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  INTRODUCTION 
Today, genome-wide marker data and whole genome single 
nucleotide polymorphism (SNP) chips are easy available 
and widely used for evaluation a wide range of economi-
cally important traits in plant and animal breeding programs 
(Desta and Ortiz, 2015; Do et al. 2015). Animal and plant 
breeders, are mainly interested in estimating genomic 
breeding values for these traits with including whole ge-
nome wide marker information that call as genomic selec-
tion (GS); (Daetwyler et al. 2013; Meuwissen et al. 2016). 
The genomic selection goal is that maximum capturing 

variance that can be explained by the markers (Su et al. 
2012). To achieve this, any statistical method implemented 
for the predictions must be able handle the large numbers of 
markers and evaluate marker effects across the entire ge-
nome (Gianola and Rosa, 2015). In hence, the models poses 
two source of challenges, one is curse of dimensionality 
and the other is unknown genetic architecture of the quanti-
tative traits (Daetwyler et al. 2010; de Los Campos et al. 
2013). Genetic architecture is a description of the structure 
of the genotype-phenotype relationship that includes the 
nature of the loci contributing to phenotypic variation (e.g., 
number of loci and their genomic location) and a descrip-

 

A simulation study was conducted to address the issue of how purely additive (simple) genetic architecture 
might impact on the efficacy of parametric and non-parametric genomic prediction methods. For this pur-
pose, we simulated a trait with narrow sense heritability h2= 0.3, with only additive genetic effects for 300 
loci in order to compare the predictive ability of 14 more practically used genomic prediction models based 
on four criteria (mean squared error (MSE), Bias, γy,GEBV and γGEBV,TBV). Results suggested that parametric 
genomic prediction models have greater superiority over non parametric genomic models under a simple 
purely additive genetic architecture. Our result also showed that, all parametric methods, other than ridge-
regression BLUP (RR-BLUP), could explain most of phenotypic variation because they showed lower 
MSE, higher predictive correlation (γy,GEBV), the least amount of bias (by,GEBV) and the higher correlations 
between true breeding values and the estimated genomic breeding values (γTBV,GEBV). Random forest regres-
sion had the worst performance among non parametric methods. The simulation results suggested that there 
is a large difference between performances of non parametric methods in comparison with parametric 
methods when underlying architecture is purely additive. But this may not happen when dominance and 
epistatic genetic effects contributing to both additive and non-additive genetic variances. 
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tion of the alleles at those loci; number of alleles, magni-
tude of effects, patterns of pleiotropy, additivity, domi-
nance, epistasis, epigenetic effects (Holland, 2007; Tiezzi 
and Maltecca, 2015; Yang et al. 2007). These methods be-
have different manner to overcome the difficulties of the 
second challenge and providing robust estimations from 
simple to complex genetic architecture of quantitative traits 
(Daetwyler et al. 2010; Fernández et al. 2016). 

However, the performance of prediction methods can be 
affected by genetic architecture and in particular patterns of 
pleiotropy, additivity, dominance and epistasis (Lidan Sun; 
2015).  

The aims need to assess the accuracy and sensitivity of 
whole genome prediction statistical methods that are linked 
conceptually by genetic architecture. However, selection of 
the best genomic prediction model with considering a spe-
cific genetic architecture of a complex traits remains one of 
the main goals for animal breeders and evolutionary geneti-
cists. In other hand, the genetic architecture of most eco-
nomic traits remains unknown for animal breeders and evo-
lutionary geneticists (Stranger et al. 2011). Then, unravel-
ling the performance of GS methods toward the genomic 
architecture of a polygenic trait is fundamental to study 
ability of methods for predictions.  

The objective of this study was to compare different ge-
nomic prediction models includes parametric and non-
parametric, and assess their abilities toward a specific trait 
with only additive architecture. We hypothesize that with 
further exploration of predictive ability of GS models to-
ward the purely genomic architectures, we will clearly find 
the true accuracy of genomic prediction models under a 
simple genetic architecture. 
 

