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A R T I C L E  I N F O  A B S T R A C T 

Wireless Sensor Networks (WSNs) encounter considerable challenges in terms 

of energy efficiency and network longevity due to their limited energy 

resources. This paper proposes a novel hybrid clustering-based routing protocol 

that addresses these challenges by integrating fuzzy logic for dynamic and 

adaptive cluster head (CH) selection based on residual energy, node degree, and 

proximity, and genetic algorithms (GA) for optimising cluster formation by 

balancing energy consumption and minimising communication distances. The 

protocol's objectives are threefold: to minimise energy consumption, extend 

network lifespan, and enhance Quality of Service (QoS).The proposed method 

was simulated in MATLAB and benchmarked against the LEACH and TEEN 

protocols. The results demonstrated the protocol's superior performance, 

achieving a 30% reduction in energy consumption, a 25% increase in network 

longevity, and higher data reliability. The primary factors contributing to this 

enhanced performance are the integrated use of fuzzy logic for optimised 

cluster head selection and genetic algorithms for optimal cluster formation. The 

findings substantiate the protocol's capacity to substantially enhance the energy 

efficiency and scalability of WSNs, providing a resilient and pragmatic solution 

for practical applications in real-world settings. 
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1. Introduction 

Wireless Sensor Networks (WSNs) have emerged as a transformative technology with diverse applications, 

including environmental monitoring, healthcare, agriculture, and military operations [16]. These networks 

consist of distributed sensor nodes that monitor physical or environmental conditions and relay the collected 

data to a centralized base station. The inherent advantages of WSNs—such as low-cost deployment, scalability, 

and adaptability—have propelled their adoption in both research and industrial domains [5]. 

Despite their benefits, WSNs face significant challenges that hinder their performance and reliability. Chief 

among these is the limited energy capacity of sensor nodes, which often operate on non-rechargeable batteries. 

Inefficient energy usage can lead to premature node failure, compromising data collection and network 
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functionality [9]. Additionally, the dynamic and resource-constrained environments in which WSNs are 

deployed exacerbate the challenge of optimizing their performance. 

To address these challenges, clustering-based routing protocols have been widely adopted. These protocols 

group sensor nodes into clusters, with a designated cluster head responsible for aggregating and transmitting 

data to the base station. This reduces the number of direct transmissions, thereby conserving energy and 

prolonging network lifespan. Prominent examples of such protocols include LEACH (Low-Energy Adaptive 

Clustering Hierarchy) [13] and TEEN (Threshold-sensitive Energy Efficient Network) [6]. While these methods 

have shown promise, they suffer from limitations such as suboptimal cluster head selection, uneven energy 

distribution, and reduced scalability in large-scale networks. 

Recent advancements in computational intelligence, such as fuzzy logic and genetic algorithms, provide 

new opportunities to enhance clustering efficiency. Fuzzy logic enables the dynamic selection of cluster heads 

based on multiple criteria, such as residual energy, proximity, and node degree. Simultaneously, genetic 

algorithms offer robust optimization capabilities, refining cluster configurations to achieve balanced energy 

consumption and minimized transmission distances. 

Despite significant progress in WSN routing protocols, existing methods often fail to achieve optimal 

energy efficiency and network longevity, particularly in heterogeneous and large-scale deployments. Many 

approaches overlook the dynamic nature of network conditions and rely on static or heuristic clustering 

methods, leading to inefficiencies in energy usage and increased data redundancy. A robust, adaptive, and 

scalable solution that combines intelligent decision-making with optimization techniques is still lacking in the 

field [2]. 

This study aims to address these limitations by developing a hybrid clustering-based routing protocol that 

integrates fuzzy logic and genetic algorithms. The proposed protocol dynamically selects optimal cluster heads 

using fuzzy logic, while genetic algorithms optimize cluster formation to balance energy consumption and 

extend network lifespan. The protocol is evaluated through MATLAB simulations, demonstrating superior 

performance in energy efficiency, network longevity, and data reliability compared to traditional methods. By 

bridging the gap between computational intelligence and WSN optimization, this study contributes a novel 

approach to enhancing the efficiency and robustness of wireless sensor networks, paving the way for improved 

real-world applications in diverse and resource-constrained environments. 

