شبیهسازی و پیشبینی برخی از متغیرهای اقلیمی توسط مدل چندگانه خطی SDSM و مدلهای گردش عمومی جو (مطالعه موردی: حوزه آبخیز بار نیشابور)
محورهای موضوعی : آب و محیط زیستسیاوش طائی سمیرمی 1 , حمید رضا مرادی 2 * , مرتضی خداقلی 3
1 - دانشجوی مهندسی آبخیزداری، گروه آبخیز داری، دانشگاه تربیت مدرس.
2 - دانشیار گروه مهندسی آبخیزداری دانشگاه تربیت مدرس *(مسئول مکاتبات).
3 - استادیار مرکز تحقیقات کشاورزی و منابع طبیعی استان اصفهان.
کلید واژه: مدلهای گردش عمومی جو, ریزمقیاس سازی آماری, تولید کننده آب و هوا, حوزه آبخیز بار نیشابور,
چکیده مقاله :
یکی از ضعف های مدل های GCM بزرگ بودن مقیاس مکانی متغیرهای اقلیمی شبیه سازی شده می باشد که در این صورت برای مطالعات هیدرولوژی و منابع آب در محدوده حوزه های آبخیز از دقت کافی برخوردار نیستند. بنابراین می بایستی آن ها را توسط روش های مختلف کوچک مقیاس نمود. سپس با استفاده از خروجی های ریز مقیاس سازی شده این مدل ها اثرات تغییر اقلیم در مطالعات هیدرولوژیکی مورد ارزیابی قرار گیرد. از بین روش های ریزمقیاس سازی، روش های آماری به واسطه عملکرد سریع و آسان بیشتر مورد توجه هیدرولوژیست ها قرار می گیرند. در تحقیق حاضر مدل آماری (SDSM) در شبیه سازی و پیش بینی دمای بیشینه، کمینه و بارش در حوزه آبخیز بار نیشابور با استفاده از دو روش آماری و ترسیمی مورد ارزیابی قرار گرفت. برای اجرای مدل SDSM از خروجی های مدل Hadcm3 و CGCM1 استفاده شد. داده های روزانه دمای بیشینه، کمینه و بارش برای دوره پایه (2000-1970) تحت سه سناریو A1، A2 و B1 شبیه سازی گردید. نتایج هر سه سناریو عموماً حاکی از افزایش دما و کاهش بارش در منطقه مورد مطالعه می باشد. به عنوان مثال با توجه به نتایج پارامترهای آماری، سناریو A2(04/4 RMSE =،84/0R2 = ، 99/0 Nash =، 33/0 MAE =، و 24/0-= (PBIS مشاهده شد که خروجی های مدل Hadcm3 تحت سناریو A2 دارای تطابق بیشتری با دوره پایه بوده است. نتایج نشان داد که در دوره های 2039-2010، 2069-2040 و 2099-2070، دمای میانگین به ترتیب 01/0، 3/0 و 6/0؛ دمای متوسط کمینه 3/0، 5/0 و 4/1 و دمای متوسط بیشینه 7/0، 4/1 و 7/2 درجه سانتی گراد نسبت به دوره پایه در حوضه مورد مطالعه افزایش می یابد همچنین نتایج نشان داد که در سه دوره مورد مطالعه بارش متوسط به اندازه 6، 10 و 17 میلی متر نسبت به دوره پایه کاهش می یابد.
One of the weaknesses of GCMs model are large spatial scale in simulated of climatic variables that for hydrological studies and water resources in the range of watershed area are not sufficiently accurate. So should by using the different techniques that downscale. Then downscaled outputs are used for assessing the impact of climate change on hydrological studies. Among downscaling approaches, statistical methods are of great importance among hydrologists due to their easy and quick performance. In this study, statistical model (SDSM) was evaluated for simulating and predicting minimum and maximum temperature, precipitations in the bar Nayshabur watershed. For executing SDSM model outputs of CGCM1 and Hadcm3 models were applied. Daily data of minimum and maximum temperatures precipitations for the basic period (1970-2000) were simulated under three A1, A2 and B1 scenarios. Based on Statistical parameters, outputs of Hadcm3 model under A2 more compatible with the basic period. Obtained results showed that during 2010-2039, 2040-2069and 2070-2099, the average temperature 0.01, 0.3 and 0.6, the average minimum temperature 0.3, 0.5 and1. 4 and the average maximum temperature 0.7, 1.4 and 2.7 ° C will increase compared to the basic period in the studied basin. Also, the results showed that within three studied periods, the average rainfall will decrease 6, 10 and 17 mm respectivity comparing to the basic period.
- Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., ... & Vasconcellos de Menezes, V. (2013). Climate Change 2013. The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change-Abstract for decision-makers. Groupe d'experts intergouvernemental sur l'evolution du climat/Intergovernmental Panel on Climate Change-IPCC, C/O World Meteorological Organization, 7bis Avenue de la Paix, CP 2300 CH-1211 Geneva 2 (Switzerland).
- Xu CY (1999) From GCMs to river flow: a review of downscaling methods and hydrologic modelling approaches. Prog Phys Geogr 23:229–249.
- Hewitson BC, Crane RG (1996) Climate downscaling: techniques and application. Clim Res 7:85–95.
- Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. Int J Climatol 27:1547–1578.
- Wilby RL, Charles SP, Zorita E, Timbal B, Whetton P, Mearns LO (2004) Guidelines for use of climate scenarios developed from statistical downscaling methods. Supporting material of the Intergovernmental Panel on Climate Change, available from the DDC of IPCC TGCIA 27.
- Kilsby CG, Jones PD, Burton A, Ford AC, Fowler HJ, Harpham C, James P, Smith A, Wilby RL (2007) A daily weather generator for use in climate change studies. Environ Model Softw 22:1705–1719
- Kim BS, Kim HS, Seoh BH, Kim NW (2007) Impact of climate change on water resources in Yongdam Dam Basin, Korea. Stoch Environ Res Risk Assess 21:355–373
- Dibike YB, Coulibaly P (2005) Hydrologic impact of climate change in the Saguenay watershed: comparison of ownscaling methods and hydrologic models. J Hydrol 307:145–163.
- Semenov MA (2008) Simulation of extreme weather events by a stochastic weather generator. Clim Res 35(3):203–212.
- Zhang, X.B. Harvery, K.D. Hogg, W.D., and Yuzyk T.R. (2001). Trends in Canadian streamflow. Water Resour. Res. 37:4. 987-998
- Wilby RL, Wigley TML (2000) Precipitation predictors for downscaling: observed and general circulation model relationships. IntJ Climatol 20:641–661.
- Beersma JJ, Buishand TA (2003) Multi-site simulation of daily precipitation and temperature conditional on the atmospheric circulation. Clim Res 25:121–133.
- Ragab, R. and C. Prudhomme (2002). "Sw—soil and Water: climate change and water resources management in arid and semi-arid regions: prospective and challenges for the 21st century." Biosystems Engineering 81(1): 3-34.
- Hashmi, M. Z., Shamseldin, A. Y., & Melville, B. W. (2011). Comparison of SDSM and LARS-WG for simulation and downscaling of extreme precipitation events in a watershed. Stochastic Environmental Research and Risk Assessment, 25(4), 475-484.
- Koch, M., & Cherie, N. (2013). Mono-and multi-modal statistical downscaling of GCM-climate predictors for the Upper Blue Nile River basin, Ethiopia. In Proceedings of the 6 th International Conference on Water Resources and Environment Research, ICWRER (pp. 3-7).
- Tatsumi, K., Oizumi, T., & Yamashiki, Y. (2013). Introduction of daily minimum and maximum temperature change signals in the Shikoku region using the statistical downscaling method by GCMs. Hydrological Research Letters, 7(3), 48-53.
- Etemadi, H., Samadi, S., & Sharifikia, M. (2013). Uncertainty analysis of statistical downscaling models using general circulation model over an international wetland. Climate Dynamics, 1-22.
- فرزانه، محمدرضا، و همکاران. 1389. معرفی پیش بینی کننده های منتخب جهت کوچک مقیاس کردن آماری-رگرسیونی در زیر حوضه بهشت آباد کارون شمالی، نخستین کنفرانس پژوهشهای کاربردی منابع آب ایران، کرمانشاه، دانشگاه صنعتی کرمانشاه، http://www.civilica.com/Paper-INCWR01-INCWR01_081.html.
19. آقاشاهی. محسن. 1391. معرفی و مقایسه مدل های LARS-WG و SDSM به منظور ریز مقیاس سازی پارامترهای زیست محیطی در مطالعات تغییر اقلیم. مجموعه مقالات ششمین همایش ملی مهندسی محیط زیست. تهران، دانشگاه تهران، دانشکده محیط زیست، http://www.civilica.com/Paper-CEE06-CEE06_569.html.