مدلسازی مکانی فرونشست زمین در جنوب حوزه آبخیز میناب با استفاده از سنجشازدور و سیستم اطلاعات جغرافیایی
محورهای موضوعی : توسعه سیستم های مکانیعبدالخالق آروین 1 , قربان وهابزاده کبریا 2 * , سید رمضان موسوی 3 , مسعود بختیاری کیا 4
1 - دانشجوی دکتری آبخیزداری، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری
2 - دانشیار گروه آبخیزداری، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری
3 - استادیار گروه آبخیزداری، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری
4 - استادیار گروه جغرافیا، دانشکده علوم انسانی، دانشگاه هرمزگان
کلید واژه: حوزه آبخیز میناب, تداخل سنجی راداری, آب زیرزمینی, تصاویر رادار, فرونشست, تحلیل مکانی,
چکیده مقاله :
دشت میناب در استان هرمزگان، در دهههای اخیر رشد جمعیت را در کنار توسعه کشاورزی داشته است. بارش کمسالهای اخیر، خشکسالیهای متوالی و محدودیت منابع آب سطحی، موجب حفر بیرویه چاههای آب در منطقه شده است. برداشت بیرویه از این چاهها، موجب عدم تعادل آبخوان منطقه شده و پایین رفتن سطح آب زیرزمینی را به دنبال داشته است. پیامدهای این روند، باعث ایجاد و گسترش فرونشست زمین در منطقه شده است. هدف از این تحقیق، استفاده از تصاویر ماهوارهای راداری Semtinel-1 سالهای 1393 و 1397 و روش تداخلسنجی تفاضلی راداری در بررسی میزان و گسترش فرونشست زمین است. نتایج پردازشهای انجامشده بر روی این تصاویر نشان داد که در دوره مطالعاتی، حدود 13سانتیمتر فرونشست داشته است. بعد از صحتسنجی پهنهبندی انجامشده با واقعیتهای زمینی (شهریور 1397)، بهمنظور تشخیص رابطه فرونشست با میزان تغییرات و افت سطح آب زیرزمینی، ارتفاع سطح زمین و شیب، تحلیلهای فضایی انجام و میزان همبستگی هر یک از فاکتورهای مذکور با تراکم رخداد فرونشست محاسبه گردید. تحلیل خودهمبستگی فضایی و شاخص موران خوشه ای بودن رخداد فرونشست تحت تأثیر تغییرات سطح آب در منطقه موردمطالعه را به میزان 0.925 نشان داد. همچنین بالا بودن امتیاز توزیع نرمال استاندارد (z) و پایین بودن مقدار سطح معنیداری (p_value) نشاندهنده رابطه خودهمبستگی قوی 1.89 و 0.06 بین عناصر موردمطالعه است.
Minab plain in Hormozgan province has experienced population growth with agricultural development in recent decades. Low rainfall in recent years, successive droughts, and limited surface water resources, irregular irrigation practices in the agricultural sector in the study area, along with inappropriate cultivation patterns, have caused the extraction of water wells in the region. The extraction of these wells and groundwater resources has led to an imbalance in the aquifer in the area and a decline in groundwater levels. The consequences of this trend have caused the creation and expansion of subsidence in the region. This research, by investigating radar, satellite images and using differential radial interferometry, has been used to detect and determine the amount of subsidence in order to investigate the extent of this phenomenon in the study area. In this study, data from the Sentinel-1 refer to the dates 2014 and 2018 were used. The results showed it had 13-centimeter subsidence in the study period. After verifying the results by control points (in September 2018), in order to find the relationship of subsidence with changes in groundwater level, elevation, and slope, a spatial analysis was performed and the correlation of each of these factors with subsidence event density was calculated. Spatial autocorrelation analysis and Moran's index showed that climatic event due to water level changes in the study area was 0.925. The values of 1.89 and 0.06 for standard normal distribution (z) and the p_value respectively, confirm a strong autocorrelation between the studied factors.
احمدی، ن.، ز. موسوی و ز. معصومی. 1397. مطالعه فرونشست دشت خرمدره با استفاده از تکنیک تداخلسنجی راداری و بررسی مخاطرات آن. فصلنامه سنجشازدور و GIS ایران، 10(3): 33-52.
