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A R T I C L E  I N F O  A B S T R A C T 

The calculated efficiencies of Decision Making Units (DMUs) in Data 

Envelopment Analysis (DEA) are relative, prompting each DMU to strive for 

performance improvement to avoid falling behind in efficiency compared to 

other DMUs. Generally, DMU performance can be assessed from two 

perspectives: optimistic and pessimistic. A segment of DEA involves exploring 

the sensitivity of the set of efficient DMUs to variations in input and output 

values. In real-world scenarios, DEA encounters challenges when dealing with 

fuzzy and interval inputs and/or outputs. This paper focuses on a crucial aspect 

of sensitivity analysis and introduces an algorithm utilizing classic fuzzy DEA 

models. This algorithm is designed to determine the relative efficiency security 

margin of DMUs with fuzzy and interval inputs and outputs, along with their 

simultaneous perturbation. Beyond the optimistic frontier, we also consider the 

pessimistic frontier for the observed DMUs, terming it the inefficiency 

improvement margin. This information enables company managers to pinpoint 

their closest threats and enhance performance to maintain their position in 

rankings. Numerical examples are provided for illustration purposes. 
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1. Introduction 

Data envelopment analysis (DEA) is a nonparametric method in operations research for the estimation of 

production frontiers, was first put forward by Charnes, Cooper and Rhodes [7]. Also it is a linear programming 

based technique for measuring the relative performance of organizational units where the presence of multiple 

inputs and outputs makes comparison difficult. 
Data envelopment analysis originated as a nonparametric approach in operations research, pioneered by 

Charnes, Cooper, and Rhodes [7], aimed at estimating production frontiers. Additionally, it serves as a linear 

programming-based technique for evaluating the relative performance of organizational units, particularly when 

multiple inputs and outputs complicate comparisons. 

https://en.wikipedia.org/wiki/Non-parametric_statistics
https://en.wikipedia.org/wiki/Operations_research
https://en.wikipedia.org/wiki/Production-possibility_frontier
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DEA proves beneficial for assessing the performance of units with numerous inputs and outputs, with the 

objective of identifying efficient and inefficient Decision Making Units (DMUs). Standard DEA models operate 

under the assumption of complete data precision, which may not always hold true. In real-world scenarios, some 

inputs and outputs may exist in the form of interval or random data. Introducing imprecise data to the standard 

linear CCR model transforms the DEA model into a nonlinear one, known as imprecise DEA. 

Imprecise data introduces uncertainties, highlighting that observed values cannot be considered as 

definitively unique. Fuzzy set theory emerges as a valuable tool for describing situations involving imprecise or 

vague data. Fuzzy sets navigate such uncertainties by assigning a degree to which a certain object belongs to a 

set. 

In addition to uncertainties, interval data, is defined as a data type measured along a scale, where each point 

is equidistant from one another. This type of data is represented by numerical values, ensuring standardized and 

equal distances between points. An illustrative example of interval data is temperature, where the difference 

between 80 degrees Fahrenheit and 70 degrees Fahrenheit adheres to a standardized and equal scale. 
In recent years, DEA researchers have explored the sensitivity of efficiency and inefficiency to data 

perturbations [5–6-11]. Traditional data envelopment analysis models assume exact values on a ratio scale and 

don't handle imprecise data. In real-world situations, especially with unknown decision variables like interval, 

ordinal, or ratio-bounded data, the DEA model is termed imprecise DEA (IDEA) [11]. 

Imprecise data refers to information known within specified bounds or satisfying certain ordinal relations. 

This paper introduces a sensitivity analysis algorithm for determining the efficiency security margin of decision-

making units with interval and fuzzy data, covering two efficiency and inefficiency frontiers. The algorithm is 

extended to rank sets of interval and fuzzy data. 

Efficiency, a relative measure, varies across different ranges in DEA. Traditional DEA evaluates best 

relative efficiencies within the range of less than or equal to one, establishing an efficiency frontier. Conversely, 

worst relative efficiencies within the range of greater than or equal to one indicate the poorest performances, 

establishing an inefficiency frontier. The original DEA model optimistically evaluates each DMU with desirable 

weights, resulting in optimistic efficiencies, while the pessimistic view yields pessimistic efficiencies using 

undesirable weights. 

Cooper et al. [10] addressed imprecise data in DEA, emphasizing the need for upper and lower bounds 

when efficiency scores are not constant. Jahanshahloo et al. [17] proposed the interval DEA model, obtaining 

efficiency intervals from optimistic and pessimistic viewpoints. To enhance the lower bound, different ideal 

points are defined, leading to a ranked model extended to interval data. Azizy [3] suggests considering both 

optimistic and pessimistic efficiencies simultaneously, integrating them into an interval for a comprehensive 

view. Jahanshahloo et al. [16] find the stability radius for decision-making units with interval data, and 

Haghighat and Khorram [12] focus on identifying efficient units under different data settings. Yannis et al. [38] 

introduce an interval DEA approach for units with missing values, providing upper and lower bounds for 

efficiency scores. The efficiency analysis is extended by estimating new values for initial interval bounds, 

potentially improving a unit's efficiency. Jahed et al. [18] addressed conflicting outcomes from optimistic and 

pessimistic views in DEA evaluations, proposing a new measure for overall performance to reconcile biases. 

They also introduced fuzzy DEA models for pessimistic evaluations in a fuzzy context. Wang and Yang [36] 

developed a bounded DEA model, measuring DMU efficiencies within an interval by introducing an anti-ideal 

DMU with a known lower bound. This model incorporates preference information on input and output weights. 

Esmaeili [11] introduced an approach using the Enhanced Russell Measure (ERM) to handle interval data in 

DEA. Azizy and Wang [5] identified limitations in bounded DEA models and proposed improvements, 

particularly addressing zero values for outputs. He et al. [14] aimed to enhance interval efficiencies for 

inefficient DMUs by using ideal points to determine potential improvements. Specific programs were 

established to adjust inputs and outputs to approach target values, ensuring the final adjusted data remain in 

interval format. Azizy and Jahed [4] proposed improved interval DEA models allowing DEA analysis using 

concepts of best and worst relative efficiencies. 

