

ABSTRACT

Acid-binding capacity (ABC) of a feed is the amount of acid required to reduce the pH of feed to a special level such as 3. All poultry feed ingredients used in this study were collected from feed mills in Iran. The pH and ABC were determined using the standard methods in deionized and magnetized water at room and body temperatures. The pH of most feed ingredients was raised in magnetized water as compared to deionized (untreated water). The pH of most feed ingredients especially organic acids was decreased in warm water. Energy sources accompanied by synthetic amino acids and common salt and some additives such as prebiotic and zeolite had the lowest values of ABC (less that 400 mEq/kg). Protein sources and some supplements and additives had average ABC of about 400-1000 mEq/kg, and some vitamins and minerals had high level of ABC (more than 1000 mEq/kg) among all ingredients. Calcium carbonate and sodium bicarbonate, along with ammonium formate and calcium propionate had the highest ABC values among all ingredients. Pelleting did not show any pronounced impact on pH or ABC of whole diet; while extruding did not alter ABC of soybean but significantly increased ABC of flaxseed. These results give indication that the type of feed ingredient, or processing and solution used for ABC evaluation, especially magnetizing treatment and ambient temperature, are determining factors for ABC of feedstuffs.

KEY WORDS acid-binding capacity, feedstuffs, poultry, magnetized water.

INTRODUCTION

Chemical composition of feed ingredients and complete diets are of utmost importance for poultry nutritionists. Nowadays, it is well accepted that other physiochemical criteria such as particle size among others, deserve close consideration along with the composition. Acid-binding capacity (ABC) is a new launched concept among numerous other characteristics in this regard. The ABC of a feed is the amount of acid required to reduce the pH of feed to a special level (Jasaitis *et al.* 1987; Lawlor *et al.* 2005; Rynsburger, 2009). Due to the presence of various ingredients, characterized by different chemical composition, their

corresponding ABC can be considerably different. For instance, Lawlor *et al.* (2005) and Rynsburger (2009) showed that mineral ingredients containing calcium had the highest ABC followed by protein ingredients, whereas cereal grains and other energy sources had the lowest. Feed type, ion content, and total ash are important factors influencing feed ABC (Jasaitis *et al.* 1987). Therefore, the formulated diets do not have the same ABC due to the presence of various ingredients. Thus, similarly to dietary electrolyte balance (DEB, DCAB or DCAD), ABC can be defined as a brandnew concept in poultry nutrition. Water as a medium for ABC measurement can be affected by environmental factors, and in particular magnetization. Noteworthy, it has been claimed that magnetic treatment of water might change the biophysical properties of water (Lin and Yotvat, 1990; Caia *et al.* 2009). Thus, along with the standard procedure of ABC measurement (Lawlor *et al.* 2005), we have paid attention to determine ABC of feedstuffs in magnetic water and compared it to the same measurement in deionized water. In addition, since body temperature can affect ABC of feed ingredients in the gut canal, the same ABC was examined at 41 °C which is the body temperature of chicken. The objective of this study was to establish a database for the ABC of commonly used ingredients in broiler's feed in various conditions for possible future use in feed formulation.

MATERIALS AND METHODS

All poultry feed ingredients have been collected from feed mills in Iran. Soybean meal, corn, wheat, barley, limestone and all other samples with a grain or granule shape were ground using a 1 mm screen. All remaining samples were not ground because of their already fine nature.

The pH of each ingredient was determined by suspending 0.5 gram of ground dry matter sample in 50 mL of deionized water by continuous stirring using a stir plate at room temperature. The pH of the solution was recorded once the pH had been stabilized for 3 minutes (stable to ± 0.01). The ABC was determined using the method of Jasaitis et al. (1987) as modified by Lawlor et al. (2005). Titrations were performed by addition of acid (0.1 N HC1) or base (0.1 N NaOH) in variable increments until the pH reached 3. Total volume of acid or base added to each sample was recorded and then multiplied by the normality to calculate titratable acidity and alkalinity (Jasaitis et al. 1987). The ABC is expressed as the amount of hydrochloric acid in milliequivalents (mEq) needed to decrease the pH of 1 kilogram of sample to pH 3. However, the ABC for acids is expressed as a negative number due to the NaOH that is used for its measurement and the increase of pH to 3. Rynsburger (2009) conducted the tests for pH and ABC twice for each sample, whereas in this study we repeated the test four times to decrease the variation achieving thus more precise data.

The water used in this study was high-level deionized water which was produced by a Direct-Q Millipore System. Then, this deionized water was magnetized as follows: the static magnetic field was produced with AQUA CORRECT device (Figure 1). The equipment, made in Germany, had a coaxial static magnetic system of 6500G field strength. A certain volume of purified water was circulated in a close loop from a closed tank through PVC tubing linked to a pump. Therefore, solution could pass through the field many times in a closed cycle. The flow rate was settled at around 36 L/min.

