روشهای زمینی به منظور اندازهگیری مستقیم مقدار شاخص سطح برگ (LAI)
محورهای موضوعی :
منابع طبیعی و جنگلداری و مراتع
سید محمد معین صادقی
1
*
,
ناصح میری
2
1 - پژوهشگر پسادکتری اکوهیدرولوژی جنگل، مدرسه جنگل، شیلات و علوم ژئوماتیک، دانشگاه فلوریدا، گنزویل، فلوریدا، آمریکا
2 - دانشجوی دکتری جنگلداری، دانشکده منابع طبیعی، دانشگاه تهران
تاریخ دریافت : 1394/07/26
تاریخ پذیرش : 1400/03/08
تاریخ انتشار : 1401/01/01
کلید واژه:
رابطه ی وزن برگ به سطح برگ,
روش درخت مدل,
روش تله لاشبرگ,
روش کوادرات نقطه ای,
روش پلانی متر,
چکیده مقاله :
زمینه و هدف: شاخص سطح برگ (LAI) از مهمترین مشخصه های ساختاری در بوم سازگان های کشاورزی، مرتعی و جنگلی است که بیشترین تاثیر را در تغییرات انرژی، آب و گاز دارد. با توجه به نوپا بودن مطالعات مقادیر LAI در داخل کشور، هدف از این مقاله، بررسی انواع روش های زمینی مستقیم تعیین مقدار LAI است.
روش بررسی: این پژوهش با استفاده از مرور منابع علمی و به کارگیری پایگاه داده های اینترنتی به بررسی موضوع پرداخته است. روش های اندازه گیری مقدار LAI به دو دسته روشهای زمینی و سنجش از دور تقسیم می شوند که روش های زمینی نیز به دو زیردسته روش های مستقیم و غیرمستقیم (برآوردی) دسته بندی می شوند.
یافته ها: با وجود اینکه در دو دهه اخیر، گرایش به استفاده از روش های غیرمستقیم زمینی و سنجش از دور در برآورد مقدار LAI افزایش یافته است، اما به دلایلی هم چون نیاز به دستگاههای نیمه پیشرفته و پیشرفته و عدم دسترسی به تصاویر ماهواره ای به صورت رایگان در بیش تر نقاط دنیا، سبب شده است که هنوز روش های زمینی مستقیم محاسبه مقدار LAI کاربرد وسیعی داشته باشد. هم چنین دقت و صحت بالای روش های زمینی مستقیم در مقایسه با روش های غیرمستقیم زمینی و سنجش از دور، دلیل دیگر بر ارجح بودن روش های مستقیم زمینی در اندازه گیری مقدار LAI است.
بحث و نتیجه گیری: نتایج این بررسی نشان داد که روش تله لاشبرگ، می تواند به عنوان کاراترین روش به دلیل صحت و دقت بالا که درجه تخریب آن به طبیعت بسیار اندک است، در پژوهش های پیش رو مورد استفاده پژوهشگران قرار بگیرد.
چکیده انگلیسی:
Background and Objectives: Leaf Area Index (LAI) is one of the most important structural parameters in agricultural, range and forest ecosystems and variation of energy, water, and gases are tightly coupled to LAI. According to the novelty of LAI research in Iran, this study aimed to evaluate different direct ground-based methods for determining LAI.
Material and Methodology: This research has been done by literature reviews by using internet databases. There are two main categories of procedures to measure LAI: ground-based and remote sensing methods, and ground-based methods divided into direct and indirect (estimation) methods.
Findings: Although, in the past two decades, the tendency to use indirect ground-based as well as remote sensing methods for estimating g LAI has increased, but for reasons such as needing semi-sophisticated and sophisticated instruments and lack of free access to satellite images in the greater part of the world, caused the direct ground-based methods for calculating LAI has been widely used. Moreover, the high precision and accuracy of direct ground-based methods compared to direct ground-based and remote sensing methods is another reason for preferring direct ground-based methods.
Discussion and Conclusion: The results of this study showed that the Litter Trap method could be the most efficient method for measuring LAI, and we proposed this method in future research, concerning very less destruction to nature as well as high accuracy and precision.