  MATERIALS AND METHODS 
In order to evaluate the impact of purely additive genetic 
architectures of complex trait on the accuracy and predic-
tive ability of GS models, we simulated a quantitative trait 
which influenced by only narrow sense heritability (h2=0.3) 
and assessed predictive ability of the 14 genomic prediction 
models. 
   
Population structure 
A population was simulated for 2000 historical generations 
at an effective size of 100 (Ne=100). After 55 generations 
random mating, during the whole process, all individuals 
were generated with one gamete from a random father and 
one from a random mother. In each generation, 20 males 
mated with 400 females, 20 half-sib families. Therefore, the 
data set for the estimation of the marker effects consisted of 
the 4800 individuals from the last five generations and used 
to estimate predictive ability and sensitivity of statistical 
method. 

The genome was assumed to consist of 5 chromosomes 
each 100 cM long and 2000 loci/chromosome (i.e. a total of 
10000 SNP plus 300 QTL) were located at random map 
positions (as shown in Figure 1). Both SNP and QTL were 
biallelic. Mutations were generated at a rate of 2.5 × 10-5 
per locus per generation at the marker loci and at the QTL 
loci. Similar to Meuwissen and Goddard (2001), a standard 
gamma distribution with shape parameter α= 0.42 and scale 
parameter β= 2.619 was used to drawn allele substitution 
effects (α j). The sign of an allele substitution effect was 
drawn at random with equal chance. 
 
True genomic estimated breeding values 
The true breeding value (TBV) for each animal was calcu-
lated as the expected genotypic value of a certain QTL 
genotype that carried by animal : 

 

TBVi= 
1

[( 2)
P

AA
j

X


 × (2qjα j) + (XAa or Aa=1) × (qjα j-

pjα j) + (Xaa=0) × (-2 pjα j)] 
 
Where:  
Xij: covariate indicator of the genotype of the jth QTL of the 
ith individual that has the values 2, 1, 0 for genotypes AA, 
Aa or aa, respectively.  
pj and qj: allelic frequencies (A or a) for the jth marker in 
the training population.  
α: average effect of substitution for the jth marker calculated 
as: 
 
α j= а j + dj(qj-pj) with dj= 0. 
 
Statistical methods  
To predict marker effects and performance of GS models, a 
five-folds cross validation scheme were used and repeated 
20 times per run. We divided the data into training and test-
ing sets and the training sets were used to fit the models, 
and the testing sets were used to determine the performance 
of the particular method. The evaluated methods include 
parametric methods; genomic best linear unbiased predic-
tion (GBLUP), ridge regression BLUP (RR-BLUP), least 
absolute shrinkage and selection operator (LASSO), elastic 
net (EN), Bayesian ridge regression (BRR), Bayesian 
LASSO (BL), Bayes A, Bayes B, Bayes C and non-
parametric methods, includes; reproducing kernel hilbert 
space (RKHS), support vector machine (SVM), relevance 
vector machine (RVM) and gaussian processors (GP). The 
statistical software R (R Core Team, 2015) was used to run 
the parametric and nonparametric methods. 

With respect to that the evaluations were based on the 20 
replicates for each cross validated scenario, the average of 
the results was reported.  
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For each scenario, the sensitivity and predictive ability of 

the genomic prediction models was measured by four statis-
tic criteria including: predictive correlation as the person’s 
correlation between the true phenotypic values and the pre-
dicted estimated genomic breeding values (γy,GEBV), mean 
square error (MSE), empirical accuracies of genomic pre-
dictions as the correlation between GEBVs and the true 
breeding values (γGEBV,TBV) and the unbiasedness was as-
sessed by regression of the simulated phenotypes on the 
GEBVs (by,GEBV). Significant differences between methods 
in terms of predictive ability were assessed by means of 
paired t-tests (α=1%), adjusted by bonferroni correction. 
 