Figure 1 Magnetizing apparatus used in the study

All data were analyzed using the General Linear Model procedure of the Statistical Analysis System (SAS, 2004). Tukey's Studentized Range (HSD) test was used to compare means. All statements of significance were based on probability of P<0.05. The model used for a factorial experiment with two factors A (deionized or magnetized water) and B (21 or 41 °C for water temperature) was:

$$\begin{split} Y_{ijk} &= \mu + A_i + B_j + (AB)_{ij} + e_{ijk} \\ i &= 1, \dots, a. \\ j &= 1, \dots, b. \\ k &= 1, \dots, n. \end{split}$$

Where:

 $\begin{array}{l} y_{ijk} : \mbox{ observation } k \mbox{ in level } i \mbox{ of } A \mbox{ and level } j \mbox{ of } B. \\ \mu : \mbox{ the overall mean.} \\ A_i : \mbox{ the effect of level } i \mbox{ of } A. \\ B_j : \mbox{ the effect of level } j \mbox{ of } B. \\ (AB)_{ij} : \mbox{ the effect of the interaction of level } i \mbox{ of factor } A \\ \mbox{ with level } j \mbox{ of factor } B. \\ e_{ijk} : \mbox{ random error.} \\ a: \mbox{ number of levels of factor } B. \\ b: \mbox{ number of levels of factor } B. \\ n: \mbox{ number of observations for each } A \times B \mbox{ combination.} \end{array}$

RESULTS AND DISCUSSION

The pH determination for various groups of feed ingredients are presented in Tables 1 to 6. The pH of most feed ingredients has been raised in magnetized water when compared to deionized (untreated water). The reason for this is not clear but it may be related to the findings of Holysz *et al.* (2002), who reported that zeta potential as a function of the pH solution was changed due to magnetic field treatment. The significance of zeta potential is that its value can be linked to the stability of colloidal dispersions like in multivitamin syrup.

Effects	Corn	Wheat	Barley	Wheat bran	Rice bran	Vegetable oil	Fat powder
Water							
Deionized	5.76 ^b	5.88 ^b	6.10 ^b	5.67	6.29 ^b	5.27 ^b	5.73 ^b
Magnetized	6.69 ^a	6.67 ^a	7.02 ^a	6.78	7.07 ^a	6.92 ^a	6.54 ^a
±SEM	0.030	0.056	0.135	0.365	0.048	0.101	0.093
P-value	< 0.0001	< 0.0001	0.0013	0.052	< 0.0001	< 0.0001	0.0003
Temperature							
21 °C	6.68 ^a	6.70 ^a	6.50	5.98	6.90 ^a	6.43ª	6.43 ^a
41 °C	5.89 ^b	5.84 ^b	6.63	6.47	6.45 ^b	5.77 ^b	5.84 ^b
±SEM	0.028	0.056	0.135	0.341	0.048	0.101	0.093
P-value	< 0.0001	< 0.0001	0.515	0.357	0.0001	0.001	0.002
Interactions							
Deionized 21 °C	6.31 ^b	6.39	6.23	5.53	6.44	6.29 ^b	6.63 ^{ab}
Deionized 41 °C	5.36°	5.38	5.97	5.81	6.14	5.26°	4.82 ^c
Magnetized 21 °C	7.05 ^a	7.02	6.76	6.44	7.37	7.28 ^a	6.86 ^a
Magnetized 41 °C	6.42 ^b	6.31	7.28	7.13	6.77	6.57 ^b	6.23 ^b
±SEM	0.046	0.080	0.191	0.517	0.073	0.143	0.133
P-value	0.003	0.083	0.073	0.691	0.060	< 0.0001	< 0.0001

Table 1 Effect of magnetization and temperature of water on pH of cereal grains, their by-products, oil and fat.

The means within the same column with at least one common letter, do not have significant difference (P>0.05).

Table 2 Effect of magnetization and temperature of water on pH of oilseeds and their by-products

Effects	Full fat soybean	Extruded soybean	Soybean meal	Flaxseed	Extruded flaxseed	Cottonseed meal	Canola meal	Sunflower meal	Safflower meal
Water									
Deionized	6.12 ^b	6.97	6.48 ^b	5.90 ^b	6.06 ^b	5.88 ^b	5.17 ^b	5.81 ^b	5.23 ^b
Magnetized	6.61 ^a	7.23	6.87 ^a	6.65 ^a	7.28 ^a	6.92 ^a	6.39 ^a	6.44 ^a	6.79 ^a
±SEM	0.117	0.109	0.036	0.072	0.079	0.020	0.063	0.065	0.051
P-value	0.013	0.121	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	0.0001	< 0.0001
Temperature									
21 °C	6.31	7.32 ^a	7.00 ^a	6.98 ^a	7.02 ^a	6.53ª	5.88	6.55 ^a	5.96
41 °C	6.42	6.88 ^b	6.34 ^b	5.57 ^b	6.32 ^b	6.26 ^b	5.68	5.71 ^b	6.07
±SEM	0.117	0.109	0.034	0.072	0.079	0.020	0.067	0.065	0.051
P-value	0.522	0.023	< 0.0001	< 0.0001	0.0001	< 0.0001	0.050	< 0.0001	0.198
Interactions									
Deionized 21 °C	5.93	7.23	6.84	6.92 ^a	6.36 ^b	6.33 ^b	5.53°	6.36 ^b	5.26
Deionized 41 °C	6.31	6.71	6.12	4.88 ^c	5.75°	5.43°	5.41°	5.26 ^b	5.21
Magnetized 21 °C	6.70	7.41	7.16	7.04 ^a	7.68 ^a	6.74 ^b	6.83 ^a	6.75 ^a	6.67
Magnetized 41 °C	6.52	7.06	6.57	6.27 ^b	6.88 ^b	7.10 ^a	5.96 ^b	6.13 ^b	6.92
±SEM	0.165	0.155	0.055	0.102	0.112	0.031	0.095	0.093	0.075
P-value	0.114	0.584	0.233	0.0003	0.041	< 0.0001	< 0.0001	0.032	0.075

The means within the same column with at least one common letter, do not have significant difference (P>0.05).