Wang et al. [37] propose two fuzzy DEA models using fuzzy arithmetic to handle input and output data 

fuzziness. The models, formulated as linear programming, determine fuzzy efficiencies for decision-making 

units (DMUs). An analytical fuzzy ranking approach is developed to compare and rank DMUs based on fuzzy 

efficiencies. Chen et al. [8] discuss Fuzzy-DEA, emphasizing its necessity when dealing with fuzzy input or 
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output variables. Their research focuses on applying the Fuzzy Slack-Based Measurement (Fuzzy SBM) model 

under risk uncertainty. Fuzzy SBM provides efficiency scores within a confidence range, aligning with risk 

anticipation, and evaluates Taiwan banking management achievement under market risk. Mugera [28] integrates 

fuzzy set theory into DEA to compute technical efficiency scores with imprecise input and output data. The 

approach measures efficiency within specified intervals, presenting fuzzy efficiency scores as interval bounds, 

offering decision-makers insights at different possibility levels. Barak and Dahooei [6] propose a hybrid method 

using fuzzy DEA and fuzzy multi-attribute decision-making (F-MADM) to rank airline safety. Fuzzy DEA 

calculates criteria weights, and MADM methods (Fuzzy SAW, Fuzzy TOPSIS, Fuzzy VIKOR, ARAS-F, 

COPRAS-F, and Fuzzy MULTIMOORA) are employed to assess and rank airlines based on obtained weights. 

Zhou and Xu [40] conduct a comprehensive investigation into Fuzzy Data Envelopment Analysis (FDEA). 

Their paper covers a literature retrospective analysis, method review of basic and extended FDEAs, and an 

application review in real-life situations. The results offer insights for further research on FDEA theory and 

practical applications. Liu and Lee [21] propose a novel method for calculating fuzzy cross-efficiency that 

considers all possible weights of Decision Making Units (DMUs) simultaneously, eliminating the need for 

weight selection. Utilizing the α-level-based approach, they formulate the fuzzy cross-efficiency evaluation 

using a pair of linear programs, generating lower and upper bounds for the fuzzy efficiency score. Rouyendegh 

et al. [31] aim to enhance the business performance of healthcare firms through a DEA-based fuzzy multi-

criteria decision-making model. The study, designed primarily for hospitals, employs Data Envelopment 

Analysis and fuzzy analytic hierarchy process to quantify data and structure the decision-making model. 

Arya and Yadav [2] propose an IF slack-based measure (IFSBM) model for DMU efficiency and an IF 

super efficiency SBM (IFSESBM) model for efficient DMUs. They also introduce a ranking method for 

intuitionistic fuzzy interval numbers (IFINs) based on α and β-cuts. Han et al. [13] present an efficiency analysis 

method using FDEACM (fuzzy DEA cross-model) with Fuzzy Data. This method, based on fuzzified multi-

criteria ethylene energy consumption data, provides objective benchmarks for effective production situations 

and improvement directions for ethylene plants. Amindoust [1] utilizes DEA to introduce a model for evaluating 

and ranking suppliers from a sustainable perspective. The model integrates fuzzy set theory and DEA, 

incorporating decision makers' preferences and addressing ambiguity and uncertainty in supplier selection. 

Linguistic values in the form of triangular fuzzy numbers are used for criteria and sub-criteria weights, and a 

fuzzy-DEA model is developed using the α-cut approach. Ji et al. [19] develop a novel fuzzy DEA model using 

fuzzy Choquet integral to evaluate DMU efficiencies with interactive fuzzy variables. The proposed model 

assesses fuzzy efficiency and introduces a ranking method for fuzzy efficiency. 

He et al. [15] present an effective approach to continuously improve production quality, addressing the 

puzzle of infant failure root causes. They introduce a novel root cause identification method using an associated 

tree and fuzzy DEA. The associated tree guides the analysis process based on axiomatic domain mapping, and 

fuzzy DEA clusters potential factors from big data regarding product life cycle, ranking the weight of each node 

in the associated tree. Liu et al. [20] investigate a novel group decision-making approach based on DEA cross-

efficiency with intuitionistic fuzzy preference relations, avoiding information distortion. They define an interval 

transform function to convert intuitionistic fuzzy preference relations into interval multiplicative preference 

relations. An interval transform function-based DEA model is developed to obtain the ranking vector of 

consistent intuitionistic fuzzy preference relations. Zadmirzaei et al. [39] propose a novel environmental 

efficiency DEA model, FUNSBM, incorporating predicting artificial intelligence algorithms. This model 

measures environmental efficiency using the directional distance function and weak disposability. Liu et al. [22] 

apply the credibility distribution of fuzzy variables in uncertainty theory to formulate a fuzzy optimization 

model for studying the coordination mechanism of a distribution supply chain system with fuzzy demand. Using 

a modified sequence quadratic programming algorithm, they obtain optimal order quantity, retailer sales 

volume, and the maximum expected return for the distribution supply chain. 

Mohanta and Sharanappa [26] propose an Intuitionistic Fuzzy DEA (IFDEA) model based on triangular 

intuitionistic fuzzy numbers (TIFNs). The weighted possibility mean for TIFN is used to compare and rank 

them, and the IFDEA model is converted into a crisp DEA model to assess relative efficiencies. Cinaroglu [9] 

evaluates Turkish health system efficiency using a multistep fuzzy stochastic procedure, comparing crisp and 

stochastic efficiency estimates. Conventional, bias-corrected, and fuzzy DEA estimates explore province-based 

health systems’ efficiency scores. Mehrasa and Behzadi [24] introduce the random fuzzy DEA (Ra-Fu DEA) 

model, considering fuzzy data with a skew-normal distribution. The model investigates one state of possibility-
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probability in the presence of a skew-normal distribution with a fuzzy mean and threshold level. Majdi et al. 

[23] propose a common-weight method in a fuzzy environment to determine common sets of weights (CWS) for 

the best and worst fuzzy efficiencies of all DMUs, considering optimistic and pessimistic perspectives. 