المدرسی، س. ع.، ج. حاتمی و ع. سرکارگر. 1395. محاسبه خصوصیات فیزیکی برف با استفاده از تکنیک تداخل سنجی تفاضلی راداری و تصاویر سنجنده ترا سارایکس باند (TerraSAR-X) و مودیس (MODIS). نشریه سنجشازدور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 7(2): 59-75.
آمیغپی، م.، س. عربی، ع. طالبی و ی. جموری. 1388. کاربرد تکنیک تداخلسنجی راداری در مطالعات مناطق فرونشست. شانزدهمین همایش ملی ژئوماتیک، 20 تا 21 اردیبهشتماه، سازمان نقشهبرداری کشور، گروه مهندسی نقشهبرداری- پردیس دانشکدههای فنی دانشگاه تهران، تهران. 10 صفحه.
جمور، ر.، م. ایل بیگی و م. مرسلی. 1398. ارزیابی بحران فرونشست زمین و پیشروی آبشور دریا در آبخوان دشت میناب. نشریه اکوهیدرولوژی، 6(1): 223-238.
حاجب، ز.، ز. موسوی، ز. معصومی و ا. رضایی. 1397. بررسی فرونشست دشت قم با استفاده از تداخلسنجی راداری. مجموعه مقالات هجدهمین کنفرانس ژئوفیزیک ایران، 18 تا 20 اردیبهشتماه، انجمن ژئوفیزیک ایران، تهران، 352-355.
زارع کمالی، م.، س. ع. الحسینی المدرسی و ک. نقدی. 1396. مقایسه میزان جابجایی عمودی زمین با استفاده از الگوریتم SBAS در باندهای راداری X و C (مطالعه موردی: اراضی تهران). نشریه سنجشازدور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 8(3): 104-120.
دهقانی، م. 1394. ارائه الگوریتمی جدید بر مبنای تکنیک تداخل سنجی راداری بهمنظور پایش فرونشست سطح زمین ناشی از استخراج آبهای زیرزمینی. نشریه مهندسی فناوری اطلاعات مکانی، 2(2): 61-73.
شریفی کیا، م. 1391. تعیین میزان و دامنه فرونشست زمین به کمک روش تداخلسنجی راداری (D-InSAR) در دشت نوق-بهرمان. نشریه برنامهریزی و آمایش فضا، 16(3): 55-77.
مهرابی، ع. 1397. شناسایی شواهدی بر وجود گنبد نمکی مدفون و جدید در ناحیه زاگرس با استفاده از روش تداخل سنجی راداری سنتینل-1 و ایسار. نشریه سنجشازدور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 9(4): 90-101.
Abdikan S, Arıkan M, Sanli FB, Cakir Z. 2014. Monitoring of coal mining subsidence in peri-urban area of Zonguldak city (NW Turkey) with persistent scatterer interferometry using ALOS-PALSAR. Environmental earth sciences, 71(9): 4081-4089.
Abelson M, Aksinenko T, Kurzon I, Pinsky V, Baer G, Nof R, Yechieli Y. 2018. Nanoseismicity forecasts sinkhole collapse in the Dead Sea coast years in advance. Geology, 46(1): 83-86.
Aslan G, Cakır Z, Ergintav S, Lasserre C, Renard F. 2018. Analysis of secular ground motions in istanbul from a long-term insar time-series (1992–2017). Remote Sensing, 10(3): 408-419.
Bayer B, Simoni A, Mulas M, Corsini A, Schmidt D. 2018. Deformation responses of slow moving landslides to seasonal rainfall in the Northern Apennines, measured by InSAR. Geomorphology, 308: 293-306.
Béjar-Pizarro M, Notti D, Mateos RM, Ezquerro P, Centolanza G, Herrera G, Bru G, Sanabria M, Solari L, Duro J. 2017. Mapping vulnerable urban areas affected by slow-moving landslides using Sentinel-1 InSAR data. Remote Sensing, 9(9): 876-889.
Bell JW, Amelung F, Ferretti A, Bianchi M, Novali F. 2008. Permanent scatterer InSAR reveals seasonal and long‐term aquifer‐system response to groundwater pumping and artificial recharge. Water Resources Research, 44(2): 1-18.
