. This result was consistent with the findings of Chaves et al. (2008) and Bampidis et al. (2005). Hashemi et al. (2016) by adding 25% of chicory forage as an alternative to alfalfa did not observe a significant difference in carcass characteristics including warm carcass weight, carcass percentage and head weight of Qashqai Turkish lambs. In a study, Mirzaei Alamouti et al. (2017) observed that by adding monensin and plant extract to the diet of Afshari lambs, there was no significant difference in hot and cold carcass weight, hot and cold carcass percentage, liver weight of lambs. Leea et al. (2015) concluded that substituting 30 or 50 g of medicinal plant by-products per kilogram of Hanwoo calf feed had no effect on carcass characteristics including carcass weight, carcass percentage, and back fat thickness.

Table 7 The effect of experimental treatments on carcass characteristics of lambs

Treatments ¹		Hot carcass (kg)	Cold carcass (kg)	Liver (kg)	Lung (kg)	Heart (kg)	Kidney (kg)	Testicles (kg)	Head (kg)	Legs (kg)
	0	21.29	21.16	0.715	0.521	0.213	0.134	0.472	2.216	1.021
Organic	2	22.06	21.91	0.727	0.502	0.206	0.127	0.462	2.261	1.009
acid ²	SEM	0.758	0.759	0.0217	0.0207	0.0068	0.0035	0.0261	0.0688	1.0374
	P-value	0.4833	0.4898	0.7000	0.5232	0.5423	0.1483	0.7889	0.6417	0.8127
	0	21.14	21	0.763	0.545	0.223	0.131	0.520	2.358	1.051
N. 11 1 1	2	21.42	21.27	0.727	0.496	0.203	0.130	0.419	2.110	0.946
Medicinal plant ³	4	22.46	22.34	0.673	0.493	0.202	0.131	0.460	2.247	10.047
piant	SEM	0.928	0.930	0.0266	0.0254	0.0084	0.0042	0.0319	0.0842	0.0458
	P-value	0.5753	0.5673	0.0754	0.2854	0.1530	0.9817	0.1011	0.1364	0.2075
	1	21.07	20.94	0.802	0.585	0.238	0.138	0.527	2.382	1.028
	2	21.21	21.06	0.725	0.506	0.209	0.124	0.514	3.334	1.074
	3	21.05	20.90	0.666	0.483	0.196	0.133	0.418	1.950	0.940
	4	21.76	21.64	0.678	0.496	0.204	0.132	0.470	2.315	1.096
Organic acid × Medicinal plant	5	21.79	21.64	0.788	0.510	0.210	0.127	0.421	2.271	0.953
	6	23.17	23.04	0.669	0.491	0.201	0.130	0.450	2.180	0.999
	SEM	1313	1.315	0.037	0.035	0.011	0.006	0.045	0.119	0.064
	P-value	0.8900	0.8888	0.0429	0.3348	0.2114	0.6033	0.9667	0.1496	0.5217

The treatments were including: 1) control (basal diet); 2) basal diet + 2 g organic acid/day/head; 3) basal diet + 2% medicinal plants mix/kg DM; 4) basal diet + 4% medicinal plants mix/kg DM; 5) basal diet + 2% medicinal plants mix/kg DM + 2 g organic acid/day/head and 6) treatment containing basal diet + 4% medicinal plants mix/kg DM + 2 g organic acid/day/head.

CONCLUSION

According to the results, the tested levels of medicinal plants mixture and organic acid had no effect on feed intake, feed conversion ratio and carcass characteristics of male Moghani lambs. Also, the use of 2 g organic acid caused a significant increase in daily weight. On the other wise, 2% medicinal plants mixture caused a significant increase in daily weight gain. The use of 4% medicinal plants mixture + 2 g organic acid in the diet also significantly increased the apparent digestibility of nutrients and the 2% medicinal plants mixture significantly increased the apparent digestibility of crude protein. The consumption of 2% and 4% medicinal plants mixture caused a significant increase in blood total protein and a significant decrease in the blood concentration of cholesterol, triglycerides and urea of lambs. Also, 4% medicinal plants mixture significantly increased the activity of superoxide dismutase enzyme. 4% medicinal plants mixture + 2 g organic acid significantly increase the total antioxidant activity and decrease the malondialdehyde concentration.