Pourbabagol et al. [30] use agile supply chain (ASC) theory to introduce (Nec) and possibility (Pos) equality 

constraints in a fuzzy network DEA slack-based model, measuring the efficiency of different agility levels in a 

dairy supply chain. Shiang and Yueh [32] present a method for calculating fuzzy cross-efficiency directly 

without the need for weight selection. Linear programs at specific α-levels generate lower and upper bounds of 

the fuzzy efficiency score. Meng and Shi [25] transform the fuzzy DEA model to the conventional DEA model 

using the center of mass formula. An algorithm based on the golden section method is employed to locate the 

standard that the evaluated DMU best fits. Mu et al. [27] demonstrate how fuzzy DEA evaluates the eco-

efficiency of dairy farming, accounting for uncertainty around environmental and economic indicators. Omrani 

et al. [29] propose an integrated fuzzy clustering cooperative game DEA approach, using fuzzy C-means and 

game theory to evaluate DMUs within each cluster. Song et al. [33] present a fuzzy slacks-based measure model 

incorporating a confidence coefficient, solving input slacks and efficiency evaluation problems in the presence 

of left–right fuzzy numbers for environmental efficiency evaluation. 

The concept of the security margin of efficiency for decision-making units (DMUs) is a novel and 

unexplored topic, particularly in the context of imprecise DEA. Referred to as the performance security margin 

of DMUs, this method addresses the potential threat to the efficiency of efficient units posed by their improving 

but initially inefficient competitors. In essence, each efficient unit must establish a security margin to safeguard 

its position in the competitive landscape. 

The paper is structured as follows: In Section 2, Interval and fuzzy DEA models are introduced to measure 

the optimistic and pessimistic efficiencies of DMUs. Sections 3 and 4 present a sensitivity analysis algorithm 

designed to determine the efficiency interval and fuzzy security margin of DMUs considering both optimistic 

and pessimistic frontiers. Additionally, for a comprehensive ranking of DMUs with imprecise data using the 

proposed sensitivity analysis algorithm, we employ an approach based on the preference degree matrix for 

interval efficiency. The paper concludes in Section 5. 

2. Preliminaries  

In this section, we review DEA models designed to measure both optimistic and pessimistic efficiencies of 

decision-making units, providing illustrative examples for clarity. 

Consider n DMUs for evaluation, each with m inputs              and s outputs            . 

In interval DEA, some exact input and output values are unknown, residing within specified intervals 

[   
     

 ]and [   
     

 ], where    
    and    

   . Addressing this uncertainty, Wang et al. [34] introduced a 

pair of linear programming models (1) and (2) to determine upper and lower bounds on efficiency, focusing on 

optimistic efficiency: 
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In the expressions,      represents the DMU under evaluation, while               and        

       are decision variables.   
  represents optimistic efficiency under the most favorable situation, and   

  

represents optimistic efficiency under the most unfavorable situation for     . These values together define 

the optimistic efficiency interval[  
    

 ]. If there exists a set of positive weights   
            and   

      

       which leads to   
    , then      is considered optimistic efficient. 

Without loss of generality, let's assume that all input and output data,      and    , are uncertain and defined 

by by  ̃       
      

      
   and  ̃       

      
      

   as triangular fuzzy numbers. In this case, it holds true that 

   
  >0 and    

 >0 for i =1,…,m, r =1,…, s and j =1,…,n. 

It is crucial to note that existing fuzzy DEA models either stem directly from the defuzzification of crisp 

DEA models or arise from interval DEA models. The former neglects the fact that a fuzzy fractional 

programming cannot be transformed into an LP model in the traditional manner, unlike a crisp fractional 

programming. On the other hand, the latter requires solving a series of linear programming models based on 

different α-level sets, leading to significant computational efforts in obtaining fuzzy efficiencies of DMUs. To 

address these challenges, our sensitivity analysis algorithm utilizes fuzzy DEA models (3) - (5) proposed by 

Wang et al. [37] from an optimistic viewpoint. Consequently, the efficiency of DMUj is measured as follows: 
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The optimal objective function values of the three LP models (3)-(5) collectively yield the optimistic fuzzy 

efficiency of DMUo, denoted as  ̃ 
     

      
      

   . This result can be interpreted as a triangular fuzzy 

number. If there exists a set of positive weights   
             and   

            that satisfies   
    , 

the DMUo is termed optimistic fuzzy efficient. It can be easily shown that   
    

    
 .  

From a pessimistic viewpoint, efficiencies can be ascertained using the following interval DEA models, 

which gauge the worst performance of DMUo relative to the other DMUs [4]: 
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In models (6) and (7),   
  represents the pessimistic efficiency under the most unfavorable situation, and   

  

is the pessimistic efficiency under the most favorable situation for DMUo. Together, they represent the 

pessimistic efficiency interval [  
    

 ] for DMUo. When there is a set of positive weight   
             and 

  
              to achieve   

    , it is termed pessimistic inefficient DMUo. 

Based on the pessimistic viewpoint, the optimum objective function values of the three LP models (8)-(10) 

form the pessimistic fuzzy efficiency of DMUo, i.e.,  ̃ 
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triangular fuzzy number. When there is a set of positive weights   
             and   
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achieve   
    , it is termed pessimistic fuzzy efficient [18]. 
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It can be easily shown that   
    

    
 . To illustrate the distinction between DMUs on optimistic and 

pessimistic frontiers, we consider an example with one input and two outputs, as presented in Table 1. The 

efficiency and inefficiency frontiers of this example are depicted in Figure 1. As shown in the figure, DMUs can 

be categorized into three groups: optimistic efficient, pessimistic inefficient, and unspecified. In this example, 

four DMUs (DMU A, DMU E, DMU G, and DMU J) are labelled as optimistic efficient. Additionally, three 

DMUs (DMU A, DMU B, and DMU J) are identified as pessimistic inefficient, while five DMUs (DMU C, 

DMU H, DMU D, DMU F, and DMU I) fall into the unspecified category.  
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Table 1. Data for ten unts with one input and two outputs 

DMU Input 1 Output 1 Output 2 

A 1 [0.8, 1.2] [7.5, 8.5] 

B 1 [1.8, 2.2] [2.4, 3.6] 

C 1 [1.7, 2.3] [5.7, 6.3] 

D 1 [2.5, 3.5] [2.7, 3.3] 

E 1 [2.8, 3.2] [6.7, 7.3] 

F 1 [3.8, 4.2] [1.8, 2.2] 

G 1 [3.4, 4.6] [4.6, 5.4] 

H 1 [4.7, 5.3] [1.5, 2.5] 

I 1 [5.6, 6.4] [1.7, 2.3] 

J 1 [6.7, 7.3] [0.8, 1.2] 

 

 

Figure 1. Efficiency and inefficiency frontier for ten DMUs 

The optimistic and pessimistic interval efficiency for ten    s are obtained with the models (1) and (2) are 

shown in Table 2. 