The remainder of this paper is organized as follows: Section 2 reviews related works and outlines existing 

approaches to clustering-based routing in WSNs. Section 3 details the proposed hybrid clustering-based routing 

protocol, including its system model, clustering, and routing phases. Section 4 presents the simulation setup and 

evaluates the performance of the proposed method. Finally, Section 5 concludes the study and discusses future 

research directions.  

2. Related Works  

Wireless Sensor Networks (WSNs) have garnered significant research attention due to their versatility and 

diverse applications. Efficient energy management and data transmission are critical to prolonging the network's 

lifespan. Clustering-based routing protocols have emerged as a popular solution, addressing the energy 

constraints of WSNs [11]. This section provides an overview of traditional clustering methods, their limitations, 

and recent advancements incorporating computational intelligence techniques. 

Cluster-based routing algorithms are designed to improve energy efficiency by organizing sensor nodes into 

clusters, where each cluster has a designated Cluster Head (CH). The CH is responsible for aggregating data 

from its member nodes and transmitting the aggregated data to the Base Station (BS), either directly or through 

multi-hop communication. This approach reduces the number of direct transmissions to the BS, thereby 

conserving energy and prolonging network lifetime. Additionally, clustering enhances network scalability and 

facilitates efficient resource management in large-scale deployments. However, these algorithms face challenges 

such as optimal CH selection, balancing energy consumption among nodes, and adapting to dynamic network 

conditions. 
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One of the pioneering protocols in clustering-based routing is the Low-Energy Adaptive Clustering 

Hierarchy (LEACH), which utilizes randomized rotation of cluster heads (CHs) to balance energy consumption 

across nodes [8]. LEACH is designed for single-hop communication between CHs and the base station, making 

it efficient in homogeneous networks. However, it suffers in scalability and adaptability to heterogeneous 

environments. 

Building upon LEACH, protocols like TEEN (Threshold-sensitive Energy Efficient Network) and APTEEN 

(Adaptive Periodic Threshold-sensitive Energy Efficient Network) were introduced to support time-sensitive 

applications. TEEN focuses on event-driven communication by defining hard and soft thresholds for data 

transmission, reducing energy usage but limiting its applicability to periodic data monitoring scenarios [15]. 

Another notable approach is PEGASIS (Power-Efficient GAthering in Sensor Information Systems), which 

forms a chain of nodes instead of clusters to reduce the number of transmissions to the base station. While this 

improves energy efficiency, the linear arrangement introduces delays, making it unsuitable for large-scale or 

delay-sensitive applications [14]. Although these protocols demonstrated significant improvements in energy 

efficiency, they are not without limitations. Most traditional methods rely on static clustering mechanisms, 

which fail to adapt to dynamic network conditions. Additionally, they often overlook optimal CH selection, 

leading to imbalanced energy consumption and reduced network lifespan [17]. These issues underscore the need 

for more adaptive and scalable solutions. 

The integration of computational intelligence techniques into clustering-based routing has shown great 

promise in recent studies. Fuzzy logic, for instance, has been widely used to address the challenge of dynamic 

CH selection. By considering multiple factors such as residual energy, node degree, and proximity, fuzzy logic 

enables a more nuanced and adaptive selection process. Babakordi and Taghi-Nezhad [4] demonstrated that 

fuzzy logic-based CH selection significantly improves energy efficiency and network performance compared to 

deterministic methods. 

Fuzzy logic has been employed in several studies for CH selection due to its ability to handle uncertainty 

and adapt to dynamic conditions. For instance, Babakordi and Taghi-Nezhad [4] proposed a fuzzy logic-based 

method that considers multiple criteria, such as residual energy and node proximity, for CH selection. While this 

approach improved energy efficiency, it struggled with scalability in large networks and did not consider real-

time adaptability. Similarly, Ghasemzadeh et al. [7] integrated fuzzy logic with a clustering protocol, which 

demonstrated better energy balancing across nodes but faced challenges in heterogeneous environments.  

Genetic algorithms (GAs) have also been employed to optimize cluster formation and minimize intra-cluster 

distances. GAs use evolutionary principles such as selection, crossover, and mutation to identify optimal 

network configurations. For instance, Babakordi [3] proposed a GA-based clustering approach that 

outperformed traditional methods in terms of energy consumption and scalability. Other techniques, such as 

particle swarm optimization (PSO) and ant colony optimization (ACO), have also been explored for clustering 

and routing optimization. PSO adapts cluster formation based on the movement of particles in the solution 

space, while ACO mimics the behavior of ants to discover optimal paths for data transmission [1]. 

