تهیه نقشه کشت برنج براساس خصوصیات فنولوژیکی با استفاده از سری زمانی تصاویر سنتینل 1
محورهای موضوعی : کشاورزی، مرتع داری، آبخیزداری و جنگلداریصیاد اصغری سراسکانرود 1 * , حسین شریفی طولارود 2 , بهروز سبحانی 3
1 - هیئت علمی دانشگاه محقق اردبیلی
2 - دانشجوی کارشناسی ارشد، دانشگاه محقق اردبیلی، اردبیل، ایران
3 - عضو هیات علمی دانشگاه محقق اردبیلی
کلید واژه: ضریب بازپراکنش راداری, سنجش ازدور, پلاریزاسیون, شالیزار,
چکیده مقاله :
هدف از این پژوهش شناسایی اراضی شالیزار و تهیه نقشه کاربری براساس خصوصیات فنولوژیکی گیاه برنج با استفاده از بازپراکنش دادههای راداری در سامانه گوگل ارث انجین است. به منظور افزایش دقت تغییرات شدت بازپراکنش، سری زمانی 2ساله انتخاب شد. سپس نسبت به شناسایی اولیه و طبقهبندی اراضی اقدام شد. ابتدا ارتباط بین روند بازپراکنش پلاریزاسیون VV و چرخه فنولوژیکی گیاه برنج بررسی شد. نتایج تجزیه و تحلیل روند نمودار بازپراکنش پلاریزاسیون VV نشان میدهد که در مرحله اول رشد گیاه برنج بدلیل وجود رطوبت، غرقابی بودن و عدم وجود سبزینگی کافی میزان بازپراکنش کمتر بوده است. در مرحله دوم رشد گیاه برنج بدلیل افزایش سبزینگی و پوشانده شدن سطح آب مقدار بازپراکنش بیشتر میباشد. درحالی که در مرحله سوم رشد گیاه برنج، بدلیل رسیدگی بذر گیاه برنج و همچنین خشک شدن سطح شالیزارها جهت برداشت محصول، میزان بازپراکنش کاهش پیدا میکند. در ادامه با مدیریت بازههای زمانی و استفاده از ترکیب رنگی نوع کاربریها شناسایی شدند. بعد از شناسایی اولیه، جهت دستیابی به نتایج بهتر اقدام به تهیه نقشه کاربری بخش مرکزی تالش با روش طبقهبندی نظارت شده با استفاده از الگوریتم بیشترین شباهت شد. بعد از تهیه نقشه کاربری، صحت نقشه با استفاده از نمونههای زمینی ارزیابی شد. که دقت کلی و ضریب کاپای این الگوریتم به ترتیب برابر با 91.57 درصد و 0.75 میباشد. نتایج نشان داد که استفاده از سری زمانی بازپراکنش دادههای راداری متناسب با فنولوژی در طبقهبندیها باعث افزایش دقت طبقهبندی میشود. همچنین نتایج نشان میدهد که استفاده از تصاویر سنتینل1 به همراه سامانه گوگل ارث انجین کارایی بالایی در جهت نظارت بر اراضی شالیزار در مناطق شمالی بدلیل وجود ابر خواهند داشت.
The purpose of this study is to identify Paddy Rice field and prepare a land use map based on the phenological characteristics of rice plants using the backscatering of radar data in the Google Earth engine Platform. In order to increase the accuracy of backscatering intensity changes, a 2-year time series was selected. Then, initial identification and land classification were performed. First, the relationship between VV polarization backscatering process and phenological cycle of rice plant was investigated. The results of VV polarization backscatering diagram analysis show that in the first stage of rice plant growth due to moisture, flooding and lack of sufficient vegetation, the backscatering rate was lower. In the second stage of rice plant growth, the amount of backscatering is higher due to increased vegetation and water surface coverage. While in the third stage of rice plant growth, due to the ripening of rice plant seeds and also drying of the paddy fields to harvest, the backscatering rate decreases. Then, by managing time periods and using color combination, the types of uses were identified. After initial identification, in order to achieve better results, a user map of the central part of the effort was prepared using the supervised classification method using the most similar algorithm. After preparing the user map, the accuracy of the map was evaluated using ground samples. The overall accuracy and kappa coefficient of this algorithm are 91.57% and 0.75, respectively. The results showed that the use of phenological data reprocessing time series in accordance with phenology in classifications increases the accuracy of classification. The results also show that the use of Sentinel 1 images along with the Google Earth engine Platform will have a high efficiency in monitoring paddy lands in the northern regions due to the presence of clouds.