REFERENCES

Abo El-Nor S.A.H., Khattab H.M., AlAlamy H.A., Salem F.A. and Abdou M.M. (2007). Effect of some medicinal plants seeds in the rations on the productive performance of lactating buffaloes. *Int. J. Dairy Sci.* **2**, 348-353.

Ahmed Z., Ghafoor A. and Aslam M. (2004). *Nigella sativa*-A potential commodity in crop diversification traditionally used in health care. Project on Introduction of Medical Herb and Species as crop, Pakistan.

Al-Doghachi E.H., Al-Thamir S.N. and Al-Mohammod M.H. (2010). A clinical study of Antihy perlipidemic effects of Jamba oil (*Eruca sativa Mil.*) on serm blood. *Alkufia. J. Agri.* Sci. 2(1), 170-177.

AOAC. (2000). Official Methods of Analysis. 17th Ed. Association of Official Analytical Chemists, Arlington, Washington, DC., USA.

Atta Elmnan B.A., Jame N.M., Rahmatalla S.A., Amasiab E.O. and Mahala A.G. (2013). Effect of fenugreek (*Trigonella foenumgraecum*) seeds supplementation on feed intake, some metabolic hormones profile, milk yield and composition of Nubian goats. *Res. J. Anim. Sci.* **7(1)**, 1-5.

Bampidis V.A., Christodoulou V., Florou-Paneri P., Christaki E., Chatzopoulou P.S., Tsiligianni T. and Spais A.B. (2005). Effect of dietary dried oregano leaves on growth performance, carcass characteristics and serum cholesterol of female early maturing turkeys. *Br. Poul. Sci.* 46, 595-601.

Barwary M.S.Q., Merkhan K.Y., Buti E.T.S., Isa R.H., Mustafa K.N. and Yatem C.A. (2019). Evaluation of medicinal plants (*Astragalus eriocephalus* and *Quercus infectoria*) as feed additive in awassi ewes' ration some blood biochemical, hor-

² Organic acid: 0, 2 g organic acid/day/head.

³ Medicinal plant: 2%, 4% medicinal plants mix/kg DM.

NDF: neutral detergent fiber and ADF: acid detergent fiber

The means within the same column with at least one common letter, do not have significant difference (P>0.05).