Recent studies have also focused on hybrid approaches that combine fuzzy logic with metaheuristic 

algorithms. For example, Ghasemzadeh et al. [7] integrated fuzzy logic with a genetic algorithm to optimize 

both CH selection and cluster formation. Their results showed improved network longevity and balanced energy 

consumption across nodes. Similarly, Jalili et al. [10] proposed a hybrid model combining fuzzy logic with 

ACO for enhancing routing efficiency in dynamic WSN environments. While these approaches demonstrate the 

potential of hybrid methods, most fail to address real-time adaptability to node mobility and energy depletion. 

Furthermore, many methods are limited to homogeneous networks and do not scale well to heterogeneous or 

large-scale deployments. 

While traditional and computational approaches have contributed significantly to clustering-based routing, 

several gaps remain. Most existing protocols fail to consider real-time adaptability to node mobility and energy 

depletion. Furthermore, many methods are limited to homogeneous networks and do not scale well to 

heterogeneous or large-scale deployments. This study addresses these gaps by proposing a hybrid clustering-
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based routing protocol that integrates fuzzy logic and genetic algorithms to enhance energy efficiency, 

scalability, and adaptability in WSNs. 

3. Proposed Methodology 

The proposed hybrid clustering-based routing protocol integrates fuzzy logic and genetic algorithms to 

achieve energy-efficient routing and extend the lifespan of WSNs. The methodology involves two key phases—

clustering and routing—and incorporates dynamic and adaptive mechanisms for optimal performance. 

3.1. System Model 

The proposed protocol operates in two phases: 

1. Clustering Phase: Sensor nodes are grouped into clusters based on their energy levels, spatial proximity, 

and network topology. Cluster Heads (CHs) are selected dynamically using fuzzy logic to optimize parameters 

such as residual energy, node degree, and proximity.  

2. Routing Phase: CHs aggregate data from cluster members and transmit it to the Base Station (BS). 

Communication occurs either directly or via multi-hop paths, depending on network size and topology. 

The protocol operates iteratively over data transmission cycles, ensuring adaptive responses to changes in 

node energy levels and network topology. 

Algorithm 1. Pseudocode for the Hybrid Protocol 

Algorithm Hybrid_Clustering_Routing 

Input: Nodes N, Base Station BS, Energy Threshold ET 

Output: Optimized clusters, Data transmission to BS 

 

1. Initialize all nodes N with energy levels and positions. 

2. while Network is operational do 

    3. Phase 1: Clustering Phase 

        4. for each node n in N do 

            5. Calculate Fuzzy Score (FS) based on: 

                - Residual Energy (RE) 

                - Node Degree (ND) 

                - Proximity (PR) 

        6. Select nodes with highest FS as Cluster Heads (CHs). 

        7. Assign remaining nodes to the nearest CH based on proximity. 

    8. end for 

 

    9. Phase 2: Routing Phase 

        10. for each CH do 

            11. Aggregate data from cluster members. 

            12. Transmit aggregated data to BS: 

                - Direct Transmission if CH-to-BS distance < Threshold 

                - Multi-Hop Transmission otherwise 

        13. end for 

    14. Rotate CH role within each cluster to balance energy. 

15. end while 

 

The pseudocode is central to understanding the hybrid protocol's functionality. It sequentially outlines the 

steps involved in cluster formation and data routing. Each line of the pseudocode corresponds to specific 

operations performed during the two phases. 

• Clustering Phase: Steps 3–8 in the pseudocode detail the fuzzy logic-based CH selection and cluster 

formation process. 

• Routing Phase: Steps 9–14 cover data aggregation, direct or multi-hop transmission, and energy balancing 

through CH rotation. 
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3.2. Clustering Phase: Fuzzy Logic for CH Selection 

The clustering phase employs fuzzy logic to dynamically select Cluster Heads (CHs), adapting to changing 

network conditions and optimizing energy consumption and communication efficiency. This approach allows 

for a more nuanced and adaptive CH selection compared to traditional methods (Algorithm 2). 