منابع و مأخذ:
Sadeghi, S. M. M., Attarod, P., Van Stan, J. T., & Pypker, T. G. (2016). The importance of considering rainfall partitioning in afforestation initiatives in semiarid climates: A comparison of common planted tree species in Tehran, Iran. Science of the Total Environment, 568, 845–
Watson, D. J., (1947). Comparative physiological studies in the growth of field crops. I: Variation in net assimilation rate and leaf area between species and varieties, and within and between years. Annals of Botany, 11, 41–
Sadeghi, S.M.M., Van Stan, J.T., Pypker, T.G., Tamjidi, J., Friesen, J., & Farahnaklangroudi, M. (2018). Importance of transitional leaf states in canopy rainfall partitioning dynamics. European Journal of Forest Research, 137, 121–130
Chen, J. M. (1996). Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands. Agricultural and Forest Meteorology, 80, 135–
Breda, J. (2003). Ground based measurements of leaf area index: a review of methods, instruments and current controversies. Journal of Experimental Botany, 54(392), 2403–
Rahbarisisakht, S., Moayeri, M. H., Hayati, E., Sadeghi, S. M. M., Kepfer-Rojas, S., Pahlavani, M. H., Kappel Schmidt, I., & Borz, S. A. (2021). Changes in soil’s chemical and biochemical properties induced by road geometry in the Hyrcanian temperate forests. Forests, 12(12), 1805.
Asner, G. P., Scurlock, J. M. O., & Hicke, J. A. (2003). Global synthesis of leaf area index observations: implications for ecological and remote sensing studies. Global Ecology & Biogeography, 12, 191–
Sadeghi, S. M. M., Van Stan II, J. T., Pypker, T. G., & Friesen, J. (2017). Canopy hydrometeorological dynamics across a chronosequence of a globally invasive species, Ailanthus altissima (Mill., tree of heaven). Agricultural and Forest Meteorology, 240, 10–
Maass, J. M., Vose, J. M., Swank, W. T., & Martinez-Yrizar, A. (1995). Seasonal changes of leaf area index (LAI) in a tropical deciduous forest in west Mexico. Forest Ecology and Management, 74, 171–
Potter, C., Bubier, J., Crill, P., & Lafleur, P. (2001). Ecosystem modeling of methane and carbon dioxide fluxes for boreal forest sites. Canadian Journal of Forest Research, 31, 208–
Breuer, L., Eckhart, K., & Frede, H. G. (2003). Plant parameter values for models in temperate climates. Ecological Modelling, 169, 237–
Hakimi, L., Sadeghi, S. M. M., Van Stan, J. T., Pypker, T. G., & Khosropour, E. (2018). Management of pomegranate (Punica granatum) orchards alters the supply and pathway of rain water reaching soils in an arid agricultural landscape. Agriculture, Ecosystems & Environment, 259, 77–85.
Sadeghi, S. M. M., Gordon, D. A., & Van Stan II, J. T. (2020). A global synthesis of throughfall and stemflow hydrometeorology. In Precipitation partitioning by vegetation (pp. 49-70). Springer, Cham.
Johansson, T. (2002). Increment and biomass in 26- to 91- year – old European aspen and some practical implication. Journal of Biomass and Bioenergy, 23, 245–
Eriksson, H., Eklundh, L., Hall, K., & Lindroth, A. (2005). Estimating LAI in deciduous forest stands. Agricultural and Forest Meteorology, 129, 27–
Arias, D. (2007). Calibration of LAI-2000 to estimate leaf area index and assessment of its relationship with stand productivity in six native and introduced tree species in Costa Rica. Forest Ecology and Management, 247, 185–193.
Afas, N., Pellis, A., & Niinemets, U. (2005). Growth and production of a short rotation coppice culture of poplar. II. Clonal and year-to-year differences in leaf and petiole characteristic and stand leaf area index. Journal of Biomass and Bioenergy, 28: 536–547.