Benito-Calvo A, Gutiérrez F, Martínez-Fernández A, Carbonel D, Karampaglidis T, Desir G, Sevil J, Guerrero J, Fabregat I, García-Arnay Á. 2018. 4D monitoring of active sinkholes with a terrestrial laser scanner (TLS): a case study in the evaporite karst of the ebro valley, NE Spain. Remote Sensing, 10(4): 571-585.
Berardino P, Fornaro G, Lanari R, Sansosti E. 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40(11): 2375-2383.
Bonì R, Bosino A, Meisina C, Novellino A, Bateson L, McCormack H. 2018. A methodology to detect and characterize uplift phenomena in urban areas using Sentinel-1 data. Remote Sensing, 10(4): 607-620.
Brambati A, Carbognin L, Quaia T, Teatini P, Tosi L. 2003. The Lagoon of Venice: geological setting, evolution and land subsidence. Episodes, 26(3): 264-268.
Caló F, Notti D, Galve J, Abdikan S, Görüm T, Pepe A, Balik Şanli F. 2017. Dinsar-based detection of land subsidence and correlation with groundwater depletion in konya plain, turkey. Remote Sensing, 9(1): 83-95.
Carlà T, Farina P, Intrieri E, Ketizmen H, Casagli N. 2018. Integration of ground-based radar and satellite InSAR data for the analysis of an unexpected slope failure in an open-pit mine. Engineering Geology, 235: 39-52.
Chaussard E, Milillo P, Bürgmann R, Perissin D, Fielding EJ, Baker B. 2017. Remote sensing of ground deformation for monitoring groundwater management practices: Application to the Santa Clara Valley during the 2012–2015 California drought. Journal of Geophysical Research: Solid Earth, 122(10): 8566-8582.
Chen M, Tomás R, Li Z, Motagh M, Li T, Hu L, Gong H, Li X, Yu J, Gong X. 2016. Imaging land subsidence induced by groundwater extraction in Beijing (China) using satellite radar interferometry. Remote Sensing, 8(6): 468-479.
Crosetto M, Monserrat O, Cuevas-González M, Devanthéry N, Crippa B. 2016. Persistent scatterer interferometry: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 115: 78-89.
Czikhardt R, Papco J, Bakon M, Liscak P, Ondrejka P, Zlocha M. 2017. Ground stability monitoring of undermined and landslide prone areas by means of sentinel-1 multi-temporal InSAR, case study from Slovakia. Geosciences, 7(3): 87-101.
Du Z, Ge L, Li X, Ng A. 2016. Subsidence monitoring over the Southern Coalfield, Australia using both L-Band and C-Band SAR time series analysis. Remote sensing, 8(7): 543-556.
Erten E, Rossi C. 2019. The worsening impacts of land reclamation assessed with Sentinel-1: The Rize (Turkey) test case. International Journal of Applied Earth Observation and Geoinformation, 74: 57-64.
Galloway DL, Burbey TJ. 2011. Regional land subsidence accompanying groundwater extraction. Hydrogeology Journal, 19(8): 1459-1486.
Ge L, Ng AH-M, Li X, Abidin HZ, Gumilar I. 2014. Land subsidence characteristics of Bandung Basin as revealed by ENVISAT ASAR and ALOS PALSAR interferometry. Remote Sensing of Environment, 154: 46-60.
GuangYao D, HuiLi G, Huanhuan L, Youquan Z, BeiBei C, KunChao L. 2016. Monitoring and analysis of land subsidence along Beijing-Tianjin Inter-city railway. Journal of the Indian Society of Remote Sensing, 44(6): 915-931.
Guo J, Zhou L, Yao C, Hu J. 2016. Surface subsidence analysis by multi-temporal insar and grace: A case study in Beijing. Sensors, 16(9): 1495-1503.
Gutiérrez F, Benito-Calvo A, Carbonel D, Desir G, Sevil J, Guerrero J, Martínez-Fernández A, Karamplaglidis T, García-Arnay Á, Fabregat I. 2019. Review on sinkhole monitoring and performance of remediation measures by high-precision leveling and terrestrial laser scanner in the salt karst of the Ebro Valley, Spain. Engineering Geology, 248: 283-308.
Hooper A, Bekaert D, Spaans K, Arıkan M. 2012. Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics, 514: 1-13.