Table 3 Effect of magnetization and temperature of water on pH of some protein and amino acid sources

Effects	Corn gluten meal	Fish meal	Meat meal	L-lysine HCl	L-threonine	DL-methionine
Water						
Deionized	5.09 ^b	5.12 ^b	5.57 ^b	5.82 ^b	4.96 ^b	5.65 ^b
Magnetized	5.47 ^a	6.09 ^a	6.23 ^a	6.36 ^a	6.41 ^a	6.77 ^a
±SEM	0.103	0.070	0.050	0.070	0.051	0.123
P-value	0.033	< 0.0001	< 0.0001	0.0005	< 0.0001	0.0001
Temperature						
21 °C	5.33	5.51	5.88	6.15	6.04 ^a	6.34
41 °C	5.22	5.70	5.93	6.03	5.33 ^b	6.09
±SEM	0.103	0.065	0.050	0.075	0.051	0.123
P-value	0.480	0.080	0.475	0.284	< 0.0001	0.175
Interactions						
Deionized 21 °C	5.24	4.94	6.09 ^{ab}	5.88 ^b	5.58 ^b	5.67 ^b
Deionized 41 °C	4.94	5.29	5.05 ^c	5.75 ^b	4.35°	5.64 ^b
Magnetized 21 °C	5.42	6.07	5.66 ^b	6.41 ^a	6.51 ^a	7.01 ^a
Magnetized 41 °C	5.51	6.11	6.81 ^a	6.31 ^a	6.32 ^a	6.54 ^a
±SEM	0.146	0.107	0.071	0.106	0.073	0.179
P-value	0.219	0.156	< 0.0001	0.047	< 0.0001	0.235

The means within the same column with at least one common letter, do not have significant difference (P>0.05).

Effects	Vitamin premix	Vitamin D ₃	Vitamin E + Se	Choline chloride	Mineral premix	NaCl	Sodium bicarbonate	Calcium carbonate	Oyster shell	Dicalcium phosphate	Monocalcium phosphate
Water											
Deionized	5.53	6.36 ^b	6.31 ^b	6.38 ^b	5.25 ^b	6.48 ^b	8.03 ^b	8.60	7.83 ^b	4.38 ^b	3.65
Magnetized	5.61	7.26 ^a	7.15 ^a	6.89 ^a	5.75 ^a	6.93 ^a	8.41 ^a	8.35	8.21 ^a	4.45 ^a	3.73
±SEM	0.041	0.061	0.031	0.048	0.107	0.016	0.048	0.131	0.086	0.017	0.042
P-value	0.216	< 0.0001	< 0.0001	< 0.0001	0.0076	< 0.0001	0.0006	0.203	0.014	0.0024	0.233
Temperature											
21 °C	5.72 ^a	7.02 ^a	7.06 ^a	6.94 ^a	5.60	6.87 ^a	8.50 ^a	8.96 ^a	8.65 ^a	4.51 ^a	3.84 ^a
41 °C	5.41 ^b	6.59 ^b	6.39 ^b	6.33 ^b	5.40	6.55 ^b	7.94 ^b	7.99 ^b	7.39 ^b	4.30 ^b	3.54 ^b
±SEM	0.043	0.061	0.031	0.048	0.115	0.015	0.048	0.140	0.086	0.018	0.042
P-value	0.0003	0.0012	< 0.0001	< 0.0001	0.207	< 0.0001	< 0.0001	0.0004	< 0.0001	< 0.0001	0.0005
Interactions											
Deionized 21 °C	5.53 ^b	7.03 ^b	7.26 ^a	7.05 ^a	5.19	6.79 ^b	8.36 ^a	9.51ª	8.61 ^a	4.59 ^a	3.90 ^a
Deionized 41 °C	5.53 ^b	5.68 ^c	5.35°	5.71°	5.30	6.17 ^c	7.71°	7.69 ^c	7.05 ^c	4.12 ^c	3.41 ^b
Magnetized 21 °C	5.92 ^a	7.02 ^b	6.87 ^b	6.83 ^b	6.01	6.95 ^a	8.65 ^a	8.41 ^b	8.69 ^a	4.43 ^b	3.79 ^a
Magnetized 41 °C	5.30 ^b	7.51 ^a	7.44 ^a	6.95 ^b	5.50	6.92 ^a	8.18 ^b	8.28 ^b	7.74 ^b	4.47 ^{ab}	3.67 ^{ab}
±SEM	0.053	0.087	0.043	0.073	0.160	0.021	0.069	0.198	0.123	0.026	0.059
P-value	0.0003	< 0.0001	< 0.0001	< 0.0001	0.068	< 0.0001	0.221	0.0011	0.041	< 0.0001	0.0108
The means within the sar	e means within the same column with at least one common letter, do not have significant difference (P>0.05).										