1. Alipour F, Aghkhani M H, Abbas Pourfard M H, Sepehr A. 1393. Separation of area and estimation of area under cultivation of agricultural products with the help of satellite images. Agricultural Machinery 4(2): 244- 254. (In Persian).
2. Alizadeh H, Khairkhah Zarkesh M M, Abkar A A, Vafainejad A, Sadeghi Naeini A. 1391. Preparation of spatial distribution map of rice paddies using time series data of Terra satellite modis sensor. Journal of Remote Sensing and Iran GIS 4(2): 75- 96. (In Persian).
3. Ansari A, Ali Mohammadi Sarab A. 1390. Using multi-time classification method and AVHRR sensor data of NOAA satellite in order to accurately estimate the area under rice crop in Guilan province. Space Planning and Planning (Teacher of Humanities) 15(2): 1-16. (In Persian).
4. Abdullahzadeh M, Nasiri Baradran M. 2008. Determining the area under potato cultivation in Borujen city using the time series of images. IRSP6 Geomatics Conference, Mapping Organization, Tehran. (In Persian).
5. Bahramvash Shams sh. 2014. Automatic paddy rice mapping interface using arcengine and LANDSAT8 imageri (case study in north part of iran). 1st ISPRS international conference on geospatial information research 2(3): 79-83. (In Persian).
6. Bazzi H, Baghdadi N, El Hajj M, Zribi M, Minh D H T, Ndikumana E, Belhouchette H. 2019. Mapping Paddy Rice Using Sentinel-1 SAR Time Series in Camargue. France. Remote Sensing 11(7): 887. doi:https://doi.org/10.3390/rs11070887.
7. Bolun LI, Chaopu TI, Xiaoyuan Y. 2020. Estimating rice paddy areas in China using multi-temporal cloud-free normalized difference vegetation index (NDVI) imagery based on change detection. Pedosphere 30(6): 734-746. doi: https://doi.org/10.1016/S1002-0160(17) 60405-3.
8. Chang L, Chen Y T, Wang J H, Chang Y L. 2020. Rice-Field Mapping with Sentinel-1A SAR Time-Series Data. Remote Sensing 13(1): 103.
9. Clauss K, Ottinger M, Kuenzer C. 2018. Mapping rice areas with Sentinel-1 time series and superpixel segmentation. International Journal of Remote Sensing 39(5): 1399-1420.
10. Dineshkumar C, Kumar J S, Nitheshnirmal S. 2019. Rice Monitoring Using Sentinel-1 Data in the Google Earh Engine Platform. Proceedings 24(1): 4. doi: https://doi.org/10.3390/IECG2019-06206 .
11. Fatemi s b. Rezaie Y. Principles of Remot Sensing. Azadeh Press. 350pp. (In Persian).
12. IRRI: 1993–1995. IRRI Rice Almanac. International Rice Research Institute, Po Bax 933, 1099 Manila, Philippines 1993.
13. Kamkar B, Dashti Marvili M, Kazemi H. 1398. Detection of rice and soybean grown fields and their related cultivation area using Sentinel-2 satellite images in summer cropping patterns to analyze temporal changes in their cultivation area (Case study: four watershed basins of Golestan Province). Journal of Soil and Water Conservation Research 26 (1): 151-167. (In persian with English Summary).
