مدلسازی مطلوبیت رویشگاه گونه Vachellia tortilis با استفاده از روش حداکثر آنتروپی در استان هرمزگان
محورهای موضوعی : برنامه های کاربردی در حفاظت از تنوع زیستی و مدیریتسیروس مداحی نژاد 1 , یحیی اسماعیلپور 2 * , مرضیه رضایی 3
1 - دانشجوی دکتری بیابانزدایی، دانشکده کشاورزی و منابع طبیعی، دانشگاه هرمزگان، بندرعباس، ایران
2 - استادیار گروه مهندسی منابع طبیعی، دانشکده کشاورزی و منابع طبیعی دانشگاه هرمزگان، بندرعباس
3 - استادیار گروه مهندسی منابع طبیعی ، دانشگاه هرمزگان، بندرعباس، ایران
کلید واژه: عوامل اقلیمی, حداکثر آنتروپی, مطلوبیت رویشگاه, گبر,
چکیده مقاله :
از عوامل مؤثر بر پراکنش گونههای گیاهی میتوان از اقلیم، خصوصیات خاک، توپوگرافی، کاربری اراضی و مجموع ارتباطات زیستی نام برد؛ که اقلیم یکی از مهمترین عوامل مؤثر در پراکنش گونههای گیاهی است. پژوهش حاضر بهمنظور پیشبینی پراکنش جغرافیایی گونه گبر (Acacia tortilis (Forssk.) Hayne)، یافتن عوامل محیطی مهم و بررسی دامنة تحمل گونهها نسبت به عوامل محیطی در استان هرمزگان انجام شد. با توجه به هدف، اطلاعات پوشش گیاهی و عوامل رویشگاهی از قبیل پستیوبلندی، اقلیم، زمینشناسی و خاک جمعآوری شد. نمونهبرداری از پوشش گیاهی به روش تصادفی- سیستماتیک از طریق پلاتگذاری در امتداد 4 ترانسکت 1000 -200 متری انجام شد. نقشة متغیرهای محیطی با استفاده از سیستم اطلاعات جغرافیایی تهیه شد. سپس نقشههای پیشبینی مربوط به پراکنش گونه با استفاده از روش مدلسازی آنتروپی حداکثر تهیه شد. دقّت مدلهای پیشبینی حاصل با استفاده از آماره AUC مورد ارزیابی قرار گرفت. بهطورکلی نتایج نشان داد، متغیرهای مجموع بارندگی گرمترین فصل سال، تغییرات فصلی بارندگی ( ضریب تغییرات)، مجموع بارندگی کم بارشترین فصل سال، میانگین دمای خشکترین فصل سال، میانگین گرمترین فصل سال، از مهمترین ویژگیهای اقلیمی تأثیرگذار بر پراکنش گونه گبر (Acacia tortilis (Forssk.) Hayne) هستند. نتایج این تحقیق میتواند راهگشای مشکلات پیش روی مدیریت رویشگاه باشد. درواقع هرگاه گونهای در اثر تخریب زیستگاه دچار تهدید شود، با شناخت عواملی که گونه به آنها وابستگی شدیدی دارد، میتوان طرحهای حفاظتی با توجه به نیازهای زیستگاهی گونه ارائه کرد.
Factors affecting the distribution of plant species include climate, soil properties, topography, land use, and total biological relationships. Climate is one of the most important factors in the distribution of plant species. The present study was conducted to predict the geographical distribution of Acacia tortilis (Forssk. Hayne), to find important environmental factors and to investigate the tolerance of the species to environmental factors in Hormozgan province. According to the purpose, vegetation information and habitat factors such as elevation, climate, geology and soil were collected. Vegetation sampling was done randomly-systematically by plotting along 4 transects of 200-1000 m. Map of environmental variables was prepared using GIS. Then, prediction maps related to species distribution were prepared using entropy modeling method. The accuracy of the obtained prediction models was evaluated using AUC statistics. In general, the results showed that the variables of total rainfall in the hottest season, seasonal changes of rainfall (coefficient of variation), total rainfall of the lowest rainfall of the year, average temperature of the driest season, average of the warmest season are the most important climatic characteristics. They affect the distribution of Acacia tortilis (Forssk. Hayne).characteristics. They affect the distribution of Acacia tortilis (Forssk. Hayne).The results of this study can solve the problems facing habitat management. In fact, when a species is threatened by habitat destruction, by recognizing the factors to which the species is highly dependent, conservation plans can be proposed according to the habitat needs of the species.