Table 4 Effect of magnetization and temperature of water on pH of some vitamin and mineral sources

Table 5 Effect of magnetization and temperature of water on pH of some additives

Effer at a	Dantanita	71:4.	Whey	Yeast	Prebiotic	Dislami	Madamania	Calin annualin
Effects	Bentonite	Zeonte	powder	(Saccharomyces cerevisiae)	(Fermacto®)	Diciazurii	Maduramycin	Salinomycin
Water								
Deionized	7.32 ^b	6.76 ^b	6.56	6.42	3.39	5.55 ^b	5.78 ^b	6.58 ^b
Magnetized	8.17 ^a	7.13 ^a	6.59	6.53	3.50	6.62 ^a	6.34 ^a	7.83 ^a
±SEM	0.123	0.063	0.057	0.044	0.087	0.176	0.108	0.346
P-value	0.0012	0.0035	0.661	0.117	0.380	0.0027	0.0063	0.034
Temperature								
21 °C	8.26 ^a	7.38 ^a	6.67 ^a	6.63 ^a	3.69 ^a	6.38 ^a	6.02	7.14
41 °C	7.23 ^b	6.51 ^b	6.48 ^b	6.33 ^b	3.21 ^b	5.78 ^b	6.10	7.27
±SEM	0.123	0.063	0.057	0.044	0.087	0.176	0.108	0.346
P-value	0.0004	< 0.0001	0.040	0.0014	0.004	0.044	0.614	0.787
Interactions								
Deionized 21 °C	8.46 ^a	7.72 ^a	6.71 ^a	6.84 ^a	3.59	5.54 ^b	5.98 ^b	6.53
Deionized 41 °C	6.18 ^b	5.81°	6.40 ^b	6.01°	3.19	5.56 ^b	5.58 ^b	6.63
Magnetized 21 °C	8.06 ^a	7.05 ^b	6.94 ^a	6.42 ^b	3.87	7.20 ^a	6.06 ^{ab}	7.74
Magnetized 41 °C	8.29 ^a	7.21 ^b	6.24 ^b	6.65 ^{ab}	3.23	6.03 ^b	6.62 ^a	7.92
±SEM	0.174	0.089	0.080	0.063	0.123	0.249	0.152	0.489
P-value	< 0.0001	< 0.0001	0.0002	< 0.0001	0.578	0.050	0.014	0.931

The means within the same column with at least one common letter, do not have significant difference (P>0.05).

Table 6 Effect of magnetization and temperature of water on pH of some organic acids, exogenous enzymes, and mash or pelleted complete diets

Effects	Ammonium formate	Sodium diacetate	Calcium propionate	Citric acid	Fumaric acid	Tartaric acid	Betamannanase (Hemicell [®])	NSP degrading enzyme (Grindazym [®])	Mash diet	Pelleted diet
Water										
Deionized	5.64 ^b	4.59 ^b	7.51	2.04 ^b	2.03 ^b	2.03	6.10 ^b	5.12 ^b	7.50 ^b	7.75 ^b
Magnetized	6.26 ^a	4.73 ^a	7.66	2.16 ^a	2.12 ^a	2.03	6.45 ^a	5.54 ^a	8.15 ^a	8.31 ^a
±SEM	0.016	0.023	0.055	0.020	0.021	0.017	0.095	0.065	0.078	0.066
P-value	< 0.0001	0.0026	0.086	0.0014	0.020	0.907	0.026	0.0003	0.0004	0.0003
Temperature										
21 °C	6.22 ^a	4.66	7.70 ^a	2.28 ^a	2.32 ^a	2.20^{a}	6.16	5.94 ^a	7.90	8.08
41 °C	5.68 ^b	4.66	7.46 ^b	1.93 ^b	1.83 ^b	1.85 ^b	6.39	5.72 ^b	7.75	7.98
±SEM	0.016	0.023	0.055	0.020	0.021	0.017	0.089	0.065	0.078	0.066
P-value	< 0.0001	0.832	0.011	< 0.0001	< 0.0001	< 0.0001	0.108	0.046	0.212	0.325
Interactions										
Deionized 21 °C	5.70 ^b	4.57	7.61	2.20^{b}	2.24 ^b	2.21	6.46 ^b	5.82 ^b	7.65 ^b	7.77 ^b
Deionized 41 °C	5.58°	4.62	7.41	1.88 ^c	1.83 ^c	1.85	5.75°	5.03 ^b	7.36 ^c	7.73 ^b
Magnetized 21 °C	6.74 ^a	4.75	7.80	2.35 ^a	2.41 ^a	2.20	5.86°	6.42 ^a	8.16 ^a	8.39 ^a
Magnetized 41 °C	5.78 ^b	4.71	7.51	1.98 ^c	1.83 ^c	1.85	7.04 ^a	6.06 ^{ab}	8.14 ^a	8.23 ^a
±SEM	0.022	0.033	0.078	0.028	0.030	0.025	0.134	0.092	0.110	0.093
P-value	< 0.0001	0.211	0.552	0.041	0.020	0.907	< 0.0001	< 0.0001	0.049	0.047

The means within the same column with at least one common letter, do not have significant difference (P>0.05).