SEM: standard error of the means

- moal levels and milk hyigen. Iraqi J. Agri. Sci. 50(2), 526-533.
- Basilico M.Z. and Basilico J.C. (1999). Inhibitory effects of some spice essential oils on *Aspergillus ochraceus* NRRL 3174 growth and ochratoxin A production. *Lett. Appl. Microb.* **29(4)**, 238-241.
- Benchaar C.S., Calsamiglia A.V., Chaves G.R., Fraser D., Colombatto T., McAllister A. and Beauchemin K.A. (2007). A review of plant-derived essential oils in ruminant nutrition and production. *Anim. Feed Sci. Technol.* **145**, 209-228.
- Bhat B.G., Sambaiaand K. and Chandrasekhara N. (1985). The effect of feeding fenugreek and ginger on bile composition in the albino rats. *Nutr. Rep. Int.* **32(5)**, 1145-1151.
- Biricik H., Hanoglu-oral H., Mehmet-Taluğ A., Şule-Cengiz Ş. and Koyuncu-Serdal-Dikmen M. (2016). The effects of carvacrol and/or thymol on the performance, blood and rumen parameters, and carcass traits of Merino sheep. *Turk. J. Vet. Anim. Sci.* **40**, 651-659.
- Borek C. (2001). Antioxidant health effects of aged garlic extract. *J. Nutr.* **131**, 1010-1015.
- Bulbul I.J., Ullah M.U., Rahman M.A., Rahman K.A. and Chowdhurin M.K. (2009). Effect of Gharba Chintamani Rasa.an ayurvedic formulation on lipid profile Liver function and kidney function parameters of rat plasma after chronic Administration. *European J. Sci. Res.* **32(1)**, 25-32.
- Changizi-Ashtiyani S., Zarei A., Taheri S., Rasekh F. and Ramazani M. (2013). The effects of Portulacaoleracea alcoholic extract on induced hypercholesteroleomia in Rats. *Zahedan J. Res. Med. Sci.* 15(6), 34-39.
- Chaveerach P., Keuzenkamp D.A.H., Urlings A.P., Lipman L.J.A. and van Knapen F. (2002). *In vitro* study on the effect of organic acids on Campylobacter jejuni / colipopulation sinmixtures of water and feed. *Poult. Sci.* **81**, 621-628.
- Chaves A.V., Stanford K., Dugan M.E.R., Gibson L.L., McAllister T.A., Van Herk F. and Benchaar C. (2008). Effects of cinnamaldehyde, garlic and juniper berry essential oils on rumen fermentation, blood metabolites, growth performance, and carcass characteristics of growing lambs. *J. Livest. Sci.* 117, 215-224.
- Criag W.J. (1999). Health-promoting properties of common herbs. *American J. Clin. Nutr.* **70**, 491-499.
- Decuypere J.A. and Dierick N.A. (2003). The combined use of triacylglycerols containing medium-chain fatty acids and exogenous lipolytic enzymes as an alternative to in-feed antibiotics in piglets: Concept, possibilities and limitation- An overview. *Nutr. Res. Rev.* **16**, 193-209.
- Dibner J. and Buttin P. (2002). Use of Organic Acids as a model to study the impact of gug microflora on nutrition and metabolism. *J. Appl. Poult. Res.* **11**, 453-463.
- Distel R.A., Iglesias R.M.R., Arroquy J. and Merino J. (2007). A note on increased intake in lambs through diversity in food flavor. *Appl. Anim. Behav. Sci.* **130**, 232-237.
- Dragland S., Senoo H., Wake K., Holte K. and Blomhoff R. (2003). Several culinary and medicinal herbs are important sources of dietary antioxidants. *J. Nutr.* **133**, 1286-1290.
- El-Ashry M.A., El-Bordeny N.E., Khattab H.M. and El-Sayed H.M. (2006). Effect of diet supplemented with medicinal herbs on nutrient digestibility and blood metabolites of buffalo

- calves. Egyptian J. Nutr. Feeds. 2, 179-191.
- El-Far A.H., Eman K.B. and Moharam M.S. (2014). Antioxidant and Antinematodal Effects of Nigella Sativa and Zingiber Officinale Supplementations in Ewes. *Int. J. Pharm. Sci. Rev. Res.* **26(1)**, 222-227.
- El-Saadany S.A., Abdel-Momin M., Abo-Ammou F.F. and Shehata E. (1996). Effect of using medicinal herbs as milk stimulant feed supplementation on ewes and lambs performance. *Egyptian J. Appl. Sci.* **11**, 41-41.
- Ezekwe M.O., Nyoka Q.E., Besong S.A. and Igbokwe P.E. (2011). Dietary supplements of freezr-dried purslane leaves lower serum cholesterol in growing pigs. *J. Anim. Sci.* **5(3)**, 27-33.
- Farjani K.G., Tabatabaei N.A., Namazi F. and Ariyzand Y. (2014). Atypical actinobacillosis in a dairy cow. *J. Anim. Poult. Sci.* **3(1)**, 01-07.
- Fartashvand M. and Hajisadeghi Y. (2016). Effects of nutritional supplement of ginger root on antioxidant status in sheep. *Vet. Clin. Pathol.* **36**, 327-334.
- Gajalakshmi S., Vijayalakshmi S. and Devirajeswari V. (2012). Echinacea purpurea-A potent immunostimulant. *Int. J. Pharm. Sci. Rev. Res.* **14(2)**, 47-52.
- Galbat S.A., El-Shemy A., Madpoli A.M., Omayma-Maghraby M.A.L. and Eman- ElMossalami I. (2014). Effects of some medicinal plants mixture on milk performance and blood components of Egyptian dairy goats. *Middle East J. Appl. Sci.* 4(4), 942-948.
- Geraci G.I., Garciarene A.C., Gagliostro G.A., Beauchemin K.A. and Colombato D. (2012). Plant extract containing cinnamaldehyde, eugenol and capsicum oleoresin added to feedlot cattle diet: Ruminal environment, short term intake pattern and animal per formance. *Anim. Feed Sci. Technol.* 176, 123-130.
- Gupta N., Kumar A. and Tiwar D.P. (2005). Effect of herbs as fed additives on nutrient utilization and growth in crossbred heifers fed paddy straw ration. *Indian J. Anim. Sci.* **75(1),** 52-55.
- Habibi R., Sadeghi G. and Karimi A. (2014). Effect of different concentrations of ginger root powder and its essential oil on growth performance, serum metabolites and antioxidant status in broiler chicks under heat stress. *Br. Poul. Sci.* **55**, 228-37.
- Halvorsen B.L., Holte K., Myhrstad M.C.W., Barikmo I., Hvattum E., Remberg S.F., Wold A., Haffner K., Baugerød H., Andersen L.F., Moskaug Ø., Jacobs D.R. and Blomhoff R. (2002). A systematic screening of total antioxidants in dietary plants. *J. Nutr.* **132**, 461-471.
- Hamidi B., Pir Mohammadi R., Mansouri H. and Fajri M. (2013). The effects of adding thymus plant to lactating goats rations on digestibility parmeters and milk yield performance. *Anim. Sci. J. (Pajouhesh and Sazandegi).* **101,** 29-36.
- Harris E.D. (1992). Regulation of antioxidant enzymes. *J. Fed. Am. Soc. Exp. Biol.* **6,** 2675-2683.
- Hashemi S.M.R., Hashemi M. and Safdarian M. (2016). Effects of different levels of Cichorium intybus hay on feedlot performance and carcass characteristics of Fars native lambs. *J. Rumin. Res.* **4(4)**, 204-189.
- Hassan E.H., Sherief M. and Abdel-Raheem R. (2013). Response of growing buffalo calves to dietary supplementation of caraway and garlic as natural additives. *World Appl. Sci. J.* **22(3)**, 408-414.