1. Allen, A. W., Jordan, P. A., & Terrell, J. W. 1987. Habitat suitability index models: moose, Lake Superior region (Vol. 82). US Department of the Interior, Fish and Wildlife Service, Research and Development.
2. Anand, V., Oinam, B., & Singh, I. H. 2021. Predicting the current and future potential spatial distribution of endangered Rucervus eldii eldii (Sangai) using MaxEnt model. Environmental Monitoring and Assessment, 193(3), 147.
3. Bhandari, M.S., Shankhwar, R., Maikhuri, S., Pandey, S., Meena, R.K., Ginwal, H.S., Kant, R., Rawat, P.S., Martins-Ferreira, M.A.C. and Silveira, L.H.C., 2021. Prediction of ecological and geological niches of Salvadora oleoides in arid zones of India: causes and consequences of global warming. Arabian Journal of Geosciences, 14(6), pp.1-18.
4. Du, Z., He, Y., Wang, H., Wang, C. and Duan, Y., 2021. Potential geographical distribution and habitat shift of the genus Ammopiptanthus in China under current and future climate change based on the MaxEnt model. Journal of Arid Environments, 184, p.104328.
5. Ebrahimi, M. Piri Sahragard, H. madahinejad, c. 2015. Modeling the habitat suitability of plant species using MaxEnt method in Jiroft plain. MS.c Thesis, Zabol University, Faculty of Natural Resources (in Persian).
6. Edgar, P., and Bird, D.R. 2006: Action Plan for the Conservation of the Meadow Viper (Vipera ursinii) in Europe. Convention on the Conservation of European Wildlife and Natural Habitats Standing Committee, 26th meeting, Strasbourg, 27-29.
7. Emtehani, M.H. 2003. Native acacias of Iran. 1sd edn, Yazd University Press, Yazd, Iran, 122 pp (In Persian).
8. Teimoori Asl, S., Naghipour, A. A., Ashrafzadeh, M. R., & Haidarian Aga Khani, M. 2020. Predicting the effects of the climate change on the geographical distribution of Astragalus verus Olivier in the Central Zagros region. Journal of RS and GIS for Natural Resources, 11(2), 68-85 (In Persian).
9. Khalil, T., Asad, S. A., Khubaib, N., Baig, A., Atif, S., Umar, M., ... & Baig, S. (2021). Climate change and potential distribution of potato (Solanum tuberosum) crop cultivation in Pakistan using Maxent. AIMS Agriculture and Food, 6(2), 663-676.
10. Kong, F., Tang, L., He, H., Yang, F., Tao, J. and Wang, W., 2021. Assessing the impact of climate change on the distribution of Osmanthus fragrans using Maxent. Environmental Science and Pollution Research, pp.1-9.
11. Kumar, S., and Stohlgren, T. 2009. Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia Journal of Ecology and Natural Environment. 1(4): 094-098.
12. Khanum, R., Mumtaz, A.S. and Kumar, S., 2013. Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modeling. Acta Oecologica, 49, pp.23-31.
13. Loth, P.E., Boer, W.F.de, Heitkönig, I.M.A. and Prins, H.H.T., 2005. Germination strategy of the East Africa savanna tree Acacia tortilis. Journal of Tropical Ecology, 21: 509-517
14. Mechergui, K., Altamimi, A. S., Jaouadi, W., Naghmouchi, S., & El Wellani, S. 2021. Modelling current and future potential distributions of Vachellia tortilis (Forssk.) Hayne subsp. raddiana (Savi.) Brenan var. raddiana under climate change in Tunisia. African Journal of Ecology, 59(4), 944-958.