14. Khodakarami L, Sufyan A. 1391. Application of multi-time remote sensing for Percision Farming. Journal of Soil and Water Sciences (Agricultural Science and Technology and Natural Resources) 16(59): 215- 230. (In Persian).
15. Kumar L, Mutanga O. 2018. Google Earth Engine Applications Since Inception: Usage, Trends, and Potential. Remote Sensing 10(10): 1509. doi: https://doi.org/10.3390/rs10101509.
16. Gandharum L, Mari E, Mulyani., Djoko M, Hartono, Asep Karsidi, Mubariq A. 2021. Remote sensing versus the area sampling frame method in paddy rice acreage estimation in Indramayu regency, West Java province, Indonesia. International Journal of Remote Sensing 42(5): 1738-1767. doi:https://doi.org/10.1080/01431161.2020.1842541.
17. Mosleh M K, Hassan Q K, Chowdhury E H. 2015. Application of remote sensors in mapping rice area and forecasting its production: a review. Sensors (Basel, Switzerland) 15(1): 769-791.
doi: https://doi.org/10.3390/rs11070887.
18. Moeini Rad A, Ashourloo D, Salehi Shahrabi H, Nematollahi H. 2019. Developing an Automatic Phenology-Based Algorithm for Rice Detection Using Sentinel-2 Time-Series Data, in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 12( 5): 1471-1481. doi: https://doi.org/10.1016/j.isprsjprs.2019.08.007.
19. Najmi H, Abkar A A, Agham- Mohammadi M, Javadi Q. 1394. Preparation of rice production map using a combination of remote sensing data and spatial information system. National Geomatics Conference, National Mapping Organization 22. (In Persian).
20. Nguyen, Duy Ba., Gruber, Alexander ., Wagner , Wolfgang., 2016. Mapping rice extent and cropping scheme in the Mekong Delta using Sentinel-1A data, Remote Sensing Letters, 7(12): 1209-1218. doi: https://doi.org/10.1080/2150704X.2016.1225172.
21. Nooruzi A A, Sanehi M, Razzaqi Z. 1397. Identification and differentation of rice fields using semi-automatic method in north Iran. Iranian Journal of Agriculture and Plant Breeding 14(4): 11-21. (In persian with English Summary).
22. Onojeghuo A O, Blackburn G A, Wang Q, Atkinson P M, Kindred D, Miao Y. 2018. Mapping paddy rice fields by applying machine learning algorithms to multi-temporal Sentinel-1A and Landsat data. International Journal of Remote Sensing 39(4): 1042-1067. https://doi.org/10.1080/01431161.2017.1395969.
23. Potin P, Rosich B, Roeder J, Bargellini P. 2014. Sentinel-1 Mission operations concept. IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada 13(18): 1465-1468.
24. Park S, Im J, Park S, Yoo C, Han H, Rhee J. 2018. Classification and Mapping of Paddy Rice by Combining Landsat and SAR Time Series Data. Remote Sensing 10(3): 447. https://doi.org/10.3390/rs10030447.
25. Phan, H., Le Toan, T., Bouvet, A., Nguyen, L., Pham Duy, T and M. Zribi. 2018. Mapping of Rice Varieties and Sowing Date Using X-Band SAR Data. Sensors 18(1): 316. doi:https://doi.org/10.3390/rs11141666.
26. Pham L. H., Pham L T, Dang T D, Tran D D, Dinh T Q. 2021. Application of Sentinel-1 data in mapping land-use and land cover in a complex seasonal landscape: a case study in coastal area of Vietnamese Mekong Delta. Geocarto International. doi:https://doi.org/10.1080/10106049.2020.1869329.
27. Raheb A, Heidari A, 1391. Investigation of the characteristics affected by the change of use of paddy field to kiwi curry in some soils of Tonekabon city, northern Iran. Electronic Journal of Soil Management and Sustainable Production 2 (2): 1-25. (In Persian).