- Hosoda K., Kuramoto K., Eruden B., Nishida T. and Shioya S. (2006). The effects of three herbs as feed supplements on blood metabolites, hormones, antioxidant activity, IgG concentration, and ruminal fermentation in Holstein steers. *Asian-Australasian J. Anim Sci.* 19(1), 35-41.
- Iqbal S., Zebeli Q., Mazzolari A., Bertoni G., Dunn S.M., Yang W.Z. and Ametaj B.N. (2009). Feeding barley grain steeped in lactic acid modulates rumen fermentation patterns and increases milk fat content in dairy cows. *J. Dairy Sci.* 9, 6023-6032.
- Iqbal S., Terrill S., Zebeli Q., Mazzolari A., Dunn S., Yang W. and Ametaj B. (2012). Treating barley grain with lactic acid and heat prevented sub-acute ruminal acidosis and increased milk fat content in dairy cows. *Anim. Feed Sci. Technol.* 172, 141-149.
- Iqbal Z., Hussain I., Hussain A. and Ashraf M. (2003). Genetic variability to essential oil contents and composition in five species of Eucalyptus. *Pakistan J. Botany.* **35**, 843-852.
- Jamali M., Mirzaei AghjehGheshlagh F., Seifdavati J., Navidshad B. and Seyed Sharifi R. (2017). The effect of different levels of probiotics and organic acid on performance, blood metabolites and immune response in Holstein sucking calves, MS Thesis. Mohaghegh Ardabili Univ., Ardabil.
- Kassab A.Y. (2007). Effect of protected protein on the production and reproductive performance of sheep. Ph D. Thesis. College of Agriculture, Minia Univ., Egypt.
- Kuhn H. and Borchert A. (2002). Regulation of enzymatic lipid peroxidation: The interplay of peroxidizing and peroxide reducing enzymes. *Adv. Free Radical Biol. Med.* **33**, 154-172.
- Kummer Snigh N. and Verma D.N. (1981). Effect of different levels of dietary protein and energy on growth of male buffalo calves. *Indian J. Anim. Sci.* **51**, 513-521.
- Laki A., Dehghan-Banadaky M., Zali A., Ghanjkhanlou M. and Rezayadi K. (2016). Investigation of treated barley grain with lactic and citric acid on performance and feeding behavior of Holstein cows. *Anim. Prod.* 18(2), 249-260.
- Leea S.J., Kim D.H. Guan L.L., Ahn K., Cho K.W. and Lee S.S. (2015). Effect of medicinal plant by-products supplementation to total mixed ration on growth performance, carcass characteristics and economic efficacy in the late fattening period of hanwoo steers. *Asian-Australasian J. Anim. Sci.* 15, 290-298.
- Mairapetyan S., Mamikonyan V., Alexanyan J., Tovmasyan A. and Daryadar M. (2016). Productivity, biochemical indices and antioxidant activity of peppermint (*Mentha piperita*) and basil (*Ocimum basilicum*) in conditions of hydroponics. *J. Aqua. Res. Dev.* 7, 2-11.
- Matzuk M.M. and Lamb D.J. (2002). Genetic dissection of mammalian fertility pathways. *Nat. Cell Biol. Nat. Med.* 2002, 41-49.
- Melendez P., Goff J.P., Risco C.A., Archbald L.F., Littell R.C. and Donovan G.A. (2006). Effect of administration of a controlled-release monensin capsule on incidence of calving-related disorders, fertility, and milk yield in dairy cows. Am. J. Vet. Rese. 67, 537-543.
- Merkhan K.Y., Mustafa K.N., Isa R.H., Buti E.T.S., Barwary M.S.Q. and Mohammed C.A. (2019). Evaluation of medicinal plants (*Quercus infectoria* and *Astragalus eriocephalus*) as feed additives in Awassi ewe's ration (digestibility, milk yield