Table 2. Interval optimistic and pessimistic efficiency for ten DMUs 

DMUs        Input        Output1         Output2         Optimistic interval         Pessimistic interval 

                                                                                    efficiency [  
     

  ]         efficiency[  
     

  ] 

A               1            [0.8, 1.2]          [7.5, 8.5]           [0.8824, 1.0000]             [1.0000, 1.2625] 

B               1            [1.8, 2.2]          [2.4, 3.6]             [0.4160, 0.5656]             [1.0000, 1.2798] 

C               1               [1.7, 2.3]          [5.7, 6.3]            [0.7289, 0.8330]             [1.2409, 1.5570] 

D               1              [2.5, 3.5]          [2.7, 3.3]            [0.5248, 0.6965]             [1.1769, 1.4870] 

E               1               [2.8, 3.2]          [6.7, 7.3]            [0.9089, 1.0000]             [1.8117, 1.0397] 

F               1               [3.8, 4.2]          [1.8, 2.2]            [0.6142, 0.6956]            [1.0178, 1.1954] 

G               1               [3.4, 4.6]          [4.6, 5.4]             [0.7914, 1.0000]             [1.8946, 2.3101] 

H               1               [4.7, 5.3]         [1.5, 2.5]             [0.7018, 0.8558]             [1.0157, 1.4160] 

I                1               [5.6, 6.4]          [1.7, 2.3]             [0.8292, 0.9761]             [1.1810, 1.4693] 

J                1               [6.7, 7.3]          [0.8, 1.2]             [0.9178, 1.0000]             [1.0000, 1.1995] 

 

From Table 2, it is evident that four DMUs—DMU A, DMU E, DMU G, and DMU J—based on models (1) 

and (2) are classified as optimistic efficient. Similarly, according to models (6) and (7), three DMUs—DMU A, 

DMU B, and DMU J—are recognized as pessimistic efficient. 

3. Novel Sensitivity Analysis Algorithm for Evaluating Interval and Fuzzy Optimistic and 

Pessimistic Efficiency Security Margin 

In general, the primary focus of sensitivity analysis is the impact of various factors on the efficiency of 

DMUs and the identification of conditions that influence efficiency variations. Original DEA models typically 

assume precise values for inputs and outputs. However, real-world scenarios often involve uncertainties. This 
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section introduces a sensitivity analysis algorithm designed for sets of interval and fuzzy data. Additionally, we 

extend the proposed algorithm to rank DMUs when dealing with interval and fuzzy data. 

Enhancing the performance of DMUs is a constant goal. Consequently, each DMU must consider the 

performance of other competitive units. The efficiency distance between a DMU and its peers establishes a 

security margin for its overall performance. 

Now, the critical questions emerge: What defines the security margin for the DMU under evaluation to 

enhance and sustain its performance? How much can the improvement of other inefficient DMUs impact the 

decrease in performance of efficient DMUs? Answering these questions requires introducing the concepts of 

absolute and relative efficiency security margins. The algorithm presented in this section focuses on determining 

the relative security margin of DMUs. 

To identify the nearest DMU posing a threat to DMU K, subsequent to calculating the relative (interval or 

fuzzy) efficiency security margin of DMU K (for 1≤t≤n, t ≠ k), we need to pinpoint the minimum value 

among them. This minimum value is termed the absolute (interval or fuzzy) efficiency security margin of DMU 

K and is defined as follows: 

ARESM*(k)=min{RESM(k,t); 1≤t≤n  ,t≠k} 

In the first step, the efficiency of all decision-making units is determined using one of the classic DEA 

models. Here, DMU k represents the unit under performance evaluation, seeking to identify the safety margin 

for its performance, while DMU t is referred to as the comparison unit, which can be any of the inefficient units. 

To ascertain the absolute efficiency margin, each inefficient unit is chosen as the benchmark, and through the 

ARESM(k) formula, the nearest unit posing a threat to the efficiency of efficient DMU k is selected. 

Step 1: Utilize one of the DEA models to compute the interval/fuzzy efficiency of all DMUs, including DMU k 

and DMU t. 

Step 2: Record the value of E(k) in E  (k) as the initial interval fuzzy efficiency of DMU k. 

Step 3: Store the values of y(r,t) and x(i,t) for r=1,…,s and i=1,…,m in y  (r,t) and x  (i,t), respectively. This step 

ensures the preservation of the initial input and output values for the measurement unit, with the index t 

representing the compared unit. 

Step 4: Set the values of α and δ as α=δ=0.01. Here, α represents the coefficient of variations for inputs and 

outputs, and δ denotes the percentage of data variations.  

Step 5: Compute the new values of inputs and outputs for r=1,…,s and i=1,…,m using the following formulas: 

=  ̃     .(1+α), r=1,…,s        

x(i,t)=  ̃     .(1-α), i=1,…,m 

In this step, the perturbation values for the inputs and outputs of the compared unit are obtained 

simultaneously, and the new values are recorded. Subsequently, the efficiency score of the compared unit is 

recalculated with these new values. This process is repeated until it jeopardizes the efficiency of the unit under 

evaluation. 

Step 6: Compute the interval/fuzzy efficiency of DMU k and save it in E  (k). 

Step 7: If E(k) is less than E  (k), proceed to Step 9; otherwise, move to the next step. 

Step 8: Set α= α +δ and repeat the fifth step. 

 

 

 
* Absolute Efficiency Security Margin 
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Step 9: Express the efficiency security margin of DMU k relative to DMU t as a percentage: 

RESM(k,t)=100.(α-δ) 

In Step 9, the efficiency security margin of DMU k relative to DMU t is calculated as a percentage, denoted 

as RESM(k,t). The algorithm is then stopped. 