Liu, Z., Chen, J. M., Jin, G., & Qi, Y. (2015). Estimating seasonal variations of leaf area index using litterfall collection and optical methods in four mixed evergreen-deciduous forest. Agricultural and Forest Meteorology, 209–210, 36–
Gower, S. T., Kucharik, C. J., & Norman, J. M. (1999). Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems. Remote Sensing of Environment, 70, 29–
Shen, L., Li, Z., & Guo, X. (2014). Remote sensing of leaf area index (LAI) and a spatiotemporally parameterized model for mixed grasslands. International Journal of Applied Science and Technology, 4(1), 46–
Jonckheere, I., Fleck, S., Nackaerts, K., Coppin, P., Muys, B., Weiss, B., & Baret, F. (2004). Review of methods for in situ leaf area index determination: Part I, Theories, sensors and hemispherical photography. Agricultural and Forest Meteorology, 121(1–2), 19–
Campillo, C., Garcia, M. I., Dazza, C., & Prieto, M. H. (2010). Study of a non-destructive method for estimating the leaf area index in vegetable crops using digital images. HortScience, 45(10), 1459–
Chason, J., Baldocchi, D., & Hutson, M. (1991). A comparison of direct and indirect methods for estimating forest leaf area. Agricultural and Forest Meteorology, 57, 107–
Brenner, A. J., Cueto Romero, M., Garcia Haro, J., Gilabert, M. A., Incoll, L. D., Martinez Fernandez, J., Porter, E., Pugnaire, F. I., & Younis, M. T. (1995). A comparison of direct and indirect methods for measuring leaf and surface areas of individual bushes. Plant, Cell and Environment, 18, 1332–1340.
Levy, P.E., and Jarvis, P. G. (1999). Direct and indirect measurements of LAI in millet and fallow vegetation in HAPEX-Sahel. Agricultural and Forest Meteorology, 97, 199–212.
Atzberger, C., Darvishzadeh, R., Immitzer, M., Schlerf, M., Skidmore, A., & Le Maire, G. (2015). Comparative analysis of different retrieval methods for mapping grassland leaf area index using airborne imaging spectroscopy. International Journal of Applied Earth Observation and Geoinformation, 43, 19–
Kalacska, M. E. R., Sanchez-Azofeifa, G. A., Calvo-Alvarado, J. C., Rivard, B., & Quesada, M. (2005). Effects of season and successional stage on leaf area index and spectral vegetation indices in three Mesoamerican tropical dry forest. Biotropica, 37(4), 486–
Ishihara, M. I., & Hiura, T. (2011). Modeling leaf area index from litter collection and tree data in a deciduous broadleaf forest. Agricultural and Forest Meteorology, 151, 1016–
Deljouei, A., Sadeghi, S. M. M., Abdi, E., Bernhardt-Römermann, M., Pascoe, E. L., & Marcantonio, M. (2018). The impact of road disturbance on vegetation and soil properties in a beech stand, Hyrcanian forest. European Journal of Forest Research, 137(6), 759–770.
Sampson, D. A., & Allen, H. L. (1995). Direct and indirect estimates of leaf area index (LAI) for lodgepole and loblolly pine stands. Trees, 9, 119–
Baldocchi, D. D., Hutchison, B. A., Matt, D. R., & McMillen, R. T. (1985). Canopy radiative transfer models for spherical and known leaf inclination angle distributions: a test in an oak hickory forest. Journal of Applied Ecology, 22, 539–
Bequet, R. (2011). Environmental determinants of the temporal and spatial variability of leaf area index in Fagus sylvatica, Quercus robur L., and Pinus sylvestris L. Forestry PhD thesis, Antwerpen University, 119 p.
Sefidi, K., Copenheaver, C. A., & Sadeghi, S. M. M. (2022). Anthropogenic pressures decrease structural complexity in Caucasian forests of Iran. Écoscience, 29(3), 199–
Wilhelm, W., Ruwe, K., & Schlemmer, M. R. (2000). Comparison of three leaf area index meters in a corn canopy. Publications from USDA-ARS / UNL Faculty, 71, 1179–
Zhao, D., Xie, D., Zhou, H., Jiang, H., & An, S. (2012). Estimation of leaf area index and plant area index of a submerged Macrophyte canopy using digital photography. PLOS One, 7(12), 1–
Villalobos F. J., Orgaz F., & Mateos L. (1995). Non-destructive measurement of leaf area in olive (Olea europaea) trees using a gap inversion method. Agricultural and Forest Meteorology, 73, 29–42.