In addition, it has been reported that magnetization improves the solubility of minerals in milk (Andersson and Knudsen, 1983). Thus, such phenomenon can affect the solubility of feedstuffs in water, and subsequently modify the pH of solution. Furthermore, anecdotal evidence shows that magnetic fields may change the physicochemical properties of water or prepared laboratory solutions (Morimitsu et al. 2000) by decreasing surface tension (Amiri and Dadkhah, 2006; Lino and Fujimura, 2009), pH value, nucleation and growth, and other chemical characteristics (Holysz et al. 2002; Eshaghi and Gholizadeh, 2004). As an example, Chang and Weng (2006) found that the number of hydrogen bonds increases slightly as the strength of the magnetic field is increased. Their study reveals that the structure of water is more stable and the ability of the water molecules to form hydrogen bonds is enhanced, when a magnetic field is applied. In addition, the behavior of the water molecules changes under the influence of a magnetic field. Key factors for the effectiveness of treatment are the type of equipment (magnetic or electric), water temperature as well as the quality and the mode of operation such as flow rate (Lin and Yotvat, 1990; Toledo et al. 2009), and impurities (Amiri and Dadkhah, 2006).

The pH of most feed ingredients, especially organic acids (citric, fumaric and tartaric acids) was found to be decreased in warm water (Table 6). In a weak acid or weak base, most of the acid or base is not ionized (broken into smaller components like H^+ and OH^-). The state of energy at high temperature helps these molecules to break apart. In the case of acids this produces more H^+ . Subsequently, acids lower pH. On the other hand, Pang and Deng (2008), have reported that magnetization can be influenced by water temperature. In fact, by increasing water temperature from 35 to 95 °C, the, magnetization effect can be reduced.

Moreover, the freezing temperature below which the freezing of confined water occurs shifts to a higher value as the magnetic field enhances (Zhang *et al.* 2010). In this regard, Inaba *et al.* (2004) reported that melting temperature of magnetized water was higher than untreated water. All in all, the above mentioned studies show that there is a link between magnetization and water temperature.

The results of ABC for various groups of feed ingredients are shown in Tables 7 to 12. Energy sources (cereals and fats in Table 7) together with synthetic amino acids (Table 9), common salt (Table 10), and some additives such as prebiotic and zeolite (Table 11) had the lowest values of ABC (less than 400 mEq/kg). Protein sources (Tables 8 and 9), and some supplements (Table 10) and additives (Table 11), had an average ABC of about 400-1000 mEq/kg. Finally, some vitamins and minerals (Table 10), had higher levels of ABC (more than 1000 mEq/kg) among all tested ingredients. Calcium carbonate and sodium bicarbonate (Table 10), along with ammonium formate and calcium propionate (Table 12), had the highest ABC values among all ingredients. Meanwhile, organic acids category had the lowest pH and negative ABC values (Table 12).

The findings of the current study are consistent with the results of Lawlor *et al.* (2005), reporting higher ABC in minerals and energy sources such as cereal grains with lower ABC among various feedstuffs. All in all, initial pH and ABC₃ varied greatly between individual ingredients. Categories of ingredients were substantially different regarding initial pH and ABC. Acid salts and minerals were the categories that had the highest ABC values. Large variation occurred between different types of mineral. The influence of processing likes pelleting and extruding, on pH and ABC of the whole ration and two oilseeds can be seen in Table 13.

 Table 7
 Effect of magnetization and temperature of water on the ABC₃ (mEq/kg) of cereal grains, their by-products, oil and fat

Effects	Corn	Wheat	Barley	Wheat bran	Rice bran	Vegetable oil	Fat powder
Water						0	•
Deionized	182	400	416 ^b	689 ^b	562 ^b	226	212 ^b
Magnetized	164	339	491 ^a	1363 ^a	697 ^a	370	311 ^a
±SEM	5	32	9	33	13	52	14
P-value	0.050	0.204	0.0005	< 0.0001	< 0.0001	0.078	0.0016
Temperature				-			
21 °C	175	481 ^a	525ª	1278 ^a	802ª	454 ^a	305 ^a
41 °C	170	257 ^b	382 ^b	774 ^b	457 ^b	142 ^b	218 ^b
±SEM	4	31	9	33	13	52	14
P-value	0.494	0.0007	< 0.0001	< 0.0001	< 0.0001	0.001	0.003
Interactions							
Deionized 21 °C	191	589ª	549ª	747 ^b	718	364	197 ^b
Deionized 41 °C	171	210 ^c	284 ^c	630°	406	88	209 ^b
Magnetized 21 °C	160	374 ^b	502 ^{ab}	1925 ^a	886	545	413 ^a
Magnetized 41 °C	170	304 ^b	480 ^b	800^{b}	508	196	228 ^{ab}
±SEM	7	46	13	47	21	80	21
P-value	0.069	0.007	< 0.0001	< 0.0001	0.140	0.635	0.0006

The means within the same column with at least one common letter, do not have significant difference (P>0.05)

ABC3: is acid-binding capacity of a feedstuff at titer point of 3 (pH=3).