 

3.1. Sensitivity Analysis of the Optimistic Interval Efficiency Security Margin of DMUs 

In this section, we determine the optimistic interval efficiency security margin of decision-making units 

with the proposed algorithm and subsequently rank them. For ranking DMUs, we adopt the approach based on 

the preference degree matrix for interval efficiency introduced by Wang et al. [34]. 

Let's consider DMUs in Table 1 with one input and two outputs. DMU C and DMU E are designated as the 

compared unit and the unit under evaluation, respectively. We then execute the steps of the algorithm. The 

algorithm iterates until the efficient DMU E recedes from the efficient frontier. Results are obtained after 5 

stages, as shown in Table 3. 

From Table 3, we observe that after the fifth iteration of the algorithm, the performance security margin of 

DMU E is jeopardized, and its position is taken over by DMU C. Once DMU E loses its efficiency, the 

algorithm stops. The first stage where the efficiency of DMU E diminishes corresponds to the interval 

performance security margin, which is calculated as a percentage using the following formula: 

RESM (E, C) =100(α-δ) =100(0.06-0.01) =5% 

Moreover, from the last column, we discern that the improved performance of DMU C has an impact on the 

performance of the other DMUs. Subsequently, for the comprehensive ranking of DMUs following the 

execution of the sensitivity analysis algorithm, as outlined in Table 3, we employ the approach based on the 

preference degree matrix for interval efficiency, as presented in Wang et al. [35]. The results are displayed in 

Table 4. 
Table 3. Optimistic relative interval efficiency security margin [  

     
  ] 

       DMUs                  Stage1                      Stage2                       Stage3                        Stage4                       Stage5 

A                   [0.8824, 1.0000]       [0.8824, 1.0000]       [0.8824, 1.0000]       [0.8824, 1.0000]       [0.8818, 0.9975] 

B                   [0.4160, 0.5656]       [0.4160, 0.5656]       [0.4160, 0.5656]       [0.4160, 0.5656]       [0.3978, 0.5341] 

             C                     [0.7436, 0.8498]         [0.7739, 0.8845]         [0.8218, 0.9392]         [0.8792, 1.0000]         [0.9048, 1.0000] 

 D                   [0.5248, 0.6965]       [0.7739, 0.8845]      [0.5248, 0.6965]        [0.5248, 0.6965]       [0.5070, 0.6753] 

E                   [0.9089, 1.0000]       [0.9089, 1.0000]       [0.9089, 1.0000]        [0.9047, 1.0000]      [0.8321, 0.9253] 

 F                    [0.6142, 0.6956]       [0.6142, 0.6956]        [0.6142, 0.6956]       [0.6142, 0.6956]       [0.6050, 0.6838] 

G                   [0.7914, 1.0000]       [0.7914, 1.0000]        [0.7914, 1.0000]       [0.7914, 1.0000]       [0.7562, 0.9639] 

H                   [0.7018, 0.8558]       [0.7018, 0.8558]        [0.7018, 0.8558]       [0.7018, 0.8558]       [0.6961, 0.8431] 

  I                     [0.8292, 0.9761]       [0.8292, 0.9761]        [0.8292, 0.9761]        [0.8292, 0.9761]       [0.8231, 0.9664] 

  J                     [0.9178, 1.0000]       [0.9178, 1.0000]        [0.9178, 1.0000]        [0.9178, 1.0000]        [0.9178, 1.0000] 

 

Table 4. Preference degree matrix for optimistic interval efficiency based on sensitivity analysis algorithm and their ranks 

 

Rank before 

algorithm 

Rank after 

algorithm 

J I H G F E D C B A DMU 

3 4 0.4027 0.6734 1.0000 0.7461 1.0000 0.7918 1.0000 0.4395 1.0000 - A 

10 10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0890 0.0000 - 0.0000 B 

6 2 0.4634 0.7417 1.0000 0.8049 1.0000 0.8912 1.0000 - 1.0000 0.5605 C 

9 9 0.0000 0.0000 0.0000 0.0000 0.0285 0.0000 - 0.0000 0.9110 0.0000 D 

2 5 0.0428 0.4321 0.9542 0.5620 1.0000 - 1.0000 0.1088 1.0000 0.2082 E 

8 8 0.0000 0.0000 0.0000 0.0000 - 0.0000 0.7155 0.0000 1.0000 0.0000 F 

5 6 0.1590 0.4011 0.7550 - 1.0000 0.4380 1.0000 0.1951 1.0000 0.2539 G 

7 7 0.0000 0.0689 - 0.2450 1.0000 0.0458 0.9546 0.0000 1.0000 0.0000 H 

4 3 0.3123 - 0.9311 0.5989 1.0000 0.5679 1.0000 0.2583 1.0000 0.3266 I 

1 1 - 0.7845 1.0000 0.8410 1.0000 0.9572 1.0000 0.5366 1.0000 0.5973 J 
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Following the establishment of the preference degree matrix in Table 4, derived from the algorithm results 

presented in Table 3, it is evident that DMU C enhanced its performance, securing the second rank. Conversely, 

DMU E experienced a decline, now occupying the fifth rank. Based on the information in the last column of 

Table 4, the performance of the ten DMUs is assessed as follows: 

     
           

            
            

            
        

     
                     

            
             

     
           means that the performance      ―is better than‖     by 53.66%. It is clear that the 

best performance is related to    . The detailed results of ranking are presented in Table 4. 

 

3.2. Sensitivity Analysis of the Pessimistic Interval Efficiency Security Margin of DMUs 

Continuing with the analysis, we now determine the interval inefficiency improvement margin of DMUs 

from a pessimistic viewpoint. For this illustration, consider DMU B and DMU D as the compared unit and unit 

under evaluation, respectively. The results of the algorithm's steps are displayed in Table 5. 