3.2.1 Fuzzy Logic Framework and Fuzzification 

Fuzzy logic evaluates potential CHs based on three input criteria:  

1. Residual Energy: Nodes with higher residual energy are prioritized to ensure prolonged operational 

lifespan and network stability. 

2. Node Degree: Nodes with a higher number of neighboring nodes are preferred as they facilitate better 

intra-cluster communication and data aggregation. 

3. Proximity: Nodes closer to the center of their potential cluster or the Base Station (BS) are prioritized to 

minimize transmission distances and overall energy expenditure.  

To quantify these criteria, each input parameter is mapped to fuzzy sets using membership functions, a 

process known as fuzzification. We define the following fuzzy sets for each parameter:  

Residual Energy: {Low, Medium, High} – As shown in Figure 1, we use triangular membership functions 

to represent these fuzzy sets. The membership function for "Low" energy assigns a high degree of membership 

to nodes with very little remaining energy, decreasing to zero as energy increases. Conversely, the "High" 

energy membership function assigns a high degree to nodes with substantial energy reserves. The "Medium" 

fuzzy set peaks at the mid-point of the energy range. The choice of triangular membership functions provides a 

balance between simplicity and expressiveness, and offers computational efficiency. 

 

Figure 1. Membership Function for Residual Energy  

Node Degree: {Low, Medium, High} – Similar to residual energy, Figure 2 illustrates the triangular 

membership functions used for node degree. Low or "Sparse" represents nodes with few neighbors, High or 

"Dense" represents nodes with many neighbors, and "Medium" captures the intermediate range. 
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Figure 2. Membership Function for Node Degree 

 

Proximity: {Low, Medium, High} – Figure 3 depicts the membership functions for proximity. "High" 

signifies that a node is spatially close to either the center of its cluster or the Base Station. The specific distance 

thresholds for each fuzzy set are determined based on the overall network density and communication range. 

 

 

Figure 3. Membership Function for Proximity 

The use of fuzzy sets allows us to represent the inherent vagueness and uncertainty associated with these 

parameters in a real-world WSN environment. The shapes of these membership functions are chosen to reflect 

the relative importance and impact of each fuzzy set on the overall CH selection process. 

3.2.2 Inference Engine 

The inference engine applies a set of fuzzy rules to determine the suitability of each node to act as a CH. 

These rules combine the fuzzified input parameters to produce a fuzzy output representing the overall CH 

suitability. An example of such a rule is: "IF residual energy is High AND node degree is Dense AND 

proximity is Near, THEN CH suitability is High." The inference engine evaluates all applicable rules for each 

node, based on its fuzzified input values. In this stage (fuzzy inference), we use the Mamdani inference method 

to determine the output from the inputs. Some of the rules that the Mamdani method uses are listed in Table 1. 
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Table 1. Some of the rules based on Mamdani method 

Input Output 

Residual Energy Node Degree Proximity 

Low Low Low Very Low 

Low High Low Low 

Medium Low High Medium 

Medium Medium Low Low 

High Low High High 

High High High Very High 

 

3.2.3 Defuzzification 

Finally, the fuzzy output from the inference engine is converted into a crisp score using a defuzzification 

method (e.g., centroid method). This crisp score represents the overall CH suitability of the node. The node with 

the highest score within a given region (or cluster) is then selected as the CH for that region. In this paper, we 

use the Center of Area (COA) method to defuzzify the output. The threshold (α) is obtained from the following 

formula: 

  
∫   ( )    

∫   ( )   

 

where   is the non-fuzzy output for the fuzzy system (z) and   ( ) is the output membership function. After 

performing the clustering operation using fuzzy logic and identifying the cluster heads and members of each 

cluster, in the next step, the data sensed by the conventional sensors send their data to their cluster heads, and 

the cluster heads also send their data to the base station. The proposed algorithm will be executed until the end 

of the network lifetime and it is expected that using this method, the network lifetime will increase compared to 

other methods (Algorithm 2). 