28. Riahi V, Zeaiean Firouzabadi P, Azizpour F, Darouei P. Identification and investigation of the area under cultivation in Lenjanat using Landsat 8 satellite images. jgs. 2019; 19 (52) :147-169. (In Persian).
29.Rudiyanto F, Minasny B, Shah R M, Che Soh N, Arif C, Indra Setiawan B. 2019. Automated Near-Real-Time Mapping and Monitoring of Rice Extent, Cropping Patterns, and Growth Stages in Southeast Asia Using Sentinel-1 Time Series on a Google Earth Engine Platform. Remote Sensing 11(14): 1666. doi:https://doi.org/10.3390/rs11141666
30. Saadat M, Hasanlou M, Homayouni S. 2019. RICE CROP MAPPING USING SENTINEL-1 TIME SERIES IMAGES (CASE STUDY: MAZANDARAN, IRAN). Conferences of SMPR and GI Research, Karaj, Iran 2(4): 897-904. (In persian).
31. Singha M, Dong J, Zhang G, Xiao X. 2019. High resolution paddy rice maps in cloud-prone Bangladesh and Northeast India using Sentinel-1 data. Sci Data 6(26): . doi:https://doi.org/10.1038/s41597-019-0036-3.
32. Son NT, Chen C, Chen C R, Toscano P, Cheng Y S, Guo H Y, Chien H S. 2021. A phenological object-based approach for rice crop classification using time-series Sentinel-1 Synthetic Aperture Radar (SAR) data in Taiwan. International Journal of Remote Sensing 42(7): 2722-2739. doi:https://doi.org/10.1080/01431161.2020.1862440.
33. Son NT, Chen CF, Chen C R, Guo H Y. 2020. (Classification of multitemporal Sentinel-2 data for field-level monitoring of rice cropping practices in Taiwan). Advances in Space Research 65(8): 1911-1921. doi:https://doi.org/10.1016/j.asr.2020.01.028.
34. Soltani N, Mohammadnejad V. 1399. The efficiency of Google Earth Engine (GEE) system in assessing land use changes and predicting it with Markov model (case study of Urmia plain). remote sensing and GIS in natural resources 12 (3): 101-114. (In persian with English Summary).
35. Tian H, Wu M, Wang L, Niu Z. 2018. Mapping Early, Middle and Late Rice Extent Using Sentinel-1A and Landsat-8 Data in the Poyang Lake Plain, China. Sensors 18(2): 1-15.
doi: https://doi.org/10.3390/s18010185.
36. Talema T, Hailu B. 2020. Mapping rice crop using sentinels (1 SAR and 2 MSI) images in tropical area: A case study in Fogera wereda, Ethiopia. Remote Sensing Applications. Society and Environment 18(1): 100290. doi: https://doi.org/10.1016/j.rsase.2020.100290.
37. Xiao X, Boles S, Liu J, Zhuang D, Frolking S, Li C, Salas W, Moore Iii B. 2005. Mapping Paddy Rice Agriculture in Southern China Using Multi-temporal MODIS Images. Remote Sensing of Environment 95(4): 480-492. doi:https://doi.org/10.1016/j.rse.2005.10.004.
38 Xu L, Zhang H, Wang C, Wei S, Zhang B, Wu F, Tang Y. 2021. Paddy Rice Mapping in Thailand Using Time-Series Sentinel-1 Data and Deep Learning Model. Remote Sensing 13(19): 3994. doi:https://doi.org/10.3390/rs13193994.
39. Zhang X, Wu B, Ponce-Campos G, Zhang M, Chang S, Tian F. 2018. Mapping up-to-Date Paddy Rice Extent at 10 M Resolution in China through the Integration of Optical and Synthetic Aperture Radar Images. journal Remote Sensing 10(8): 1200. doi:https://doi.org/10.3390/rs10081200.