15. Mgaywa, W. J. (2018). Influence of environmental variables on the distribution of selected tree species in lake Manyara upper catchment, northern-Tanzania (Doctoral dissertation, Sokoine University of Agriculture).
16. Naghiloo, M., Jafari, M., Tahmoures, M., Kohandel, A., & Hamedanian, F. 2010. An Investigation on Relationships between Soil Physiochemical Attributes and Vegetation Cover for DeterminingIndex Species in Savoj-bolagh Region. Journal of Range and Watershed Managment, 63(1), 119-11, (in Persian).
17. Phillips, S. J., Dudík, M., & Schapire, R. E. 2004. A maximum entropy approach to species distribution modeling. In Proceedings of the twenty-first international conference on Machine learning (p. 83).
18. Purohit, S. and Rawat, N., 2021. MaxEnt modeling to predict the current and future distribution of Clerodendrum infortunatum L. under climate change scenarios in Dehradun district, India. Modeling Earth Systems and Environment, pp.1-13.
19. Qayyumi, R., Ebrahimi, A., Hosseini Taifeh, F, Keshtkar, M. 2019. Predicting the effects of climate change on the distribution of mangrove forests in Iran using the maximum entropy model, Remote Sensing and GIS in Natural Resources, 10 (2), pp. 34-47. (in Persian)
20. Saha, A., Rahman, S., & Alam, S. 2021. Modeling current and future potential distributions of desert locust Schistocerca gregaria (Forskål) under climate change scenarios using MaxEnt. Journal of Asia-Pacific Biodiversity, 14(3), 399-409.
21. Scott, J.M., P.J. Heglund., M.L. Morrison., J.B. Haufler., M.G. Raphael, W.A. Wall and F.B. Samson, 2002. Predicting Species Occurrences: Issues of Accuracy and Scale. Island Press, Washington DC.
22. Sinclair, S. J., White, M. D., & Newell, G. R. 2010. How useful are species distribution models for managing biodiversity under future climates? Ecology and Society, 15(1).
23. Teymouri Asl, S., Naghipour Borj, A., Ashrafzadeh, M., Heidarian Agakhani, M. 2020. Predicting the Consequences of Climate Change on the Geographical Distribution of Yellow Astragalus (Astragalus verus Olivier) in the Central Zagros', Remote Sensing and Geographic Information System in Natural Resources, 11 (2), pp. 68-85 (in Persian).
24. Wei, B., Wang, R., Hou, K., Wang, X. and Wu, W., 2018. Predicting the current and future cultivation regions of Carthamus tinctorius L. using MaxEnt model under climate change in China. Global Ecology and Conservation, 16, p.e00477.
25. Zare Chahouki, M.A., Khalasi Ahvazi, L. and Azrnivand, H. 2012. Comparison of three modelin approaches for predictiong species distribution in mountainous scrub vegetation (Semnan rangelands, Iran). Polish Journal of Ecology, 60(2): 105-117.
26. Zarinkamar, F. 1996. Investigation of anatomical and ecological characteristics of 14 species of Astragalus spp. Research Institute of Range and Forest, 98p.
27. Zhang, H., & Zhao, H. 2021. Study on rare and endangered plants under climate: maxent modeling for identifying hot spots in northwest China. Cerne, 27, e-102667.
28. Zhao, Y., Deng, X., Xiang, W., Chen, L. and Ouyang, S., 2021. Predicting potential suitable habitats of Chinese fir under current and future climatic scenarios based on Maxent model. Ecological Informatics, 64, p.101393.
29. Zhao, Y., Zhao, M., Zhang, L., Wang, C. and Xu, Y., 2021. Predicting Possible Distribution of Tea (Camellia sinensis L.) under Climate Change Scenarios Using MaxEnt Model in China. Agriculture, 11(11), p.1122.