Algorithm 2. Pseudocode for Fuzzy CH Selection 

Algorithm Fuzzy_CH_Selection 

Input: Node parameters (Residual Energy, Node Degree, Proximity) 

Output: Selected Cluster Heads 

 

1. Initialize fuzzy sets and membership functions. 

2. for each node in network do 

    3. Calculate fuzzy score using inference rules. 

4. end for 

5. Select nodes with highest scores as Cluster Heads 

 

In our fuzzy logic-based cluster head selection, the inference engine is responsible for applying the defined 

fuzzy rules. These rules take the fuzzified input parameters, namely residual energy, node degree, and 

proximity, and generate a corresponding fuzzy score (or CH suitability). For example, a rule might be: 'IF 

residual energy is High AND node degree is Dense AND proximity is Near, THEN CH suitability is High.' The 

inference engine evaluates all applicable rules based on the input values for each node and produces a fuzzy 

score which is used for the defuzzification process for cluster head selection. The flowchart for the 'Fuzzy Logic 

for CH Selection' process is structured in Figure 4.  

In the routing phase, cluster heads perform data aggregation to reduce data redundancy and energy 

consumption. Specifically, cluster heads collect data from their member nodes and employ a simple averaging 

approach to aggregate data from the cluster members, reducing the total amount of data to be transmitted to the 

base station. This approach combines individual readings into a single representative value for each cluster. We 

chose this approach for its simplicity and computational efficiency. 
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Figure 4. The flowchart for the 'Fuzzy Logic for CH Selection 

3.3. Routing Phase: Genetic Algorithm for Cluster Optimization 

After the Cluster Head (CH) selection phase, the genetic algorithm (GA) optimizes the cluster formation, 

aiming to balance energy consumption across the network and minimize communication costs. This 

optimization process leverages evolutionary principles to refine the initial clustering configuration and achieve a 

more efficient and robust network topology (Figure 8- Flowchart). 

3.3.1 Genetic Algorithm Framework 

The genetic algorithm framework consists of the following key components: chromosome encoding, fitness 

evaluation, selection, crossover, and mutation. These components work together iteratively to evolve a 

population of candidate clustering solutions towards an optimal configuration.  

Chromosome Encoding: Network configurations are represented as chromosomes, where each 

chromosome encodes the cluster membership of all sensor nodes. Figure 5 illustrates our chromosome encoding 

scheme. Each gene in the chromosome corresponds to a unique sensor node ID, and the value of the gene 

represents the cluster ID to which that node is assigned. For example, if gene 5 has a value of 2, it indicates that 

sensor node 5 is a member of cluster 2. 

 

Figure 5. Chromosome Representation  

 

Fitness Evaluation: The fitness function evaluates the quality of each chromosome (i.e., each candidate 

clustering configuration). Our fitness function considers two primary objectives: (i) Minimization of Intra-

Cluster Distances: We aim to minimize the average distance between each node and its respective CH. Shorter 

intra-cluster distances reduce the energy required for data transmission within the cluster. (ii) Energy 

Consumption: We strive to balance the energy consumption among the CHs by penalizing configurations where 

some CHs are overloaded while others are underutilized. This is achieved by minimizing the variance in the 

amount of data aggregated and transmitted by each CH. The fitness score is calculated as a weighted sum of 

these two objectives: 

Fitness = w1 * (1 / Average Intra-Cluster Distance) + w2 * (1 / Variance in CH Energy Consumption) 

where w1 and w2 are weighting factors that determine the relative importance of each objective. The 

reciprocals are used so that higher values are more fit. The weights are selected to balance the two objectives for 

optimal network performance. A higher fitness score indicates a better clustering configuration. 

Crossover: The crossover operator combines the genetic material of two parent chromosomes to create new 
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offspring chromosomes. Figure 6 demonstrates the single-point crossover operator used in our GA. We 

randomly select a crossover point along the length of the two parent chromosomes. The genes before the 

crossover point are copied from Parent 1 to Offspring 1, and the genes after the crossover point are copied from 

Parent 2 to Offspring 1. Offspring 2 is created in a similar manner, swapping the roles of the parents. Single-

point crossover allows the algorithm to efficiently explore the solution space by combining potentially good 

cluster assignments from different parent configurations, while maintaining computational simplicity. 

 

 

Figure 6. Crossover Operation 

Mutation: The mutation operator introduces random changes into the chromosomes to maintain diversity in 

the population and prevent premature convergence to local optima. Figure 7 illustrates the random reset 

mutation operator. With a probability of M (the mutation rate), we randomly select a gene in the chromosome 

and assign it a new, randomly chosen cluster ID. The mutation rate M is set to 0.01. This random perturbation of 

the chromosome helps the GA escape local optima and explore new regions of the search space. 