Hussain E, Wright TJ, Walters RJ, Bekaert DP, Lloyd R, Hooper A. 2018. Constant strain accumulation rate between major earthquakes on the North Anatolian Fault. Nature communications, 9(1): 1392-1404.
Imamoglu M, Kahraman F, Abdikan S. 2018. Preliminary results of temporal deformation analysis in Istanbul using multi-temporal InSAR with Sentinel-1 SAR data. In: IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE, pp 1352-1355.
Intrieri E, Raspini F, Fumagalli A, Lu P, Del Conte S, Farina P, Allievi J, Ferretti A, Casagli N. 2018. The Maoxian landslide as seen from space: detecting precursors of failure with Sentinel-1 data. Landslides, 15(1): 123-133.
Jadda M, Shafri HZ, Mansor SB, Sharifikia M, Pirasteh S. 2009. Landslide susceptibility evaluation and factor effect analysis using probabilistic-frequency ratio model. European Journal of Scientific Research, 33(4): 654-668.
Kersten T, Kobe M, Gabriel G, Timmen L, Schön S, Vogel D. 2017. Geodetic monitoring of subrosion-induced subsidence processes in urban areas. Journal of Applied Geodesy, 11(1): 21-29.
Kim J-W, Lu Z, Degrandpre K. 2016. Ongoing deformation of sinkholes in Wink, Texas, observed by time-series Sentinel-1A SAR interferometry (preliminary results). Remote Sensing, 8(4): 313.
Lin B, Jiang L, Wang H, Sun Q. 2016. Spatiotemporal characterization of land subsidence and uplift (2009–2010) over wuhan in central china revealed by terrasar-X insar analysis. Remote Sensing, 8(4): 350.
Liu C, Ji L, Zhu L, Zhao C. 2018. InSAR-constrained interseismic deformation and potential seismogenic asperities on the Altyn Tagh Fault at 91.5–95 E, Northern Tibetan Plateau. Remote Sensing, 10(6): 943-960.
Massonnet D, Feigl KL. 1998. Radar interferometry and its application to changes in the Earth's surface. Reviews of Geophysics, 36(4): 441-500.
Motagh M, Walter TR, Sharifi MA, Fielding E, Schenk A, Anderssohn J, Zschau J. 2008. Land subsidence in Iran caused by widespread water reservoir overexploitation. Geophysical Research Letters, 35(16): 1-5.
Osmanoğlu B, Sunar F, Wdowinski S, Cabral-Cano E. 2016. Time series analysis of InSAR data: Methods and trends. ISPRS Journal of Photogrammetry and Remote Sensing, 115: 90-102.
Phien-Wej N, Giao P, Nutalaya P. 2006. Land subsidence in bangkok, Thailand. Engineering Geology, 82(4): 187-201.
Poland JF. 1982. The Occurrence and Control of Land Subsidence Due to Ground-Water Withdrawal with Special Reference to the San Joaquin and Santa Clara Valleys, California. Ph.D. California, 240 p.
Qu F, Zhang Q, Lu Z, Zhao C, Yang C, Zhang J. 2014. Land subsidence and ground fissures in Xi'an, China 2005–2012 revealed by multi-band InSAR time-series analysis. Remote Sensing of Environment, 155: 366-376.
Shujun Y, Xue Y, Wu J, Yan X, Yu J. 2016. Progression and mitigation of land subsidence in China. Hydrogeology Journal, 24(3): 685-693.
Tomas R, Herrera G, Lopez-Sanchez J, Vicente F, Cuenca A, Mallorquí J. 2010. Study of the land subsidence in Orihuela City (SE Spain) using PSI data: Distribution, evolution and correlation with conditioning and triggering factors. Engineering Geology, 115(1-2): 105-121.
Wang G, You G, Shi B, Yu J, Tuck M. 2009. Long-term land subsidence and strata compression in Changzhou, China. Engineering Geology, 104(1-2): 109-118.
Yang H-l, Peng J-h. 2015. Monitoring urban subsidence with multi-master radar interferometry based on coherent targets. Journal of the Indian Society of Remote Sensing, 43(3): 529-538.
_||_
احمدی، ن.، ز. موسوی و ز. معصومی. 1397. مطالعه فرونشست دشت خرمدره با استفاده از تکنیک تداخلسنجی راداری و بررسی مخاطرات آن. فصلنامه سنجشازدور و GIS ایران، 10(3): 33-52.