  RESULTS AND DISCUSSION 
The comparison of cross-validated results for different 
models allowed estimation of the similarities and dissimi-
larities of them. Averages and standard errors (SE) were 
computed for each statistic by considering the results of the 
20 replicates available in each situation. Table 1 shows the 
mean and SE (sampling variabilities) of afore mentioned 
statistics for the nine parametric (five Bayesian and four 
frequentist) and five non-parametric implemented models. 
The predictive correlation of models ranges from 0.676 for 
LASSO to 0.568 for random forest regression and the range 
of mean square error and bias for tested models were 23.15-
30.34 and 0.93-1.63, respectively.  
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1 Distribution of randomly SNP coverage across the five simulated chromosomes

The predictive correlation (γy,GEBV), MSE and bias of the 
Bayesian methods were quite similar. The predictive 
correlation of GBLUP, LASSO and EN models and Bayes-
ian models was higher than RKHS and machine learning 
models.  

Comparison of described models for MSE and bias also 
demonstrated high similarity between Bayesian and fre-
quentist parametric method and a slight their differences 
with non-parametric and machine learning method. The 
bias between Bayesian and parametric method was very 
close to 1 for all traits except elastic net (γy,GEBV=0.93). 
Unbiased models are expected to have a slope coefficient of 
1, whereas values greater than 1 indicate a biased overesti-
mation in the GEBV prediction and values smaller than 1 
indicate a biased underestimation of the GEBV. In our 
study, in terms of empirical accuracy, the five Bayesian 
methods and other parametric performed similarly with 
correlations over 0.90 and non-parametric and machine 
learnings had slightly downward correlations. Bayes B, 
Bayes C and LASSO were slightly more accurate than oth-
ers, while random forest regression yielded the smallest 
bias (the worst), the lowest accuracy and the highest MSE.  
Bayesian and parametric (RR-BLUP, GBLUP, LASSO and 
EN) models reached a very similar predictive correlation 
(γy,GEBV) for the given trait. However, non-parametric meth-
ods tended to outperform than other models for MSE, bias 
and empirical accuracies.  
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Three machine learning method (Support Vector Ma-

chine, Relevance Vector Machine and Gaussian Process) 
and random forest performed poorly on these datasets, even 
though the models parameters was optimized well, but the 
methods significantly different from all the other for the 
criteria (P<0.01).  

The others pairs of non-parametric methods significantly 
different from each other (P<0.01), with comparing means, 
in terms of predictive correlation, MSE and empirical 
accuracy, RVM had higher values but RKHS had a best 
bias, very close to 1 (i.e. γTBV,GEBV=1.03).  

The boxplots (Figures 1 and 2), show the distribution of 
the prediction accuracy values for 100 runs and the relative 
performance of the methods. Figure 1 contains 28 boxplots 
of bias (A) and predictive correlation of predicted breeding 
values (B) and Figure 2 shows MSE and empirical accuracy 
boxplots for the 14 different methods. In each figure, the 
first five boxplots are for the Bayesian methods, the next 
four box plots represent the frequentist methods and the 
later five plots are for non-parametric methods. These sum-
mary plots clearly show the ability and inability of using 
any kind of methods when only additive architecture is pre-
sent. 

 
Bias of the methods 
The coefficient of regression (slope) of simulated pheno-
type on GEBV was calculated as a measurement of the bias 
of each method. Ideally a value of γy,GEBV equal to one in-
dicates no bias in the prediction. Figure 2(A) shows the 
slopes of regressed simulated phenotypes on estimated 
breeding values for all models. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 1  Prediction accuracies criteria means across different genomic prediction models for a purely additive trait (h2=0.3) with five folds cross-
validation 

All Bayesian method had very similar bias and very close 
to one (red vertical line in Figure 2(A)) and they were not 
significantly different than one, indicating no significant 
bias in the prediction. Across the frequentist method RR-
BLUP and GBLUP had a bias similar to Bayesian methods 
and very close to one but a slight upward and downward 
estimation found for LASSO and elastic net, respectively. 
In addition, more variation and significant differences 
among the non parametric methods were detected. The 
value of γy,GEBV derived from RKHS was slightly better 
across the non-parametric models. The values of SVM, GP 
and RF were higher than one (over estimated) and the RVM 
was lower (under estimated). 
 