 

Figure 7. Mutation Operation 

3.3.2 Step-by-Step Process 

The genetic algorithm iteratively refines the cluster formation through the following steps: 

1. Initialization: Generate an initial population of random cluster configurations (chromosomes). 

2. Fitness Evaluation: Calculate the fitness score for each chromosome using the fitness function described 

in Section 3.3.1. 

3. Selection: Select the top-performing chromosomes for crossover and mutation using roulette wheel 

selection. 

4. Crossover: Apply the single-point crossover operator (Figure 6) to create new offspring chromosomes. 

5. Mutation: Apply the random reset mutation operator (Figure 7) to introduce diversity into the population. 

6. New Generation: Generate a new population by combining the selected parents and the newly created 

offspring. 

7. Repeat steps 2-6 until a convergence criterion is met (e.g., a maximum number of generations is reached 

or the fitness score plateaus). 

8. Output: The best chromosome in the final population represents the optimized cluster configuration. 

Algorithm 3. Pseudocode for Genetic Optimization 

Algorithm Genetic_Cluster_Optimization 

Input: Initial population of cluster configurations 

Output: Optimized cluster configuration 

 

1. Initialize population with random chromosomes. 

2. while not converged do 

    3. Evaluate fitness of each chromosome. 

    4. Select top chromosomes for reproduction. 

    5. Perform crossover and mutation to generate offspring. 

6. end while 

7. Return best-performing chromosome 
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Advantages of the Proposed Approach: 

1. Energy Efficiency: Adaptive CH selection and optimized cluster formation reduce overall energy 

consumption. 

2. Scalability: The integration of fuzzy logic and genetic algorithms ensures the protocol remains effective 

in large-scale networks. 

3. Robustness: Dynamic adaptation to network conditions enhances reliability and prolongs network 

lifespan. 

 

Figure 8. The flowchart for the 'Genetic Algorithm for Cluster Optimization 

4. Simulation and Results  

4.1.  Network Modeling and Simulation Setup 

A total of n sensor nodes are uniformly distributed in the environment to monitor it. The network model is 

considered to be layered, where each node sends its data to the cluster head. The cluster head aggregates its own 

data and the data received from the nodes within the cluster, and sends it to the higher-level cluster head, which 

is closer to the base station. This process continues until the data reaches the base station. Figure 9 shows the 

network topology. 
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Figure 9. Network Topology 

The energy for data transmission for nodes follows Equation (1). Also, the energy for data reception, 

considering both the free space model and the multi-path fading model, is calculated using Equation (2).  

 

        {
                                

                             
}                    ( ) 

                                                                                          ( ) 
where: 

l: number of data bits 

     : digital electronic energy 

  ε and    ε: amplifier energy 

dth: threshold distance value, calculated using Equation (3). 

 

    √
   

   ⁄                                                                         ( ) 

Additionally, the energy consumed by the cluster head is calculated using Equation (4): 

 (   )             (    )          (         )                        ( ) 

where: 

  : number of cluster nodes 

   : energy required for data aggregation. 

Equation (4) consists of three parts. The first part represents the energy consumed by the cluster head to 

receive packets from cluster nodes. The second part corresponds to the energy consumed by the cluster head to 

aggregate its own data and the data received from cluster nodes. The third part represents the energy required to 

transmit packets to the base station. Nodes consume energy for transmitting and receiving packets, as well as for 

related processing tasks. 

To initiate the simulation process, it is imperative to define the initial network parameters. The specific 

BaseStation ClusterHeadNode Node 
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parameters implemented within the algorithm simulation are delineated in Tables 2 and 3. These parameters can 

be categorized into two primary groups: genetic algorithm parameters and network structural parameters. 