Jones, D. A., O’Hara, K. L., Battles, J.J., & Gersonde, R.F. (2015). Leaf area prediction using three alternative sampling methods for seven Sierra Nevada conifer species. Forests, 6, 2631–
Abasi, L. (2014). Estimating the leaf area index of the Oak stand in the control and logged forests of Baneh, Master's Thesis, University of Kurdistan, 77 p. (In Persian)
Schauvliege, M. (1995). C-accumulation in old stands of the Aelmoeseneie forest. Master Thesis, Universities Gent, Faculteit van de landbouwkundige en Toegepaste Biologische Wetenschappen, 99 p.
Levy, E. B., & Madden, E. A. (1933). The point method of pasture analysis. New Zealand Journal of Agricultural Research, 46, 267–
Goreneveld, D. P. (1997). Vertical point quadrat sampling and an extinction factor to calculate leaf area index. Journal of Arid Environments, 36, 475–485.
Nizinski, J. J., & Saugier, B. (1988). A model of leaf budding and development for a mature QuercusJournal of Applied Ecology, 25, 643–655.
Dufrêne, E., & Breda, N. (1995). Estimation of deciduous forest leaf area index using direct and indirect methods. Oecologia. 104, 156–162.
Zheng, G., & Moskal, L. M. (2009). Retrieving leaf area index (LAI) using remote sensing: theories, methods and sensors. Sensors, 9, 2719–
Bourdin, F., Morell, F. J., Combemale, D., Clastre, P., Guérif, M., & Chanzy, A. (2017). A tool based on remotely sensed LAI, yield maps and a crop model to recommend variable rate nitrogen fertilization for wheat. Advances in Animal Biosciences, 8(2), 672–
Donald, C. M., & Balck, J. N. (1958). The significance of leaf area in pasture growth. Herbal, 28, 1–
Sepaskha, A. R. (1977). Estimation of individual and total leaf areas of safflowers. Agronomy Journal, 73, 1027–
Olfati, J. A., Peyvast, G., Shabani, H., & Nosratie-Rad, Z. (2010). An estimation of individual leaf area in cabbage and broccoli using non-destructive methods. Journal of Agricultural Science and Technology, 12, 627–
Daughtry, C. (1990). Direct measurements of canopy structure. Remote Sensing Reviews, 5, 45–
Nyakwende, E., Paull, C. J., & Atherton, J. G. (1997). Non-destructive determination of leaf area in tomato plants using image processing. Journal of Horticultural Science, 72, 225–
Khayamim, S., Mazaheri, D., Banayan Aval, M., Gohari, J., & Jahansoz, M. R. (2004). Investigating the physiological and technological characteristics of sugar beet at different levels of density and nitrogen fertilizer. Research and Development in Agriculture and Horticulture, 60, 21– (In Persian)
Kouchaki, A.R., & Sarmadnia, G. H. (1998). Physiology of Agricultural Plants, Mashhad University Press, Mashhad, 400 p. (In Persian)
Pourhashemi, M., Eskandari, S., Dehghani, M., Najafi, T., Asadi, A., & Panahi, P. (2012). Biomass and leaf area index of Caucasian Hackberry (Celtis caucasica) in Taileh urban forest, Sanandaj, Iran. Iranian Journal of Poplar Research, 19(4), 609–620. (In Persian)
Rahmani, R., Ghorbani, S., & Naghash Zargaran, M. (2014). Measurement and modelling litter biomass and leaf area index using allometry in a Beech-Hornbeam stand in the mid-elevation of the Hyrcanian region, Iran. Iranian Journal of Forest and Poplar Research, 22(4), 687– (In Persian)
Neumann, H. H., Den Hartog G. D., & Shaw, R. H. (1989). Leaf-Area measurements based on hemispheric photographs and leaf-litter collection in a deciduous forest during autumn leaf-fall. Agricultural and Forest Meteorology, 45, 325–
Hashemi, S. F., Hojati, S. M., & HosSeini Nasr, S. M. (2012). Soil chemical properties, amount of litterfall and nutrients recycling into Caucasian elm, maple and ash plantation stands at Darabkola Experimental Forest Station. Iranian Journal of Poplar Research, 20(4), 645– (In Persian)
Bouriaud, O., Soudani, K., & Breda, N., (2003). Leaf area index from litter collection: impact of specific leaf area variability within a beech stand. Canadian Journal of Remote Sensing, 29(3), 371–
Dewey, J. C., Roberts, S. D., & Hartley, I., (2006). A comparison of tools for remotely estimating leaf area index in loblolly pine plantations. Proceedings of the 13th Biennial Southern Silvicultural Research Conference. Gen. Tech. Rep. SRS–92. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station. 71-75 p.