Based on the proposed algorithm, we assess the relative interval inefficiency improvement margin of DMU 

B concerning DMU D. Here, DMU B and DMU D represent the unit under evaluation and compared unit, 

respectively. After five stages, the inefficiency score of DMU B changes to [1.0351, 1.3573]. This initial stage 

indicates the improvement of the inefficient DMU B when it is distant from the inefficiency frontier, prompting 

the algorithm to halt. The results of the sensitivity analysis algorithm are detailed in Table 5. The interval 

inefficiency improvement margin of DMU B regarding DMU D is derived as follows: 

RESM (D, B) =100(α-δ) =100(0.05-0.01) =4% 

Table5. Pessimistic interval relative inefficiency improvement margin [  
     

  ] 

DMU Stage 1 Stage 2 Stage 3 Stage 4 Stage 5  

A [1.0000,1.2588] [1.0000,1.2515] [1.0000,1.2410] [1.0000,1.2281] [1.0000,1.2182] 

B [1.0000,1.2819] [1.0000,1.2862] [1.0000,1.2930] [1.0000,1.3027] [1.0351,1.3573] 

C [1.2269,1.5361] [1.1997,1.4956] [1.1609,1.4377] [1.1127,1.3658] [1.0759,1.3110] 

D [1.1551,1.4609] [1.1164,1.4178] [1.0627,1.3596] [1.0000,1.2917] [1.0000,1.2917] 

E [1.7850,2.0087] [1.7331,1.9484] [1.6590,1.8624] [1.5669,1.7554] [1.4967,1.6739] 

F [1.0056,1.1800] [1.0000,1.1689] [1.0000,1.1615] [1.0000,1.1528] [1.0000,1.1528] 

G [1.8573,2.2661] [1.7849,2.1849] [1.6815,2.0707] [1.5530,1.9335] [1.4551,1.8843] 

H [1.0072,1.3991] [1.0033,1.3914] [1.0033,1.3914] [1.0033,1.3914] [1.0033,1.3914] 

I [1.1717,1.4553] [1.1674,1.4490] [1.1674,1.4490] [1.1674,1.4490] [1.1674,1.4490] 

J [1.0000,1.1965] [1.0000,1.1951] [1.0000,1.1951] [1.0000,1.1951] [1.0000,1.1951] 

Additionally, from the last column, it is observed that the improved performance of DMU C has influenced 

the performance of other DMUs, including DMU H, DMU I, and DMU J, causing them to enhance their 

positions and move further from the inefficiency frontier. Subsequently, following the execution of the 

sensitivity analysis algorithm, for the comprehensive ranking of DMUs, we employ the approach grounded in 

the preference degree matrix for interval inefficiency proposed by Wang et al. [35], adopting a pessimistic 

perspective. The outcomes of this ranking process are displayed in Table 6. 
 

Table 6. Preference degree matrix for pessimistic interval efficiency based on sensitivity analysis algorithm and their rankings 

Rank with 

algorithm 

Rank without 

algorithm 

J I H G F E D C B A DMU 

8 8 0.5279 0.1016 0.3544 0.0000 0.5881 0.0000 0.4279 0.3139 0.3388 - A 

5 7 0.6907 0.3145 0.4984 0.0000 0.7522 0.0000 0.5821 0.5049 - 0.6612 B 

6 3 0.7229 0.2779 0.4938 0.0000 0.8018 0.0000 0.5904 - 0.4951 0.6861 C 

7 4 0.5992 0.2168 0.4242 0.0000 0.6563 0.0000 - 0.4096 0.4180 0.5721 D 

2 2 1.0000 1.0000 1.0000 0.3608 1.0000 - 1.0000 1.0000 1.0000 1.0000 E 

10 9 0.4392 0.0000 0.2739 0.0000 - 0.0000 0.3438 0.1982 0.2478 0.4042 F 

1 1 1.0000 1.0000 1.0000 - 1.0000 0.6392 1.0000 1.3717 1.0000 1.0000 G 

4 6 0.6711 0.0000 - 0.0000 0.7236 0.0000 0.5757 0.5063 0.5016 0.6456 H 

3 5 0.9419 - 0.6655 0.0000 1.0000 0.0000 0.7832 0.7221 0.6855 0.8984 I 

9 10 - 0.0581 0.3289 0.0000 0.5608 0.0000 0.4008 0.2771 0.3093 0.4721 J 
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Table 6 illustrates that after the fifth stage of executing the algorithm, DMU B has increased its distance 

from the inefficiency frontier and achieved a rank of 5. The compared unit, DMU D, is positioned close to the 

inefficiency frontier, securing rank 7. Additionally, the ranks of DMUs I, J and H have also seen improvements. 

Through the assessment from the pessimistic perspective using the sensitivity analysis algorithm, it is evident 

that the best performance is associated with DMU G. The ranking of the ten DMUs in terms of their pessimistic 

efficiency intervals, based on the results in the last column of Table 6, is as follows: 

     
           

          
                        

        

     
           

            
            

             

 

4. Sensitivity Analysis for Determining Fuzzy Efficiency Security Margin of DMUs from Both 

Efficiency and Inefficiency Frontiers 

In this section, we apply the proposed sensitivity algorithm to ascertain the fuzzy performance security 

margin of DMUs from both optimistic and pessimistic viewpoints. Subsequently, we extend the algorithm to 

rank DMUs, and provide an illustrative numerical example. 

4.1. Sensitivity analysis to determine the optimistic fuzzy efficiency security margin of    s 

A fuzzy number is a convex fuzzy set, characterized by a given interval of real numbers, each with a grade 

of membership between 0 and 1. The most used fuzzy numbers, are triangular and trapezoidal fuzzy numbers. 

Suppose there are n    s to be evaluated, each with m inputs and s outputs. Let               and  

              be the input and output data of              . Without loss of generality, all input and 

output data      and     are assumed to be uncertain and characterized by triangular fuzzy numbers  ̃   

    
      

      
  and  ̃       

      
      

  , where    
    and    

    for           ,          and   

      . Crisp input and output data can be considered a special case of fuzzy input and output data   ̃    and 

 ̃   with    
       

       
  and   

      
       

 . Therefore,      efficiency is measured by (3)-(5) models. 

Examining a performance assessment scenario in China involves the evaluation of eight manufacturing 

enterprises concerning two inputs and two outputs [37]. The considered outputs include the gross output value 

(GOV) and product quality (PQ), while manufacturing cost (MC) and the number of employees (NOE) serve as 

inputs. The input and output data for these manufacturing enterprises are outlined in Table 7. Employing models 

(3)-(5) and (8)-(10) for each manufacturing enterprise yields two fuzzy efficiencies for each from an optimistic 

and pessimistic perspective, respectively. Subsequently, we proceed to determine the optimistic fuzzy 

performance security margin of each decision-making unit and then rank them following the completion of the 

sensitivity analysis algorithm. 
 