- and composition). *Iraqi J. Agri. Sci.* **50(1)**, 515-525.
- Mirzaei Alamouti H., Shahalizadeh Z., Amanlou H., Hajilou M. and Akbari Pabandi K. (2017). Effect of monensin and plant extract supplementation on feeding behaviors, production and carcass characteristics of Afshari lambs. *Iranian J. Anim. Sci. Res.* **9(1)**, 24-40.
- Mohammadi R., Rahchamani R., Ghanbari F. and Farivar F. (2017). Peppermint and pennyroyal essential oil effect on performance, rumen microbial population and some blood parameters of sheep. *Iranian Vet. Med.* **11(1)**, 75-84.
- Mohamed A.H. and El-Saidy B.E. (2004). Influence of some medicinal plants mixtures as feed additives on balady lactating goats performance and some feeding utilization. *J. Agric. Sci.* **29**, 185-185.
- Mohammed N., Ajisaka N., Lila Z.A., Hara K., Mikuni K., Kanda S. and Itabashi H. (2004). Effect of Japanese horseradish oil on methane production and ruminal fermentation *in vitro* and in steers. *J. Anim. Sci.* **82**, 1839-1846.
- Nematpour M., Kamran R. and Dehghan BOnadaki M. (2014). Effects of dietary barley grain processed by organic acid on performance and digestibility in feedlot cattle. *J. Rumin. Res.* **2(3)**, 21-34.
- Nieto G., Bañón S. and Garrido M.D. (2011). Effect of supplementing ewes' diet with thyme (*Thymus zygis* ssp. gracilis) leaves on the lipid oxidation of cooked lamb meat. *Food Chem.* **125(4)**, 1147-1152.
- NRC. (2007). Nutrient Requirements of Small Ruminants, Sheep, Goats, Cervids, and New World Camelids. National Academy Press, Washington, D.C., USA.
- Odhaib K.J., Adeyemi K.D., Ahmed M.A., Jahromi M.F., Jusoh S., Samsudin A.A., Alimon A.R., Yaakub H. and Sazili A.Q. (2018). Influence of nigella sativa seeds, rosmarinus officinalis leaves and their combination on growth performance, immune response and rumen metabolism in Dorper lambs. *Trop. Anim. Health Prod.* **50**(5), 1011-1023.
- Øverland M., Kjos N.P., Borg M. and Sørum H. (2007). Organic acids in diets for entire male pigs. *Livest. Prod. Sci.* 109(1), 170-173.
- Partanen K. (2001). Organic acids-their efficiency and modes of action in pigs. Gut environment of pigs. Nottingham university press, United Kingdom.
- Raeisi M., Safamehr A., Khodaei Ashan S. and habibi R. (2015).
 Thyme (*Thymus vulgaris* L.) and Oregano (*Oreganum vulgare* L.) essential oils for broilers: effect on performance, antioxidant indices and blood biochemical parameters. *Anim. Sci. J.* 27(105), 103-120.
- Raghuvansi S.K., Prasad R., Mishra A.S., Chaturvedi O.H., Tripathi M.K., Misra A.K., Saraswat B.L. and Jakhmola R.C. (2007). Effect of inclusion of tree leaves in feed on nutrient utilization and rumen fermentation in sheep. *Bioresour. Technol.* 98, 511-517.
- Rajabi Aliabadi R., Tahmasbi R., Dayani O. and Khezri A. (2017). The effect of feeding ensiled alfalfa with different levels of waste date on rumen protozoal population, microbial protein synthesis and blood parameters in Kermani sheep. *Iranian J. Anim. Sci. Res.* **8(3)**, 428-440.
- Rao R.U. and Sharma R.D. (1987). An evaluation of protein quality of fenugreek seeds (*Trigonella foenum-graecum*) supple-