Table 8	Effect of magnetization a	nd temperature of wa	ater on the ABC ₃ (mEq/kg) of oilseeds and their by-products
---------	---------------------------	----------------------	--------------------------------------	-------------------------------------

Table o Effect of fild	giletization and	a temperature o	i water on the	meg (meg k	g) of offseeds a	na men by proat	1013		
Effects	Full fat soybean	Extruded soybean	Soybean meal	Flaxseed	Extruded flaxseed	Cottonseed meal	Canola meal	Sunflower meal	Safflower meal
Water	2	<u> </u>							
Deionized	757	622	$707^{\rm b}$	346 ^b	481	323 ^b	574 ^b	618	458
Magnetized	846	724	933ª	899 ^a	472	486 ^a	839 ^a	716	433
±SEM	49	58	23	29	8	9	21	43	15
P-value	0.201	0.253	< 0.0001	< 0.0001	0.514	< 0.0001	< 0.0001	0.148	0.263
Temperature									
21 °C	786	627	869 ^a	807 ^a	519ª	409	989 ^a	732	515ª
41 °C	813	719	771 ^b	438 ^b	435 ^b	399	400 ^b	602	376 ^b
±SEM	49	58	23	29	9	9	21	44	15
P-value	0.698	0.299	0.016	< 0.0001	< 0.0001	0.462	< 0.0001	0.066	0.0001
Interactions									
Deionized 21 °C	725	696 ^b	756 ^b	358°	511ª	435 ^b	758 ^b	678	603 ^a
Deionized 41 °C	780	549°	628 ^c	334°	451 ^b	316 ^c	390 ^c	558	313°
Magnetized 21 °C	846	559°	989 ^a	987 ^a	526 ^a	588 ^a	996 ^a	786	426 ^b
Magnetized 41 °C	847	890 ^a	786 ^b	518 ^b	419 ^b	414 ^b	410 ^c	646	439 ^b
±SEM	70	83	31	42	13	12	30	61	21
P-value	0.698	0.020	< 0.0001	0.0003	0.048	< 0.0001	< 0.0001	0.874	< 0.0001

The means within the same column with at least one common letter, do not have significant difference (P>0.05).

ABC3: is acid-binding capacity of a feedstuff at titer point of 3 (pH=3).

Table 9 Effect of magnetization and temperature of water on the ABC₃ (mEq/kg) of some protein and amino acid sources

Effects	Corn gluten meal	Fish meal	Meat meal	L-lysine HCl	L-threonine	DL-methionine
Water						
Deionized	680 ^b	596	394 ^b	264 ^b	185 ^b	273 ^b
Magnetized	837 ^a	576	481 ^a	481 ^a	787 ^a	728ª
±SEM	28	67	9	8	18	41
P-value	0.004	0.833	0.0001	< 0.0001	< 0.0001	< 0.0001
Temperature						
21 °C	795	579	434	361	479	467
41 °C	722	592	441	384	493	533
±SEM	28	67	9	8	18	41
P-value	0.108	0.889	0.598	0.096	0.617	0.276
Interactions						
Deionized 21 °C	799 ^{ab}	645	335°	253°	126°	119°
Deionized 41 °C	562 ^b	546	430 ^b	453 ^b	245 ^b	428 ^b
Magnetized 21 °C	883 ^a	513	533ª	577 ^a	833 ^a	816 ^a
Magnetized 41 °C	792 ^{ab}	638	452 ^b	316 ^c	741 ^a	639ª
\pm SEM	40	82	12	12	26	52
P-value	0.003	0.256	< 0.0001	< 0.0001	0.0028	0.002

The means within the same column with at least one common letter, do not have significant difference (P>0.05).

ABC₃: is acid-binding capacity of a feedstuff at titer point of 3 (pH=3).

Table 10 Effect of magnetization and temperature of water on the ABC₃ (mEq/kg) of some vitamin and mineral sources

Effects	Vitamin premix	Choline chloride	Vitamin D ₃	Vitamin E + Se	Mineral premix	NaCl	Sodium bicarbonate	Calcium carbonate	Oyster shell	Dicalcium phosphate	Monocalcium phosphate
Water											
Deionized	1332 ^b	305 ^b	1296	1427 ^b	1082 ^b	137 ^b	12133	8933 ^b	3876 ^b	1124 ^b	665 ^b
Magnetized	2329 ^a	343 ^a	1196	2019 ^a	1802 ^a	165 ^a	12433	10733 ^a	4806 ^a	1513 ^a	1111 ^a
±SEM	87	11	49	35	88	7	129	276	91	33	35
P-value	< 0.0001	0.032	0.190	0.0002	0.0002	0.028	0.139	0.001	< 0.0001	< 0.0001	< 0.0001
Temperature											
21 °C	2697 ^a	333	1465 ^a	2353 ^a	1489	201 ^a	12666ª	10933 ^a	5376 ^a	1841 ^a	1200 ^a
41 °C	964 ^b	315	1028 ^b	1093 ^b	1395	101 ^b	11900 ^b	8733 ^b	3306 ^b	769 ^b	576 ^b
±SEM	87	11	49	65	94	8	129	276	91	34	35
P-value	< 0.0001	0.285	0.0002	< 0.0001	0.471	< 0.0001	0.003	0.0003	< 0.0001	< 0.0001	< 0.0001
Interactions											
Deionized 21 °C	1836 ^b	333 ^a	1630 ^a	1740 ^b	1467 ^b	181 ^b	12533ª	12000^{a}	3886 ^b	1037 ^b	557 ^{bc}
Deionized 41 °C	828°	276 ^b	962°	1072 ^c	698°	93°	11733 ^b	5866°	2746 ^c	481°	380°
Magnetized 21 °C	3558ª	333 ^a	1300 ^b	2966 ^a	1511 ^b	221 ^a	12800 ^a	11600 ^a	6866 ^a	2645 ^a	1843 ^a
Magnetized 41 °C	1101 ^b	354 ^a	1093°	1113°	2093 ^a	108°	12066 ^b	9866 ^b	3866 ^b	1212 ^b	773 ^b
±SEM	123	15	69	92	115	11	181	391	129	49	50
P-value	0.0002	0.031	0.010	0.0001	0.0003	0.037	0.045	< 0.0001	< 0.0001	< 0.0001	< 0.0001

The means within the same column with at least one common letter, do not have significant difference (P>0.05).