Nazari, M., Sadeghi, S. M. M., Van Stan II, J. T., & Chaichi, M. R. (2020). Rainfall interception and redistribution by maize farmland in central Iran. Journal of Hydrology: Regional Studies, 27, 100656
McShane, M. C., Carlile, D. W., & Hinds, W. T. (1993). The effect of collector size on forest litter-fall collection and analysis. Canadian Journal of Forest Research, 13, 1037–1042.
Jurik, T. W., Briggs, G. M., & Gates, D. M., (1985). A comparison of four methods for determining leaf area index in successional hardwood forests. Canadian Journal of Forest Research, 15, 1154–1158.
Battaglia, M., Cherry, M. L., Beadle, C. L., Sands, P. J., & Hingston, A., (1998). Prediction of leaf area index in Eucalypt Plantations: effects of water stress and temperature. Tree Physiology, 18(8-9), 521–528.
Cutini, A., Matteucci, G., & Mugnozza, G. S. (1998). Estimation of leaf area index with the Li-Cor LAI 2000 in deciduous forests. Forest Ecology and Management, 105, 55–65.
Mussche, S., Samson, R., Nachtergale, L., De Schrijver, A., Lemeur, R., & Lust, N. (2001). A comparison of optical and direct methods for monitoring the seasonal dynamics of leaf area index in deciduous forests. Silva Fennica, 35, 373–384.
_||_
Sadeghi, S. M. M., Attarod, P., Van Stan, J. T., & Pypker, T. G. (2016). The importance of considering rainfall partitioning in afforestation initiatives in semiarid climates: A comparison of common planted tree species in Tehran, Iran. Science of the Total Environment, 568, 845–
Watson, D. J., (1947). Comparative physiological studies in the growth of field crops. I: Variation in net assimilation rate and leaf area between species and varieties, and within and between years. Annals of Botany, 11, 41–
Sadeghi, S.M.M., Van Stan, J.T., Pypker, T.G., Tamjidi, J., Friesen, J., & Farahnaklangroudi, M. (2018). Importance of transitional leaf states in canopy rainfall partitioning dynamics. European Journal of Forest Research, 137, 121–130
Chen, J. M. (1996). Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands. Agricultural and Forest Meteorology, 80, 135–
Breda, J. (2003). Ground based measurements of leaf area index: a review of methods, instruments and current controversies. Journal of Experimental Botany, 54(392), 2403–
Rahbarisisakht, S., Moayeri, M. H., Hayati, E., Sadeghi, S. M. M., Kepfer-Rojas, S., Pahlavani, M. H., Kappel Schmidt, I., & Borz, S. A. (2021). Changes in soil’s chemical and biochemical properties induced by road geometry in the Hyrcanian temperate forests. Forests, 12(12), 1805.