المدرسی، س. ع.، ج. حاتمی و ع. سرکارگر. 1395. محاسبه خصوصیات فیزیکی برف با استفاده از تکنیک تداخل سنجی تفاضلی راداری و تصاویر سنجنده ترا سارایکس باند (TerraSAR-X) و مودیس (MODIS). نشریه سنجشازدور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 7(2): 59-75.
آمیغپی، م.، س. عربی، ع. طالبی و ی. جموری. 1388. کاربرد تکنیک تداخلسنجی راداری در مطالعات مناطق فرونشست. شانزدهمین همایش ملی ژئوماتیک، 20 تا 21 اردیبهشتماه، سازمان نقشهبرداری کشور، گروه مهندسی نقشهبرداری- پردیس دانشکدههای فنی دانشگاه تهران، تهران. 10 صفحه.
جمور، ر.، م. ایل بیگی و م. مرسلی. 1398. ارزیابی بحران فرونشست زمین و پیشروی آبشور دریا در آبخوان دشت میناب. نشریه اکوهیدرولوژی، 6(1): 223-238.
حاجب، ز.، ز. موسوی، ز. معصومی و ا. رضایی. 1397. بررسی فرونشست دشت قم با استفاده از تداخلسنجی راداری. مجموعه مقالات هجدهمین کنفرانس ژئوفیزیک ایران، 18 تا 20 اردیبهشتماه، انجمن ژئوفیزیک ایران، تهران، 352-355.
زارع کمالی، م.، س. ع. الحسینی المدرسی و ک. نقدی. 1396. مقایسه میزان جابجایی عمودی زمین با استفاده از الگوریتم SBAS در باندهای راداری X و C (مطالعه موردی: اراضی تهران). نشریه سنجشازدور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 8(3): 104-120.
دهقانی، م. 1394. ارائه الگوریتمی جدید بر مبنای تکنیک تداخل سنجی راداری بهمنظور پایش فرونشست سطح زمین ناشی از استخراج آبهای زیرزمینی. نشریه مهندسی فناوری اطلاعات مکانی، 2(2): 61-73.
شریفی کیا، م. 1391. تعیین میزان و دامنه فرونشست زمین به کمک روش تداخلسنجی راداری (D-InSAR) در دشت نوق-بهرمان. نشریه برنامهریزی و آمایش فضا، 16(3): 55-77.
مهرابی، ع. 1397. شناسایی شواهدی بر وجود گنبد نمکی مدفون و جدید در ناحیه زاگرس با استفاده از روش تداخل سنجی راداری سنتینل-1 و ایسار. نشریه سنجشازدور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 9(4): 90-101.
Abdikan S, Arıkan M, Sanli FB, Cakir Z. 2014. Monitoring of coal mining subsidence in peri-urban area of Zonguldak city (NW Turkey) with persistent scatterer interferometry using ALOS-PALSAR. Environmental earth sciences, 71(9): 4081-4089.
Abelson M, Aksinenko T, Kurzon I, Pinsky V, Baer G, Nof R, Yechieli Y. 2018. Nanoseismicity forecasts sinkhole collapse in the Dead Sea coast years in advance. Geology, 46(1): 83-86.
Aslan G, Cakır Z, Ergintav S, Lasserre C, Renard F. 2018. Analysis of secular ground motions in istanbul from a long-term insar time-series (1992–2017). Remote Sensing, 10(3): 408-419.
Bayer B, Simoni A, Mulas M, Corsini A, Schmidt D. 2018. Deformation responses of slow moving landslides to seasonal rainfall in the Northern Apennines, measured by InSAR. Geomorphology, 308: 293-306.
Béjar-Pizarro M, Notti D, Mateos RM, Ezquerro P, Centolanza G, Herrera G, Bru G, Sanabria M, Solari L, Duro J. 2017. Mapping vulnerable urban areas affected by slow-moving landslides using Sentinel-1 InSAR data. Remote Sensing, 9(9): 876-889.
Bell JW, Amelung F, Ferretti A, Bianchi M, Novali F. 2008. Permanent scatterer InSAR reveals seasonal and long‐term aquifer‐system response to groundwater pumping and artificial recharge. Water Resources Research, 44(2): 1-18.