Predictive ability of the methods  
Figure 2(B) shows the boxplot of correlation between the 
simulated phenotype (y) and the predicted genomic breed-
ing value (GEBV), since each validation group had GEBV 
estimated from a different prediction equation and might 
have a different mean. This correlation represent the predic-
tive ability (γy,GEBV) of GS to predict phenotypes (Resende 
et al. 2012). Overall, the ability to predict phenotype ranged 
from 0.56 for Random Forest to 0.67 for LASSO (Table 1). 
In the Figure the red line shows the total mean accuracy of 
all methods (0.65), although the parametric methods differ 
in a priori assumptions about marker effects, but their pre-
dictive ability was similar and all of them had the accuracy 
higher than the total mean (red line). In contrast, nonpara-
metric methods, particularly RF, RKHS, and SVM, pro-
vided predictions that are reasonably less accurate for a 
traits with purely additive architecture.  

Method Predictive correlation γMSE   Bias TBV,GEBV 

Bayes A 0.666±0.010bc 23.15±0.09f 1.00±0.04d 0.914±0.06c 

Bayase B 0.669±0.010bc 23.24±0.09f 0.99±0.04d 0.923±0.06b 

Bayase C 0.669±0.010bc 23.24±0.09f 0.99±0.04d 0.923±0.06b 

Bayase L 0.661±0.010bd 23.39±0.09f 1.00±0.04d 0.909±0.06e 

Bayase R 0.661±0.014bd 23.41±0.14f 1.00±0.06d 0.908±0.09e 

Least absolute shrinkage and selection operator (LASSO) 0.676±0.014a 22.73±0.14h 1.03±0.06c 0.926±0.09a 

Elastic net (EN) 0.670±0.014bc 23.13±0.14fg 0.93±0.06e 0.915±0.09c 

Ridge regression BLUP (RR-BLUP) 0.659±0.014d 26.71±0.14b 0.99±0.06d 0.907±0.09e 

Genomic best linear unbiased prediction (GBLUP)  0.672±0.014b 22.78±0.14hg 0.99±0.06d 0.911±0.09d 

Support vector machine (SVM) 0.638±0.014e 24.86±0.14d 1.15±0.06b 0.874±0.09h 

Relevance vector machine (RVM) 0.647±0.010e 24.23±0.09e 0.94±0.04e 0.887±0.06g 

Reproducing kernel hilbert space (RKHS) 0.608±0.014g 26.23±0.14c 1.03±0.06c 0.834±0.09i 

Gaussian processors (GP) 0.650±0.010e 24.31±0.09e 1.14±0.04b 0.893±0.06f 

RF 0.568±0.014h 30.34±0.14a 1.63±0.06a 0.778±0.09j 

MSE: mean squared error. 
The means within the same column with at least one common letter, do not have significant difference (P>0.001). 
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Mean square error and empirical accuracy 
Mean square error (MSE) of the estimator used for calculat-
ing as prediction error and a risk function to quantify dif-
ferences between the estimator and the true value. In this 
study, the mean squared error of prediction between simu-
lated phenotype and GEBV of animals in the testing set was 
used as the loss function to be minimized and a goodness of 
prediction criteria for the tested models. A lower MSE is 
associated with a better overall fit and also, larger estimates 
of γTBV,GEBV is a criteria for more reliable predictions. The 
results from this study show that in terms of MSE, paramet-
ric methods performed better and MSE value downward of 
total MSE mean except for RR-BLUP method (Figure 3C). 
The five non-parametric method, showed higher MSE than 
the total mean. The overall fit of the models to the simu-
lated purely additive trait, judged by the mean squared pre-
diction error, favored parametric methods over the non-
parametric regression methods. However, for empirical 
accuracy (i.e. γGEBV,TBV), lower estimates of the correlation 
were obtained for non-parametrics and all parametric per-
formed better (Figure 3D).  
 