- mentary effects. Food Chem. 24, 1-12.
- Rashidi A., Mokhtari M.S., Safi Jahanshahi A. and Mohammad Abadi M.R. (2008). Genetic parameter estimates of preweaning growth traits in Kermani sheep. *Small Rumin. Res.* 74, 165-171.
- Rongzhen Z., Hai X., Long C., Chengzhen Z., Fei W., Xueli Z. and Yi F. (2019). Effects of feeding garlic powder on growth performance, rumen fermentation, and the health status of lambs infected by gastrointestinal nematodes. *Anim. J.* **9**, 102-111.
- Safari H., Mohiti Asli M. and Mohammadpour F. (2016). Effect of purslane powder on performance, quality and oxidative stability of meat and some blood metabolites in fattening lambs. *Anim. Prod. Res.* **5(1)**, 15-26.
- Salem A.Y., El-Awady H.G., Tag EL-Dein M.A. and Eisa D.A. (2019). Effect of aromatic plants oils on immunity, udder health and milk production of Friesian cows. *Slov. Vet. Res.* **56(22)**, 523-530.
- Sanad M.A. (2010). Some productive and reproductive response of dairy cattle Fed Nigella Sativa supplemented rations. Ph D. Thesis. Minia Univ., Eygpt.
- SAS Institute. (2003). SAS®/STAT Software, Release 9.1. SAS Institute, Inc., Cary, NC. USA.
- Seifzadeh S., Mirzaei Aghjeh-Gheshlagh F., Abdi-Benemar H., Seifdavati J. and Navidshad B. (2017). The effects of a medical plant mix and probiotic on performance and health status of suckling Holstein calves. *Italian J. Anim. Sci.* **16**(1), 44-51.
- Sen S., Chakraborty R., Sridhar C., Reddy Y.S.R. and De B. (2010). Free radicals, antioxidants, diseases and phytomedicines: current status and future prospect. *Int. J. Pharm. Sci. Rev. Res.* **3**, 91-100.
- Shahabi H., Chashnidel Y., Teymouri Yanseri A., Rostamnejad Z. and Mohammadzadeh H. (2012). Investigation of the effects of canola oil and peppermint extract on feed intake, feed conversion ratio, digestibility of nutrients and blood metabolites of Atabay lambs. Pp. 693-689 in Proc. 5th Iranian Congr. Anim. Sci., Isfahan University of Technology, Isfahan, Iran.
- Shams Al-dain Q.Z. and Abdalwahad E. (2015). Evaluation of using some medical herbs seeds as feed additive on some hematological and biochemical parameters for male Awassi lambs Under local environmental condition of Nineveh Province, IRAQ. *Australian J. Basic Appl. Sci.* **9(20)**, 527-537.
- Skrivanova E. and Marounek M. (2007). Influence of pH on antimicrobial activity of organic acids against rabbit enteropathogenic strain of Escherichia coli. *Florida Microbiol.* 52, 70-72.
- Soltan M. (2009). Effect of essential oils supplementation on growth performance, nutrient digestibility, health condition of Holstein mail calves during per- and post- weaning periods. *Pakistan J. Nutr.* **8**, 642-652.
- Tepe B., Sokmen M., Akpulat H.A., Daferera D., Polissiou M. and Sokmen A. (2005). Antioxidative activity of the essential oils of Thymussipyleussubsp.sipyleus var. sipyleus and Thymus sipyleus subsp. sipyleus var. rosulans. *J. Food Eng.* 66, 447-454.