Benito-Calvo A, Gutiérrez F, Martínez-Fernández A, Carbonel D, Karampaglidis T, Desir G, Sevil J, Guerrero J, Fabregat I, García-Arnay Á. 2018. 4D monitoring of active sinkholes with a terrestrial laser scanner (TLS): a case study in the evaporite karst of the ebro valley, NE Spain. Remote Sensing, 10(4): 571-585.
Berardino P, Fornaro G, Lanari R, Sansosti E. 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40(11): 2375-2383.
Bonì R, Bosino A, Meisina C, Novellino A, Bateson L, McCormack H. 2018. A methodology to detect and characterize uplift phenomena in urban areas using Sentinel-1 data. Remote Sensing, 10(4): 607-620.
Brambati A, Carbognin L, Quaia T, Teatini P, Tosi L. 2003. The Lagoon of Venice: geological setting, evolution and land subsidence. Episodes, 26(3): 264-268.
Caló F, Notti D, Galve J, Abdikan S, Görüm T, Pepe A, Balik Şanli F. 2017. Dinsar-based detection of land subsidence and correlation with groundwater depletion in konya plain, turkey. Remote Sensing, 9(1): 83-95.
Carlà T, Farina P, Intrieri E, Ketizmen H, Casagli N. 2018. Integration of ground-based radar and satellite InSAR data for the analysis of an unexpected slope failure in an open-pit mine. Engineering Geology, 235: 39-52.
Chaussard E, Milillo P, Bürgmann R, Perissin D, Fielding EJ, Baker B. 2017. Remote sensing of ground deformation for monitoring groundwater management practices: Application to the Santa Clara Valley during the 2012–2015 California drought. Journal of Geophysical Research: Solid Earth, 122(10): 8566-8582.
Chen M, Tomás R, Li Z, Motagh M, Li T, Hu L, Gong H, Li X, Yu J, Gong X. 2016. Imaging land subsidence induced by groundwater extraction in Beijing (China) using satellite radar interferometry. Remote Sensing, 8(6): 468-479.
Crosetto M, Monserrat O, Cuevas-González M, Devanthéry N, Crippa B. 2016. Persistent scatterer interferometry: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 115: 78-89.
Czikhardt R, Papco J, Bakon M, Liscak P, Ondrejka P, Zlocha M. 2017. Ground stability monitoring of undermined and landslide prone areas by means of sentinel-1 multi-temporal InSAR, case study from Slovakia. Geosciences, 7(3): 87-101.
Du Z, Ge L, Li X, Ng A. 2016. Subsidence monitoring over the Southern Coalfield, Australia using both L-Band and C-Band SAR time series analysis. Remote sensing, 8(7): 543-556.
Erten E, Rossi C. 2019. The worsening impacts of land reclamation assessed with Sentinel-1: The Rize (Turkey) test case. International Journal of Applied Earth Observation and Geoinformation, 74: 57-64.
Galloway DL, Burbey TJ. 2011. Regional land subsidence accompanying groundwater extraction. Hydrogeology Journal, 19(8): 1459-1486.
Ge L, Ng AH-M, Li X, Abidin HZ, Gumilar I. 2014. Land subsidence characteristics of Bandung Basin as revealed by ENVISAT ASAR and ALOS PALSAR interferometry. Remote Sensing of Environment, 154: 46-60.
GuangYao D, HuiLi G, Huanhuan L, Youquan Z, BeiBei C, KunChao L. 2016. Monitoring and analysis of land subsidence along Beijing-Tianjin Inter-city railway. Journal of the Indian Society of Remote Sensing, 44(6): 915-931.
Guo J, Zhou L, Yao C, Hu J. 2016. Surface subsidence analysis by multi-temporal insar and grace: A case study in Beijing. Sensors, 16(9): 1495-1503.
Gutiérrez F, Benito-Calvo A, Carbonel D, Desir G, Sevil J, Guerrero J, Martínez-Fernández A, Karamplaglidis T, García-Arnay Á, Fabregat I. 2019. Review on sinkhole monitoring and performance of remediation measures by high-precision leveling and terrestrial laser scanner in the salt karst of the Ebro Valley, Spain. Engineering Geology, 248: 283-308.