Table 7. Input and output data and optimistic efficiency for eight manufacturing enterprises 

 

 Input 1 Input 2 Output 1 Output 2 Optimistic Fuzzy Efficiency 

DMUs MC NOE GOV PQ  

A (2120, 2170, 2210) 1870 (14500, 14790, 14860) (3.1, 4.1, 4.9) (0.8124,0.9033,1.0000) 

B (1420, 1460, 1500) 1340 (12470, 12720, 12790) (1.2, 2.1, 3.0) (0.9750,0.9945,1.0000) 

C (2510, 2570, 1500) 2360 (17900, 18260, 18400) (3.3, 4.3, 5.0) (0.7946,0.8122,0.9036) 

D (2300, 2350, 2400) 2020 (14970, 15270, 15400) (2.7, 3.7, 4.6) (0.7764,0.8049,0.9070) 

E (1480, 1520, 1560) 1550 (13980, 14260, 14330) (1.0, 1.8, 2.7) (0.9603,0.9872,1.0000) 

F (1990, 2030, 2100) 1760 (14030, 14310, 14400) (1.6, 2.6, 3.6) (0.8352,0.8518,0.8852) 

G (2200, 2260, 2300) 1980 (16540, 16870, 17000) (2.4, 3.4, 4.4) (0.8752,0.8926,1.0000) 

H (2400, 2460, 2520) 2250 (17600, 17960, 18100) (2.6, 3.6, 4.6) (0.8195,0.8363,0.8861) 

 

By applying models (3) -(5) to each manufacturing enterprise, we obtained the optimistic fuzzy efficiency for 

each, as illustrated in Table 7. The last column of Table 7 reveals that manufacturing enterprises A, B, and E 

collectively establish an efficient frontier, with B being the enterprise showcasing the best performance, 
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followed by enterprise E. Considering Table 7 with fuzzy data and selecting DMU B and DMU G as the 

compared unit and unit under evaluation, respectively, we then execute the algorithm, the results of which are 

presented in Table 8. 

Table 8. Optimistic fuzzy relative efficiency security margin with sensitivity analysis algorithm 

 

DMUs 

 

Stage1 

Optimistic Fuzzy 

Efficiency  

   
      

      
    

Stage2 

Optimistic Fuzzy 

Efficiency  

   
      

      
    

Stage3 

Optimistic Fuzzy 

Efficiency  

   
      

      
    

Stage4 

Optimistic Fuzzy 

Efficiency  

   
      

      
    

A (0.8124,0.9033,1.0000) (0.8124,0.9006,1.0000) (0.8010,0.8632,1.0000) (0.7394,0.8076,0.9649) 

B (0.9750,0.9945,1.0000) (0.9750,0.9945,1.0000) (0.9613,0.9864,1.0000) (0.8873,0.9202,0.9470) 

C (0.7946,0.8122,0.9045) (0.7946,0.8121,0.9045) (0.7846,0.8041,0.8786) (0.7261,0.7504,0.8153) 

D (0.7764,0.8049,0.9070) (0.7764,0.8038,0.9055) (0.7655,0.7809,0.8842) (0.7066,0.7208,0.8387) 

E (0.9603,0.9872,1.0000) (0.9603,0.9872,1.0000) (0.9603,0.9872,1.0000) (0.9341,0.9735,1.0000) 

F (0.8352,0.8518,0.8852) (0.8352,0.8518,0.8828) (0.8234,0.8399,0.8452) (0.7601,0.7753,0.7802) 

G (0.8929,0.9107,0.9648) (0.9293,0.9478,0.8864) (0.9729,0.9923,1.0000) (0.9729,0.9923,1.0000) 

H (0.8195,0.8363,0.8864) (0.8195,0.8368,0.8864) (0.8080,0.8286,0.8598) (0.7459,0.7715,0.7977) 

 

In Table 8, it is evident that after the fourth stage of the algorithm, with the improvement in the efficiency of 

DMU G, the performance security margin of DMU B is jeopardized, and DMU G takes its place. Once DMU B 

loses its efficiency, the algorithm comes to a halt. The initial stage, where the efficiency of DMU B decreases, 

can be interpreted as the interval efficiency security margin, calculated by the formula: 

RESM (B, G) = 100. (𝛼    =100(0.04-0.01) =3% 

To provide a comprehensive ranking of performances for the eight DMUs, Table 9 displays matrices of an 

analytical ranking approach based on degree preference. This approach is developed for comparing and ranking 

fuzzy efficiencies of DMUs, offering a full ranking and indicating to what extent a fuzzy efficiency is greater 

than another [37]. 

 
Table 9. Preference degree matrix for optimistic fuzzy efficiency based on sensitivity analysis algorithm and their rankings 

 

After forming the preference degree matrix in Table 9 based on the results of the algorithm in Table 8, it is 

evident that DMU G has improved its performance and achieved rank 1. Conversely, DMU B has fallen to rank 

3. The positions of the other DMUs, except for DMU A, remain unchanged. According to the last column of 

Table 9, the performance of the ten DMUs is ranked as follows: 

     
           

            
            

            
        

                
               

     
           signifies that the performance of DMU G is better than that of DMU E by 83.72%. It is 

evident that the best performance is associated with DMU G. The detailed results of the full ranking are 

presented in Table 9. 

Rank with 

algorithm 

Rank without 

algorithm 

H G F E D C B A DMU 

4 3 0.0000 0.8702 0.9056 0.0157 0.8511 0.8616 0.1107 - A 

3 1 1.0000 0.0000 1.0000 0.0241 1.0000 1.0000 - 0.8893 B 

7 7 0.3750 0.0000 0.3409 0.0000 0.5968 - 0.0000 0.1384 C 

8 8 0.3258 0.0000 0.3054 0.0000 - 0.4032 0.0000 0.1489 D 

2 2 1.0000 0.0043 1.0000 - 1.0000 1.0000 0.9759 0.9843 E 

5 5 0.5333 0.0000 - 0.0000 0.6946 0.6591 0.0000 0.0944 F 

1 4 1.0000 - 1.0000 0.8372 1.0000 1.0000 1.0000 1.0000 G 

6 6 - 0.0000 0.4667 0.0000 0.6742 0.6364 0.0000 0.1298 H 
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4.2. Sensitivity Analysis to Determine Pessimistic Fuzzy Efficiency Improvement Margin of DMUs 