Hierarchical clustering tree 
Figure 4 presents the hierarchical clustering tree obtained 
through the averaging of the distance matrix across all 
methods. The clustering results showed the similarities in 
terms of four estimated criteria (predictive correlation, 
MSE, Bias and empirical accuracy) between the different 
models. The clustering chart clearly shows that all paramet-
ric except RR-BLUP methods placed in one cluster. The 
RR-BLUP and RKHS had close similarity and fallen into a 
separate cluster. As well as, the machine learning methods 
(SVM, RVM and GP) has close similarities and were 
placed in the same category. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Random Forest Regression was quite different, with 
deep divisions in the clustering with other method. This 
analysis also showed strong similarity between two by two 
methods and conclude that Bayes B with Bayes C, LASSO 
with GBLUP, Bayes A with Bayes L, Bayes RR with EN, 
RR-BLUP with RKHS, RVN with GP have more similari-
ties. It is also interesting to note that the elastic net clus-
tered with Bayes RR despite being a combination of lasso 
and ridge regression penalty. The idea of genomic selection 
was initially raised more than 15 years ago, however, it was 
not practically used until the coming of high capacity geno-
typing platforms (Meuwissen et al. 2016). Beginning re-
ports on advantages and disadvantages of various statistical 
methodologies for genomic selection have been conducted 
largely on simulated data sets (Daetwyler Hans et al. 2013). 
Simulation is potentially informative way to assess predict 
ability of genomic prediction models, especially when un-
derlying genetic nature of complex trait and biological 
mechanisms are unknown. This paper describes the per-
formance of 14 statistical approaches for the prediction of 
genomic breeding values using a simulated data set. 

We compared nine parametric (five Bayesian and four 
frequentist) and five non-parametric statistical GS methods. 
Comparisons were based on a simulated phenotype where 
genotypic variability was responsible for only 30% of the 
phenotypic variability (h2=0.3). The underlying genetic 
architectures responsible for the genotypic variability, con-
sisted of 300 independently segregating biallelic QTL loci 
that contributed equally either in an additive manner to a 
quantitative trait (purely additive architecture).  

Our study showed that using a parametric method in ana-
lyzing a simple additive architecture quantitative trait could 
provide better goodness of fit than using non-parametric 
method.  
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Figure 2 The boxplots of Bias and Accuracy of prediction for the trait with purely additive genetic architecture (narrow sense heritability of 0.30) 
The first nine boxplots (five Bayesian and four frequentist) correspond to the parametric methods, and the last five (dark blue) boxplots correspond 
to the non-parametric (machine learning) methods 
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Our result also showed that all parametric methods, ex-

cept RR-BLUP, could explain most of phenotypic variation 
because they showed lower MSE, higher accuracy, the re-
gression coefficient close to one and higher γTBV,GEBV. 

It seems that accuracy of statistical genomic prediction 
models is dependent on the genetic architecture of complex 
traits, the size of the training population, the number of 
independent chromosome segments, the heritability of 
complex trait and the marker density panels. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
With respect to the relative performance of the prediction 

methods, Daetwyler et al. (2010) suggested that the accu-
racy of GBLUP is invariant to number of quantitative trait 
loci (QTL) affecting the trait, while the accuracy of statisti-
cal strategies taking into account the variable selection, is 
expected to be greater than that of GBLUP when number of 
independent chromosome segments are more than number 
of QTLs. In the present study with a highly additive quanti-
tative trait, without involving any non-additive effects, the  
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Figure 3 The boxplots of MSE and correlation of TBV and GEBV of prediction for the trait with purely additive genetic architecture (heritability 
of 0.30)  
The first nine boxplots (five Bayesian and four frequentist) correspond to the parametric methods and the last five (dark blue) boxplots correspond 
to the nonparametric (Machine Learning) methods 