Asner, G. P., Scurlock, J. M. O., & Hicke, J. A. (2003). Global synthesis of leaf area index observations: implications for ecological and remote sensing studies. Global Ecology & Biogeography, 12, 191–
Sadeghi, S. M. M., Van Stan II, J. T., Pypker, T. G., & Friesen, J. (2017). Canopy hydrometeorological dynamics across a chronosequence of a globally invasive species, Ailanthus altissima (Mill., tree of heaven). Agricultural and Forest Meteorology, 240, 10–
Maass, J. M., Vose, J. M., Swank, W. T., & Martinez-Yrizar, A. (1995). Seasonal changes of leaf area index (LAI) in a tropical deciduous forest in west Mexico. Forest Ecology and Management, 74, 171–
Potter, C., Bubier, J., Crill, P., & Lafleur, P. (2001). Ecosystem modeling of methane and carbon dioxide fluxes for boreal forest sites. Canadian Journal of Forest Research, 31, 208–
Breuer, L., Eckhart, K., & Frede, H. G. (2003). Plant parameter values for models in temperate climates. Ecological Modelling, 169, 237–
Hakimi, L., Sadeghi, S. M. M., Van Stan, J. T., Pypker, T. G., & Khosropour, E. (2018). Management of pomegranate (Punica granatum) orchards alters the supply and pathway of rain water reaching soils in an arid agricultural landscape. Agriculture, Ecosystems & Environment, 259, 77–85.
Sadeghi, S. M. M., Gordon, D. A., & Van Stan II, J. T. (2020). A global synthesis of throughfall and stemflow hydrometeorology. In Precipitation partitioning by vegetation (pp. 49-70). Springer, Cham.
Johansson, T. (2002). Increment and biomass in 26- to 91- year – old European aspen and some practical implication. Journal of Biomass and Bioenergy, 23, 245–
Eriksson, H., Eklundh, L., Hall, K., & Lindroth, A. (2005). Estimating LAI in deciduous forest stands. Agricultural and Forest Meteorology, 129, 27–
Arias, D. (2007). Calibration of LAI-2000 to estimate leaf area index and assessment of its relationship with stand productivity in six native and introduced tree species in Costa Rica. Forest Ecology and Management, 247, 185–193.
Afas, N., Pellis, A., & Niinemets, U. (2005). Growth and production of a short rotation coppice culture of poplar. II. Clonal and year-to-year differences in leaf and petiole characteristic and stand leaf area index. Journal of Biomass and Bioenergy, 28: 536–547.
Liu, Z., Chen, J. M., Jin, G., & Qi, Y. (2015). Estimating seasonal variations of leaf area index using litterfall collection and optical methods in four mixed evergreen-deciduous forest. Agricultural and Forest Meteorology, 209–210, 36–
Gower, S. T., Kucharik, C. J., & Norman, J. M. (1999). Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems. Remote Sensing of Environment, 70, 29–
Shen, L., Li, Z., & Guo, X. (2014). Remote sensing of leaf area index (LAI) and a spatiotemporally parameterized model for mixed grasslands. International Journal of Applied Science and Technology, 4(1), 46–
Jonckheere, I., Fleck, S., Nackaerts, K., Coppin, P., Muys, B., Weiss, B., & Baret, F. (2004). Review of methods for in situ leaf area index determination: Part I, Theories, sensors and hemispherical photography. Agricultural and Forest Meteorology, 121(1–2), 19–
Campillo, C., Garcia, M. I., Dazza, C., & Prieto, M. H. (2010). Study of a non-destructive method for estimating the leaf area index in vegetable crops using digital images. HortScience, 45(10), 1459–
Chason, J., Baldocchi, D., & Hutson, M. (1991). A comparison of direct and indirect methods for estimating forest leaf area. Agricultural and Forest Meteorology, 57, 107–
Brenner, A. J., Cueto Romero, M., Garcia Haro, J., Gilabert, M. A., Incoll, L. D., Martinez Fernandez, J., Porter, E., Pugnaire, F. I., & Younis, M. T. (1995). A comparison of direct and indirect methods for measuring leaf and surface areas of individual bushes. Plant, Cell and Environment, 18, 1332–1340.
Levy, P.E., and Jarvis, P. G. (1999). Direct and indirect measurements of LAI in millet and fallow vegetation in HAPEX-Sahel. Agricultural and Forest Meteorology, 97, 199–212.