ABC₃: is acid-binding capacity of a feedstuff at titer point of 3 (pH=3).

Effects	Pontonito	Zaalita	Whey	Yeast	Prebiotic	Dielezuril	Maduramyain	Salinomyain
Effects	Bentomte	Zeome	powder	(Saccharomyces cerevisiae)	(Fermacto [®])	Diciazum	Waduraniyem	Samonyem
Water								
Deionized	351	277	656 ^b	723	192	320	336 ^b	433 ^b
Magnetized	497	289	826 ^a	716	173	364	436 ^a	543 ^a
±SEM	52	8	9	12	15	19	10	17
P-value	0.086	0.318	< 0.0001	0.703	0.419	0.147	0.0001	0.002
Temperature								
21 °C	568ª	317 ^a	810 ^a	745 ^a	267ª	378 ^a	374	465
41 °C	280 ^b	249 ^b	671 ^b	694 ^b	98 ^b	306 ^b	398	511
±SEM	52	8	9	12	15	19	10	17
P-value	0.004	0.0004	< 0.0001	0.020	< 0.0001	0.028	0.124	0.095
Interactions								
Deionized 21 °C	476 ^b	340 ^a	752 ^b	804 ^a	324 ^a	330 ^b	320 ^b	492 ^{ab}
Deionized 41 °C	226 ^c	214 ^c	560°	642 ^c	79 ^c	310 ^b	352 ^b	429 ^b
Magnetized 21 °C	660 ^a	294 ^b	869 ^a	686 ^{bc}	210 ^b	446 ^a	428 ^a	437 ^b
Magnetized 41 °C	333 ^b	284 ^b	783 ^b	746 ^b	136 ^{bc}	282 ^b	444 ^a	593ª
±SEM	74	11	13	17	21	27	14	24
P-value	0.046	0.0012	0.005	0.0002	0.002	0.009	0.045	0.049

Table 11 Effect	of magnetization	and temperature	of water on the	ABC ₃ (mEq/kg) of some additives
		······			

The means within the same column with at least one common letter, do not have significant difference (P>0.05).

ABC₃: is acid-binding capacity of a feedstuff at titer point of 3 (pH=3).

Table 12 Effect of magnetization and temperature of water on the ABC₃ (mEq/kg) of some organic acids, exogenous enzymes, and mash or pelleted complete diets

Effects	Ammonium	Sodium	Calcium	Citric	Fumaric	Tartaric	Betamannanase	NSP degrading enzyme	Mash	Pelleted
Effects	formate	diacetate	propionate	acid	acid	acid	(Hemicell [®])	(Grindazym®)	diet	diet
Water										
Deionized	12385 ^b	7325 ^b	11025 ^b	-4075	-5370	-5477	295 ^b	371 ^b	839	819
Magnetized	13942 ^a	8033 ^a	12100 ^a	-3829	-5309	-5500	340 ^a	818 ^a	777	888
±SEM	126	84	130	132	130	102	12	33	18	25
P-value	< 0.0001	0.0004	0.0004	0.209	0.739	0.875	0.028	< 0.0001	0.054	0.095
Temperature										
21 °C	13285	7542	11458	-3654 ^a	-4079 ^a	-5044 ^a	352 ^a	895ª	833	925ª
41 °C	13042	7816	11666	-4250 ^b	-6600 ^b	-5933 ^b	283 ^b	295 ^b	782	782 ^b
±SEM	126	84	130	132	130	102	5.62	32	18	25
P-value	0.211	0.051	0.291	0.009	< 0.0001	0.0001	0.003	< 0.0001	0.087	0.004
Interactions										
Deionized 21 °C	11703°	6851 ^b	10516 ^c	-3850	-4407 ^a	-5021 ^a	394 ^a	483 ^b	893	860
Deionized 41 °C	13066 ^b	7800 ^a	11533 ^b	-4300	-6333 ^b	-5933 ^b	196°	260 ^b	785	778
Magnetized 21 °C	14866 ^a	8233ª	12400 ^a	-3458	-3751 ^a	-5066ª	310 ^b	997ª	774	990
Magnetized 41 °C	13018 ^b	7833 ^a	11800^{ab}	-4200	-6866 ^b	-5933 ^b	370 ^{ab}	330 ^b	780	786
±SEM	178	119	184	187	160	144	17	45	26	36
P-value	< 0.0001	0.0005	0.0024	0.443	0.008	0.047	< 0.0001	< 0.0001	0.061	0.133

The means within the same column with at least one common letter, do not have significant difference (P>0.05).

 ABC_3 : is acid-binding capacity of a feedstuff at titer point of 3 (pH=3).