Next, we conduct a sensitivity analysis algorithm from a pessimistic perspective to identify the performance 

improvement margin of decision-making units. Consider Table 7 with fuzzy data involving two inputs and two 

outputs. Identify DMU A and DMU D as the compared unit and unit under evaluation, respectively. The results 

of the algorithm's steps are presented in Table 10: 

Table 10. Pessimisitic relative fuzzy inefficiency improvement margin    
      

      
    

 

DMUs 

Pessimistic Fuzzy Efficiency  

 

Stage1 

Pessimistic Fuzzy Efficiency  

Stage 2 

Pessimistic Fuzzy Efficiency  

A (1.0463,1.0672,1.0723) (1.0256,1.0461,1.0511) (1.0000,1.0263,1.0392) 

B (1.1106,1.2602,1.2880) (1.1106,1.2406,1.2625) (1.1106,1.2349,1.2584) 

C (1.0235,1.0441,1.0521) (1.0032,1.0234,1.0312) (1.0000,1.0201,1.0279) 

D (1.0000,1.0200,1.0287) (1.0000,1.0200,1.0287) (1.0034,1.0407,1.0571) 

E (1.0000,1.1702,1.2476) (1.0000,1.1657,1.2229) (1.0000,1.1643,1.2189) 

F (1.0000,1.0971,1.1040) (1.0000,1.0754,1.0822) (1.0000,1.0520,1.0709) 

G (1.0851,1.1497,1.1586) (1.0746,1.1269,1.1356) (1.0683,1.1117,1.1303) 

H (1.0190,1.0771,1.0855) (1.0084,1.0558,1.0640) (1.0052,1.0524,1.0606) 

 

Based on the proposed algorithm and the information presented in Table 10, we assess the relative fuzzy 

inefficiency improvement margin of DMU D with respect to DMU A. DMU A and DMU D are denoted as the 

unit under evaluation and the compared unit, respectively. After two stages, the inefficiency score of DMU D 

changes to (1.0034, 1.0407, 1.0571). This represents the initial stage of improving the inefficient DMU D when 

it is distant from the inefficiency frontier. We can now conclude the algorithm. The results of the sensitivity 

analysis algorithm are detailed in Table 10. The fuzzy inefficiency improvement margin of DMU D concerning 

DMU A is determined as follows: 

RESM (A, D) =100. (𝛼    =100(0.02-0.01) =1% 

Continuing with the same approach, we utilize the preference degree matrix for ranking DMUs from a 

pessimistic perspective, as depicted in Table 11. 
 

Table 11. Preference degree matrix for pessimistic fuzzy efficiency based on sensitivity analysis algorithm and their rankings 

 

To provide a comprehensive ranking of performances for the eight DMUs, Table 11 displays matrices of an 

analytical ranking approach based on degree preference, developed for comparing and ranking fuzzy 

efficiencies. Following the formation of the preference degree matrix based on the results of the algorithm in 

Table 10, it is evident that DMU D has improved its performance, securing the sixth rank. This marks the initial 

stage of improvement for the previously inefficient DMU D when it is still far from the inefficiency frontier. 

Conversely, the performance of DMU A worsens, obtaining the seventh rank. According to the last column of 

Table 11, the performance of ten DMUs is rated as follows: 

     
           

            
            

                   

     
           

            

The detailed results of the full ranking are presented in Table 11. 

Rank with 

algorithm 

Rank without 

algorithm 

H G F E D C B A DMU 

7 3 0.2105 0.0000 0.2113 0.0328 0.0718 0.6522 0.0203 - A 

1 1 1.0000 0.9867 1.0000 0.8216 1.0000 1.0000 - 1.0000 B 

8 5 0.1087 0.0000 0.1356 0.0188 0.1622 - 0.0000 0.3478 C 

6 7 0.3913 0.0000  0.3882 0.0669 - 0.8378 0.0000 0.7234 D 

2 2 0.9218 0.6693 0.9058 - 0.9331 0.9812 0.1784 0.9672 E 

4 8 0.5181 0.0008 - 0.0942 0.6118 0.8678 0.0000 0.7887 F 

3 4 1.0000 - 0.9916 0.3307 1.0000 1.0000 0.0133 1.0000 G 

5 6 - 0.0000 0.4819 0.0782 0.6087 0.8913 0.0000 0.7895 H 
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5. Conclusion 

In conclusion, this paper contributed to the field of performance assessment by introducing interval and 

fuzzy DEA models to gauge optimistic and pessimistic efficiencies of DMUs. The novel sensitivity analysis 

algorithm proposed in this study provides a comprehensive evaluation of the performance security margin of 

DMUs, especially in scenarios where data is imprecise. This algorithm was effectively applied to investigate 

optimistic interval and fuzzy efficiency security margins, as well as pessimistic interval relative efficiency 

improvement margins of DMUs. 

Upon closer examination of the outcomes presented in Table 8, a noteworthy observation was made after 

the fourth stage of the algorithm. The improvement in the efficiency of DMU G emerged as a potential threat to 

the performance security margin of DMU B, leading to a notable shift in their positions. The calculated interval 

efficiency security margin was quantified at 3%, shedding light on the vulnerability of DMU B in the face of 

efficiency changes. 

Furthermore, recognizing the need to rank DMUs based on their performance, the proposed sensitivity 

analysis algorithm was extended. This extension allowed for the ranking of DMUs in an illustrative example 

involving eight manufacturing enterprises in China. Each enterprise was evaluated using two inputs and two 

outputs, and rankings were determined from both optimistic and pessimistic perspectives. These rankings 

provide actionable insights for managers to identify potential threats and opportunities for improvement in their 

respective enterprises. 

In essence, the adaptability of this approach makes it suitable for a wide range of scenarios, accommodating 

situations involving both desirable and undesirable data. The combined use of interval and fuzzy DEA models, 

along with the sensitivity analysis algorithm, offers a robust framework for performance assessment and 

decision-making in the presence of uncertainties. 

Conflict of interest: The authors declare that they have no known competing financial interests or personal 

relationships that could have appeared to influence the work reported in this paper. 
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