Atzberger, C., Darvishzadeh, R., Immitzer, M., Schlerf, M., Skidmore, A., & Le Maire, G. (2015). Comparative analysis of different retrieval methods for mapping grassland leaf area index using airborne imaging spectroscopy. International Journal of Applied Earth Observation and Geoinformation, 43, 19–
Kalacska, M. E. R., Sanchez-Azofeifa, G. A., Calvo-Alvarado, J. C., Rivard, B., & Quesada, M. (2005). Effects of season and successional stage on leaf area index and spectral vegetation indices in three Mesoamerican tropical dry forest. Biotropica, 37(4), 486–
Ishihara, M. I., & Hiura, T. (2011). Modeling leaf area index from litter collection and tree data in a deciduous broadleaf forest. Agricultural and Forest Meteorology, 151, 1016–
Deljouei, A., Sadeghi, S. M. M., Abdi, E., Bernhardt-Römermann, M., Pascoe, E. L., & Marcantonio, M. (2018). The impact of road disturbance on vegetation and soil properties in a beech stand, Hyrcanian forest. European Journal of Forest Research, 137(6), 759–770.
Sampson, D. A., & Allen, H. L. (1995). Direct and indirect estimates of leaf area index (LAI) for lodgepole and loblolly pine stands. Trees, 9, 119–
Baldocchi, D. D., Hutchison, B. A., Matt, D. R., & McMillen, R. T. (1985). Canopy radiative transfer models for spherical and known leaf inclination angle distributions: a test in an oak hickory forest. Journal of Applied Ecology, 22, 539–
Bequet, R. (2011). Environmental determinants of the temporal and spatial variability of leaf area index in Fagus sylvatica, Quercus robur L., and Pinus sylvestris L. Forestry PhD thesis, Antwerpen University, 119 p.
Sefidi, K., Copenheaver, C. A., & Sadeghi, S. M. M. (2022). Anthropogenic pressures decrease structural complexity in Caucasian forests of Iran. Écoscience, 29(3), 199–
Wilhelm, W., Ruwe, K., & Schlemmer, M. R. (2000). Comparison of three leaf area index meters in a corn canopy. Publications from USDA-ARS / UNL Faculty, 71, 1179–
Zhao, D., Xie, D., Zhou, H., Jiang, H., & An, S. (2012). Estimation of leaf area index and plant area index of a submerged Macrophyte canopy using digital photography. PLOS One, 7(12), 1–
Villalobos F. J., Orgaz F., & Mateos L. (1995). Non-destructive measurement of leaf area in olive (Olea europaea) trees using a gap inversion method. Agricultural and Forest Meteorology, 73, 29–42.
Jones, D. A., O’Hara, K. L., Battles, J.J., & Gersonde, R.F. (2015). Leaf area prediction using three alternative sampling methods for seven Sierra Nevada conifer species. Forests, 6, 2631–
Abasi, L. (2014). Estimating the leaf area index of the Oak stand in the control and logged forests of Baneh, Master's Thesis, University of Kurdistan, 77 p. (In Persian)
Schauvliege, M. (1995). C-accumulation in old stands of the Aelmoeseneie forest. Master Thesis, Universities Gent, Faculteit van de landbouwkundige en Toegepaste Biologische Wetenschappen, 99 p.
Levy, E. B., & Madden, E. A. (1933). The point method of pasture analysis. New Zealand Journal of Agricultural Research, 46, 267–
Goreneveld, D. P. (1997). Vertical point quadrat sampling and an extinction factor to calculate leaf area index. Journal of Arid Environments, 36, 475–485.
Nizinski, J. J., & Saugier, B. (1988). A model of leaf budding and development for a mature QuercusJournal of Applied Ecology, 25, 643–655.
Dufrêne, E., & Breda, N. (1995). Estimation of deciduous forest leaf area index using direct and indirect methods. Oecologia. 104, 156–162.