Hooper A, Bekaert D, Spaans K, Arıkan M. 2012. Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics, 514: 1-13.
Hussain E, Wright TJ, Walters RJ, Bekaert DP, Lloyd R, Hooper A. 2018. Constant strain accumulation rate between major earthquakes on the North Anatolian Fault. Nature communications, 9(1): 1392-1404.
Imamoglu M, Kahraman F, Abdikan S. 2018. Preliminary results of temporal deformation analysis in Istanbul using multi-temporal InSAR with Sentinel-1 SAR data. In: IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE, pp 1352-1355.
Intrieri E, Raspini F, Fumagalli A, Lu P, Del Conte S, Farina P, Allievi J, Ferretti A, Casagli N. 2018. The Maoxian landslide as seen from space: detecting precursors of failure with Sentinel-1 data. Landslides, 15(1): 123-133.
Jadda M, Shafri HZ, Mansor SB, Sharifikia M, Pirasteh S. 2009. Landslide susceptibility evaluation and factor effect analysis using probabilistic-frequency ratio model. European Journal of Scientific Research, 33(4): 654-668.
Kersten T, Kobe M, Gabriel G, Timmen L, Schön S, Vogel D. 2017. Geodetic monitoring of subrosion-induced subsidence processes in urban areas. Journal of Applied Geodesy, 11(1): 21-29.
Kim J-W, Lu Z, Degrandpre K. 2016. Ongoing deformation of sinkholes in Wink, Texas, observed by time-series Sentinel-1A SAR interferometry (preliminary results). Remote Sensing, 8(4): 313.
Lin B, Jiang L, Wang H, Sun Q. 2016. Spatiotemporal characterization of land subsidence and uplift (2009–2010) over wuhan in central china revealed by terrasar-X insar analysis. Remote Sensing, 8(4): 350.
Liu C, Ji L, Zhu L, Zhao C. 2018. InSAR-constrained interseismic deformation and potential seismogenic asperities on the Altyn Tagh Fault at 91.5–95 E, Northern Tibetan Plateau. Remote Sensing, 10(6): 943-960.
Massonnet D, Feigl KL. 1998. Radar interferometry and its application to changes in the Earth's surface. Reviews of Geophysics, 36(4): 441-500.
Motagh M, Walter TR, Sharifi MA, Fielding E, Schenk A, Anderssohn J, Zschau J. 2008. Land subsidence in Iran caused by widespread water reservoir overexploitation. Geophysical Research Letters, 35(16): 1-5.
Osmanoğlu B, Sunar F, Wdowinski S, Cabral-Cano E. 2016. Time series analysis of InSAR data: Methods and trends. ISPRS Journal of Photogrammetry and Remote Sensing, 115: 90-102.
Phien-Wej N, Giao P, Nutalaya P. 2006. Land subsidence in bangkok, Thailand. Engineering Geology, 82(4): 187-201.
Poland JF. 1982. The Occurrence and Control of Land Subsidence Due to Ground-Water Withdrawal with Special Reference to the San Joaquin and Santa Clara Valleys, California. Ph.D. California, 240 p.
Qu F, Zhang Q, Lu Z, Zhao C, Yang C, Zhang J. 2014. Land subsidence and ground fissures in Xi'an, China 2005–2012 revealed by multi-band InSAR time-series analysis. Remote Sensing of Environment, 155: 366-376.
Shujun Y, Xue Y, Wu J, Yan X, Yu J. 2016. Progression and mitigation of land subsidence in China. Hydrogeology Journal, 24(3): 685-693.
Tomas R, Herrera G, Lopez-Sanchez J, Vicente F, Cuenca A, Mallorquí J. 2010. Study of the land subsidence in Orihuela City (SE Spain) using PSI data: Distribution, evolution and correlation with conditioning and triggering factors. Engineering Geology, 115(1-2): 105-121.
Wang G, You G, Shi B, Yu J, Tuck M. 2009. Long-term land subsidence and strata compression in Changzhou, China. Engineering Geology, 104(1-2): 109-118.
Yang H-l, Peng J-h. 2015. Monitoring urban subsidence with multi-master radar interferometry based on coherent targets. Journal of the Indian Society of Remote Sensing, 43(3): 529-538.