- Thakare M. (2004). Pharmacological screening of some medicinal plants as antimicrobial and feed additives. MS Thesis. Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
- Thomas A. (2002). Fats and Fatty Oils. Ullmanus Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim
- Thomas V.M., Clark C.K. and Schuldt C.M. (1994). Effect of substituting feather for soy bean meal on criminal fiber fermentation and lamb wool growth. *J. Anim. Sci.* **72**, 504-514.
- Tipu M.A., Akhtar M.S., Anjum M.I. and Raja M.L. (2006). New dimension of medicinal plants animal feed. *Pakistan Vet. J.* **26(3)**, 144-148.
- Tiran D. (2003). The use of fenugreek for breast feeding women. Complement Ther Nurs Midwifery. 9, 155-156.
- Tsai P.J., Tsai T.H., Yu C.H. and Ho S.C. (2007). Evaluation of NO suppressing activity of several Mediterranean culinary spices. *Food Chem. Toxicol.* **45**, 440-447.
- Tung C.M. and Pettigrew J.E. (2006). Critical review of acidifiers. MS Thesis. University of Illinois, USA.
- Van Soest P.J. (1994). Nutritional Ecology of the Ruminant. Cornell University Press, Ithaca, NY.
- Wallace R.J. (2004). Antimicrobial properties of plant secondary metabolites. Proc. Nutr. Soc. 63, 621-629.
- Wanapat M., Kang S. and Phetsatcha K. (2013). Development of feeding systems and strategies of supplementation to enhance rumen fermentation and ruminant production in the tropics. *J. Anim. Sci. Biotechnol.* **4,** 32-41.
- Wang L., Piao X.L., Kim S.W., Piao X.S., Shen Y.B. and Lees H.S. (2008a). Effects of forsythia suspensa extract on growth performance, nutrient digestibility, and antioxidant activities in broiler chickens under high ambient temperature. *Poult. Sci.* 87, 1287-1294.
- Wang Y.Z., Xu C.L., An Z.H., Liu J.X. and Feng J. (2008b). Effect of dietary bovine lactoferrin on performance and antioxidant status of piglets. *Anim. Feed Sci. Technol.* 140, 326-336.
- Wang S.P. and Wang W.J. (2016). Effects of dietary supplementation of Chinese herb medicine mixture on rumen fermentation, nutrient digestion and blood profile in goats. *South African J. Anim. Sci.* 46(3), 247-260.
- Wenk C. (2003). Herbs and botanicals as feed additives in monogastric animals. Asian-Australsian J. Anim. Sci. 16(2), 282-289.
- Westendarp H. (2005). Essential oils for the nutrition of poultry, swine and ruminants. *Dtsch Tier. Woch.* **112**, 375-380.
- Wezyk S., Poltowicz K. and Sosnowka-Czajka E. (2000). Effect of replacing antibiotic growth stimulants with herbs on performance and meat quality of chicken broilers. Pp. 28-35 in Proc. 21st World's Poult., Montreal, Canada.
- Yang W.Z., Ametaj B.N., He M.L., Benchaar C. and Beauchemi K.A. (2010a). Cinnamaldehyde in feedlot cattle diet: Intake, growth performance, carcass characteristics, and blood metabolites. J. Anim. Sci. 88, 1082-1092.
- Yang W.Z., Benchaar C., Ametaj B.N. and Beauchemin K.A. (2010b). Dose response to eugenol supplementation in growing beef cattle ruminal fermentation intestinal digestion. *Anim. Feed Sci. Technol.* 158, 57-64.

Yinegar H., Kelbessa E., Bekele T. and Lulekal E. (2007). Ethnoveterinary medicinal plants in Bale Mountains National Park, Ethiopia. *J. Ethnopharmacol.* **112**, 55-70.

Youdim K.A. and Deans S.G. (2000). Effect of thyme oil and thymol dietary supplementation on the antioxidant status and

fatty acid composition of the ageing rat brain. *Br. J. Nutr.* **83**, 87-93.