Zheng, G., & Moskal, L. M. (2009). Retrieving leaf area index (LAI) using remote sensing: theories, methods and sensors. Sensors, 9, 2719–
Bourdin, F., Morell, F. J., Combemale, D., Clastre, P., Guérif, M., & Chanzy, A. (2017). A tool based on remotely sensed LAI, yield maps and a crop model to recommend variable rate nitrogen fertilization for wheat. Advances in Animal Biosciences, 8(2), 672–
Donald, C. M., & Balck, J. N. (1958). The significance of leaf area in pasture growth. Herbal, 28, 1–
Sepaskha, A. R. (1977). Estimation of individual and total leaf areas of safflowers. Agronomy Journal, 73, 1027–
Olfati, J. A., Peyvast, G., Shabani, H., & Nosratie-Rad, Z. (2010). An estimation of individual leaf area in cabbage and broccoli using non-destructive methods. Journal of Agricultural Science and Technology, 12, 627–
Daughtry, C. (1990). Direct measurements of canopy structure. Remote Sensing Reviews, 5, 45–
Nyakwende, E., Paull, C. J., & Atherton, J. G. (1997). Non-destructive determination of leaf area in tomato plants using image processing. Journal of Horticultural Science, 72, 225–
Khayamim, S., Mazaheri, D., Banayan Aval, M., Gohari, J., & Jahansoz, M. R. (2004). Investigating the physiological and technological characteristics of sugar beet at different levels of density and nitrogen fertilizer. Research and Development in Agriculture and Horticulture, 60, 21– (In Persian)
Kouchaki, A.R., & Sarmadnia, G. H. (1998). Physiology of Agricultural Plants, Mashhad University Press, Mashhad, 400 p. (In Persian)
Pourhashemi, M., Eskandari, S., Dehghani, M., Najafi, T., Asadi, A., & Panahi, P. (2012). Biomass and leaf area index of Caucasian Hackberry (Celtis caucasica) in Taileh urban forest, Sanandaj, Iran. Iranian Journal of Poplar Research, 19(4), 609–620. (In Persian)
Rahmani, R., Ghorbani, S., & Naghash Zargaran, M. (2014). Measurement and modelling litter biomass and leaf area index using allometry in a Beech-Hornbeam stand in the mid-elevation of the Hyrcanian region, Iran. Iranian Journal of Forest and Poplar Research, 22(4), 687– (In Persian)
Neumann, H. H., Den Hartog G. D., & Shaw, R. H. (1989). Leaf-Area measurements based on hemispheric photographs and leaf-litter collection in a deciduous forest during autumn leaf-fall. Agricultural and Forest Meteorology, 45, 325–
Hashemi, S. F., Hojati, S. M., & HosSeini Nasr, S. M. (2012). Soil chemical properties, amount of litterfall and nutrients recycling into Caucasian elm, maple and ash plantation stands at Darabkola Experimental Forest Station. Iranian Journal of Poplar Research, 20(4), 645– (In Persian)
Bouriaud, O., Soudani, K., & Breda, N., (2003). Leaf area index from litter collection: impact of specific leaf area variability within a beech stand. Canadian Journal of Remote Sensing, 29(3), 371–
Dewey, J. C., Roberts, S. D., & Hartley, I., (2006). A comparison of tools for remotely estimating leaf area index in loblolly pine plantations. Proceedings of the 13th Biennial Southern Silvicultural Research Conference. Gen. Tech. Rep. SRS–92. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station. 71-75 p.
Nazari, M., Sadeghi, S. M. M., Van Stan II, J. T., & Chaichi, M. R. (2020). Rainfall interception and redistribution by maize farmland in central Iran. Journal of Hydrology: Regional Studies, 27, 100656
McShane, M. C., Carlile, D. W., & Hinds, W. T. (1993). The effect of collector size on forest litter-fall collection and analysis. Canadian Journal of Forest Research, 13, 1037–1042.
Jurik, T. W., Briggs, G. M., & Gates, D. M., (1985). A comparison of four methods for determining leaf area index in successional hardwood forests. Canadian Journal of Forest Research, 15, 1154–1158.
Battaglia, M., Cherry, M. L., Beadle, C. L., Sands, P. J., & Hingston, A., (1998). Prediction of leaf area index in Eucalypt Plantations: effects of water stress and temperature. Tree Physiology, 18(8-9), 521–528.
Cutini, A., Matteucci, G., & Mugnozza, G. S. (1998). Estimation of leaf area index with the Li-Cor LAI 2000 in deciduous forests. Forest Ecology and Management, 105, 55–65.
Mussche, S., Samson, R., Nachtergale, L., De Schrijver, A., Lemeur, R., & Lust, N. (2001). A comparison of optical and direct methods for monitoring the seasonal dynamics of leaf area index in deciduous forests. Silva Fennica, 35, 373–384.