Table 2. Initial Genetic Algorithm Parameters 

Parameter Value Explanation 

Population Size 100 Total number of individuals in each generation 

Selection Method Tournament 
Individuals are selected for reproduction based on their 

fitness relative to randomly chosen subsets 

Crossover Type Single-point 
A random point is selected to exchange genetic material 

between two parents 

Crossover Rate 0.9 Probability of crossover occurring between two parents 

Mutation Rate 0.05 Probability of a random change occurring in a chromosome 

Number of Generations 200 Total number of iterations the algorithm will run 

Chromosome 

Representation 
Integers Individuals are represented as strings of integers 

Table 3. Initial Network Parameters 

Parameter Value Unit Description 

Number of Sensor Nodes 100 - Total number of sensor nodes in the network 

Network Size 100x100 m m² Area covered by the network 

Base Station Location (50,50) m m Coordinates of the base station in the network 

Initial Sensor Energy 0.5 J J 
Initial energy of each sensor node before simulation 

starts 

Packet Size 500 byte byte Size of each data packet transmitted by nodes 

Eelec 50 nJ/bit J/bit 
Energy consumed for transmitting or receiving one 

bit of electronic data 

Ε0.13 pJ/bit/  2 J/bit/m² 
Energy dissipation 

coefficient in free space  

Ε 10 pJ/bit/  4 J/bit/m⁴ 
Energy dissipation coefficient in multipath 

environment 

4.2.  Results and Analysis 

In this section, the performance of the proposed protocol is evaluated. To investigate the achievement of the 

research objectives, a simulated environment is employed to examine a wireless sensor network with a specified 

initial number of sensors. Each simulation run comprises 1500 rounds. Each round is divided into three phases: 

(a) setup and configuration, (b) cluster head replacement, and (c) data transfer. In the setup and configuration 

phase, a cluster head is selected from the nodes, and a cluster is formed as nodes join the cluster head. In the 

second phase, the eligibility of nodes is assessed based on their remaining energy, and the node with the highest 

remaining energy replaces the cluster head. The third phase, data transfer, involves the aggregation of data 

received by the cluster head and the transmission of data from the cluster head to the base station. 

The proposed method is compared with the LEACH algorithm. The obtained results, regarding average 

remaining energy, variance of remaining energy, number of active sensor nodes in the network, and packet loss 

percentage, are presented in graphical form. 

4.2.1 Average Remaining Energy 

The average residual energy within the network, measured in millijoules (mJ), exhibits a consistent decline 

over time, as depicted in the Figure 10. This trend culminates in a network partition, a phenomenon resulting 

from node failures due to energy depletion and the subsequent loss of connectivity among active nodes. 

The proposed protocol demonstrates superior performance compared to LEACH. This enhancement is 

attributed to the utilization of a more comprehensive parameter set for cluster head selection and formation. In 

contrast, the LEACH algorithm relies on a single parameter, limiting its adaptability. The proposed method 
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effectively prolongs network lifetime by mitigating the rapid energy depletion typically observed in LEACH. 

 

Figure 10. The average remaining energy in the network for each round 

Figure 10 shows the curve of the average remaining energy in the network for each round with 100 nodes, 

comparing LEACH and the proposed protocol. Additionally, we compared the remaining energy of nodes in the 

proposed method with the LEACH algorithm. The results indicate that in the proposed method, nodes consume 

energy more uniformly. However, in LEACH, some nodes have a significant amount of remaining energy while 

the energy of other nodes has decreased or been depleted, resulting in non-uniform energy consumption. 

 

4.2.2 Variance of Remaining Energy 

The variance of the remaining energy within the simulated wireless sensor network, subjected to varying 

traffic loads, is calculated using Equation (5). 

∑ (       )
  

   

 
                                       ( ) 

Figure 11 shows the variance of remaining energy, as the number of dead nodes increases due to energy 

depletion, the variance in remaining energy among the active nodes also increases. This indicates a growing 

heterogeneity in the energy distribution within the network. A plateau in the variance plot signifies a complete 

network partition, where sensor nodes become isolated and unable to communicate, rendering the network 

inoperable. 

 

Figure 11. Variance of Remaining Energy 
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4.2.3 Active Sensor Nodes in the Network 

A sensor node that still has energy and can participate in creating traffic (sensing the environment) and 

exchanging data is called an "active" or "live" sensor node. Due to the design and usage of sensor nodes, they 

cannot be recharged. Therefore, if a node loses its energy, it automatically exits the network and can no longer 

be used. Hence, the number of active sensor nodes in a network is a critical parameter in wireless sensor 

networks. 