Table 13	Effect of	pelleting	and ex	trusion	on pH	and ABC	3 of feeds
----------	-----------	-----------	--------	---------	-------	---------	------------

Type of processing	рН	ABC ₃			
Pelleting of complete diet					
Mash diet	7.65	893			
Pelleted diet	7.77	860			
SEM	0.041	40			
P-value	0.111	0.589			
Extruding of soybean					
Full fat soybean	5.93 ^b	725			
Extruded soybean	7.23ª	696			
SEM	0.047	93			
P-value	< 0.0001	0.820			
Extruding of flaxseed					
Full fat flaxseed	6.92ª	358 ^b			
Extruded flaxseed	5.75 ^b	511ª			
SEM	0.022	11			
P-value	< 0.0001	0.0002			

The means within the same column with at least one common letter, do not have significant difference (P>0.05).

Pelleting did not have any pronounced impact on pH or ABC of whole broiler chickens' growth diet. Extruding full fat oilseeds by heat and pressure did not alter ABC of soybean, but significantly increased ABC of flaxseed. Interestingly, pH of extruded soybean was significantly increased, but pH of extruded flaxseed was significantly decreased as compared with unprocessed oilseeds.

CONCLUSION

The results of this study show that feed ingredient, type of processing, solution for ABC evaluation and ambient temperature, are determining factors for ABC of feedstuffs. Some issues derived from the above findings may have a direct link to the secretions, digestion, and absorption processes occurring in the gastrointestinal tract of birds, within an aqueous solution at about 41 °C. As previously noted, these parameters may have a pronounced influence on output such as pH and ABC. Obviously, pH has a well known effect on the absorption of some nutrients such as calcium in the intestine. Therefore, it might be useful to include these criteria into practical poultry feeding.

ACKNOWLEDGEMENT

The authors would like to thank the vice president for research and technology of Ferdowsi University of Mashhad due to financial support of this study by grant number 3.21461. Also, we greatly acknowledge Pegahejahannama, Saleh, and Kimiadan feed mills for providing of the samples.

REFERENCES

- Amiri M.C. and Dadkhah A.A. (2006). On reduction in the surface tension of water due to magnetic treatment. *Colloid. Surf. A: Physicochem. Eng. Aspects.* 278, 252-255.
- Andersson N. and Knudsen A. (1983). Experience with magnetic treatment of water. *Maelkeritidende*. 96, 11-12.
- Caia R., Yang H., He J. and Zhu W. (2009). The effects of magnetic fields on water molecular hydrogen bonds. J. Mol. Struct. 938, 15-19.

- Chang K.T. and Weng C. (2006). The effect of an external magnetic field on the structure of liquid water using molecular dynamics simulation. J. Appl. Phys. 100, 43917-43923.
- Eshaghi Z. and Gholizadeh M. (2004). The effect of magnetic field on the stability of (18-crown-6) complexes with potassium ion. *Talanta*. **64**, 558-561.
- Holysz L., Chibowski M. and Chibowski E. (2002). Timedependent changes of zeta potential and other parameters of *in situ* calcium carbonate due to magnetic field treatment. *Colloid. Surf A: Physicochem. Engin. Aspects.* 208, 231-240.
- Inaba H., Saitou T., Tozaki K.i. and Hayashi H. (2004). Effect of the magnetic field on the melting transition of H₂O and D₂O measured by a high resolution and supersensitive differential scanning calorimeter. J. Appl. Phys. 96, 6127-6133.
- Jasaitis D.K., Wohlt J.E. and Evans J.L. (1987). Influence of feed ion content on buffering capacity of ruminant feedstuffs in vitro 1. J. Dairy Sci. 70, 1391-1403.
- Lawlor P., Lynch P.B., Caffrey P., O'Reilly J. and O'Connell M.K. (2005). Measurements of the acid-binding capacity of ingredients used in pig diets. *Irish Vet. J.* 58, 447-452.
- Lin I.J. and Yotvat J. (1990). Exposure of irrigation and drinking water to a magnetic field with controlled power and direction. J. Magnetism. Magnetic. Materials. 83, 525-526.
- Lino M. and Fujimura Y. (2009). Surface tension of heavy water under high magnetic fields. Appl. Phys. Lett. 94, 261902.
- Morimitsu M., Shiomi K. and Matsunaga M. (2000) Magnetic effects on alkylammonium chloride solutions investigated by interfacial tension measurements at the mercury / solution interface. *J. Colloid. Int. Sci.* **229**, 641-643.
- Pang X.F. and Deng B. (2008). Investigation of changes in properties of water under the action of a magnetic field. *Sci. China Seri. G: Phys. Mech. Astron.* **51**, 1621-1632.
- Rynsburger J.M. (2009). Physiological and nutritional factors affecting protein digestion in broiler chickens, MS Thesis. Univ. Saskatchewan, Saskatoon, SK, Canada.
- SAS Institute. (2004) Statistical Analysis Systems, Release 9.1 SAS Institute Inc, Raleigh., North Carolina, USA.
- Toledo E.J.L., Custodio b., Ramalho C.T. and Garcia Porto M.E. (2009). Electrical field effects on dipole moment, structure and energetic of (H₂O)n (2 6 n 6 15) cluster. *J. Molecul. Struct. Theochem.* **915**, 170-177.
- Zhang G., Zhang W. and Dong H. (2010). Magnetic freezing of confined water. J. Chem. Phys. 133, 134703.