 

Figure 4 Hierarchical clustering of genomic selection (GS) models based on four estimated criteria, the height on the y axis refers to the value of 
the criterion associated with a particular agglomeration of models. Parametric (frequentist): RR-BLUP, GBLUP, LASSO, EN, parametric (Bayesian 
shrinkage regression): Bayes A, Bayes B, Bayes C, Bayesian LASSO, non-parametric (Machine Learnings): reproducing kernel hilbert space 
(RKHS), relevance vector machine (RVM), support vector machine (SVM) and gaussian processors (GP) 
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predictive abilities were considerably greater in the case of 
parametric predictions when compared to the non-
parametric prediction models. Despite this, this superiority 
of predictive ability for parametric method, predictions var-
ied markedly across Bayesian and frequentists methods. 
Another hypothesis for the differences in the superiority of 
parametric predictions in compare with non-parametric 
method, also mentioned by (Lee et al. 2008).  

Our results are in agreement with the findings by Gianola 
et al. (2006), who state that the non-parametric methods 
should be able to better predict phenotypes that are based 
on genetic architectures consisting of epistatic interactions. 
Also, Howard et al. (2014) state that if the underlying ge-
netic architecture is additive, then parametric GS methods 
are slightly better than the non-parametric methods for lev-
els of heritability. Both the accuracy of prediction and the 
MSE results suggest the same about the models in terms of 
predictive performance. When underlying architecture of a 
trait is purely additive, the RR-BLUP perform the worst 
among the parametric methods, and the Random Forest 
performs the worst among the non-parametric methods 
(shown in Figure 2 and Figure 3). The LASSO and GBLUP 
had the highest prediction accuracy and the lowest MSE 
values among the parametric methods when only the addi-
tive is present. The other parametric methods like the EN 
are more power to shrink the QTL effects. Among the all 
methods, the Random Forest showed poor predictive abil-
ity. We can conclude that when the underlying architecture 
is only additive, in fact, we assume that the SNPs on ge-
nome are independent that is same as assumptions about 
parametric approaches. The simulation of a purely additive 
architecture done with the assumption that simulate additive 
effects for QTLS are independent. In this case, we satisfy 
the parametric model assumption of having independent 
explanatory variables, so the parametric models have a lar-
ger predictive power than the nonparametric models 
(Howard et al. 2014). 

Hayes et al. (2010) reported that the accuracy of GEBV 
using parametric methods for overall type trait, which con-
sidering a normal distribution of the effects is better and 
conversely for fat % and proportion of back spot when pre-
dictions is based on leptokurtic distribution of the effect is 
better. In other study, Ober et al. (2012) reported that, pa-
rametric GS methods were unable to predict chill coma 
recovery, a quantitatively measured adaptive trait in Droso-
phila.  

Two-dimensional scans of the whole genome had previ-
ously revealed that the genetic architecture of this trait is 
composed primarily of interactions involving many loci.  
Whole genome prediction is affected not only by the under-
lying genetic architecture but also by additional types of 

unpredictable genetic contributions including intra-locus 
dominance and genotype by environment interactions.  

Here in, we have demonstrated the superior ability of the 
parametric method in Bayesian and frequentist context to 
accurately predict phenotypes for a highly additive architec-
ture complex trait. 

 

  CONCLUSION 
Fourteen regression methods proposed to calculate genomic 
breeding values using a complex trait which is under a 
highly additive genetic architecture for 10000 genome-wide 
SNP markers. From our evaluations, for traits controlled by 
large number of QTLs with only additive effects, paramet-
ric methods reached very similar predictive abilities and a 
clear ranking of statistical methods was observed in func-
tion of the trait analyzed. Knowledge of traits’ genetic ar-
chitectures can be integrated into practices of genomic pre-
diction, which will help the approaches perform better to-
ward different architectures. 
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