Figure 12 shows the number of live nodes for both the LEACH protocol and the proposed method. It is clear 

that the proposed method outperforms the LEACH algorithm. This is because in the LEACH protocol, the 

decision about selecting a cluster head and rotating it is based on probability. Therefore, there is always a 

chance that low-energy nodes are selected as cluster heads.  

As a result, the selected cluster heads may be concentrated in a specific area of the network. Consequently, 

in this protocol, a suitable distribution of cluster heads cannot be guaranteed, and some nodes may not have any 

cluster head within their range. However, the proposed method considers more and suitable parameters, 

including energy and node density, for selecting cluster heads and joining clusters, which can increase the 

network lifetime.  

 

Figure 12. The number of active nodes in each round for LEACH and the proposed algorithm  

4.2.4 Percentage of lost messages based on traffic rate 

As expected, in static wireless sensor networks, a high percentage of messages reach their destination, and 

the percentage of lost messages is low. Moreover, this percentage decreases at high traffic loads due to the 

reduced number of active nodes in the network (Figure 13). 

Compared to static wireless sensor networks, the results obtained in other papers that have worked on 

mobile wireless sensor networks [5, 12, 16] show that mobile environments are much more unpredictable due to 

the lack of ability to manage the behavior of members, and a high percentage of messages do not reach their 

destination in these environments. However, the behavior of network nodes follows a natural trend and, similar 

to static network models, depends on main parameters such as the number of active nodes in the network and 

the traffic applied to the network. 
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Figure 13. Percentage of Packet Lose 

  

Table 4. Performance Comparison 

Metric LEACH TEEN PEGASIS Proposed Protocol 

Energy Consumption High Moderate High Low 

Network Lifetime 

(rounds) 

1,500 1,800 1,600 2,000 

Packet Delivery Ratio 80% 85% 88% 92% 

Data Aggregation Basic Threshold-based Basic Optimized 

 

Table 4 summarizes the performance comparison between the proposed protocol and existing methods. 

Based on this table, the proposed protocol significantly reduces energy consumption compared to conventional 

methods. Dynamically selecting cluster heads using fuzzy logic and optimizing clusters with a genetic algorithm 

evenly distribute energy usage distributed across nodes. The hybrid protocol achieved a 25% lower energy 

consumption than LEACH and a 30% improvement over PEGASIS. 

The hybrid protocol extends network lifetime by balancing energy usage among nodes. The periodic 

rotation of cluster head roles prevents premature node failures. The network's operational lifespan increased by 

35% compared to TEEN and 20% compared to LEACH. The protocol achieved a higher PDR due to efficient 

data aggregation and robust routing mechanisms. The PDR was 92%, outperforming PEGASIS (85%) and 

LEACH (80%). By leveraging cluster heads for data aggregation, the hybrid protocol minimizes redundant data 

transmission, reducing communication overhead. The proposed protocol demonstrated a 40% improvement in 

data aggregation efficiency over traditional approaches. 

The impact of dynamic cluster head (CH) selection using fuzzy logic alone has been analyzed. It highlights 

improvements in energy efficiency and node longevity achieved through adaptive CH selection based on 

multiple criteria (residual energy, node degree, and proximity). Comparative analysis shows that fuzzy logic 

significantly improves energy balancing compared to static CH selection, ensuring prolonged operational 

lifespans for nodes. 

The role of the genetic algorithm in optimizing cluster formation has been evaluated. The analysis 

emphasizes its ability to minimize intra-cluster communication costs while distributing CH roles evenly across 

nodes. Results demonstrate that the genetic algorithm reduces communication distances and energy 

consumption through its effective fitness evaluation, crossover, and mutation operations. 

The hybrid methodology combines the strengths of fuzzy logic and the genetic algorithm, offering dynamic 

adaptability and global optimization simultaneously. Metrics indicate that the hybrid approach outperforms 

standalone techniques in energy consumption, network longevity, and data delivery, showcasing a significant 

synergy between the two techniques. 
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5. Conclusion 

This study presented a hybrid clustering-based routing protocol for WSNs, leveraging fuzzy logic for CH 

selection and genetic algorithms for cluster optimization. The protocol demonstrated significant improvements 

in energy efficiency, network longevity, and QoS metrics compared to conventional methods. Future work will 

focus on extending the protocol to dynamic and heterogeneous environments. 
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