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A R T I C L E  I N F O  A B S T R A C T 

When a correlation between datasets is presented, it is clear from this statement that it quantifies 

how strongly these datasets are connected. Meanwhile, this coefficient is a well-known metric for 

assessing the link between two sets. The Fermatean fuzzy set is a significant extension of the extant 

intuitionistic and Pythagorean fuzzy sets, with the benefit of more comprehensively characterizing 

ambiguous data. In other words, Fermatean fuzzy sets are powerful and useful tools for 

representing imprecise information. The purpose of this work is to generate novel correlation 

coefficients using Fermatean fuzzy sets. These coefficients specify the degree and kind of 

correlation (positive or negative) between two Fermatean fuzzy sets. The new coefficient values 

will similarly be in the [-1,1] range. During formulation, pairs of membership and non-membership 

degrees were viewed as a vector representation containing the two elements. Furthermore, the novel 

approach was compared to existing methods. A medical diagnosis application and pattern 

recognition as a data mining application were used to exemplify the effectiveness of the proposed 

method. 

 

Article history:  

Received 12 March 2023 

Revised 15 April 2023 

Accepted 20 April 2023 

Available online 20 April 2023 

Keywords: 

Variance 

Covariance 

Correlation Coefficients 

Pearson Correlation Coefficients 

Fermatean Fuzzy Set 

 

 

 

1. Introduction 

Several applications are used in the research in the literature to address decision-making (DM) issues. The 
correlation coefficients (C), which are utilized to assess the degree of dependence between two sets, are one of 
the techniques for determining the best choice. Any statistical association between two random variables or 
bivariate data, whether causal or not, is referred to in statistics as a "correlation." Calculating the covariance 
value, which depicts how these two variables have changed in relation to one another, is the easiest technique to 
determine whether two variables are connected. To further understand the covariance, it is helpful to consider 
the variance. The variance of a variable is a measure of how far the averaged data are from the mathematical 
mean. The change of two variables with regard to one another, or their relationship, may be demonstrated by 
computing the covariance value. The covariance is often negative when both variables are below the mean. In 
this instance, we may conclude that the two variables do not have a positive association. Nevertheless, 
employing covariance has a drawback since covariance is dependent on the unit of the variables. We will have 
trouble comprehending the covariance value if the two variables are measured in different units. It becomes 
challenging to define what being huge or tiny entails. We must normalize the covariance value in order to solve 
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the unit problem in covariance. Each unit must be able to be converted to a common value in some way. We 
must make use of the standard deviation to do this. The correlation value is obtained by dividing the covariance 
formula by the standard deviation values. 

Cs are used to gauge how strongly two variables are correlated. Because of this, there are several different 

areas of work, including engineering, physics, medicine, and economics. Current probabilistic methods have 

several benefits but some downsides as well. On a large scale, the complex system contains a lot of fuzzy 

ambiguity, making it difficult to understand the whole range of possible outcomes. Outcomes according to 

probability do not every time ensure helpful info to specialists due to the constraint of only being able to act on 

quantitative information. Also, there are times when there is not enough data to properly operate parameter 

statistics in day-to-day operations. Due to these limitations, the probabilistic approximation is insufficient to 

take into account the inherent uncertainties in the data, and the conclusions based on probability do not always 

offer experts valuable info. There are several approaches to overcoming these challenges. One of these choices' 

most successful outcomes for overcoming ambiguities and imprecision in DM is Fuzzy set (F) theory-based 

methods. 

Uncertainty is an important concept in DM problems. Unpredictable events are what define uncertainty. In 

unclear conditions, routine decisions may not be debated. Under vagueness situations, it is critical to weigh both 

the benefits and downsides of prospective results. At this point, it is critical to conduct a detailed examination of 

the environmental factors. Even when final judgments are not in dispute, utilizing past experiences and 

decisions is not every time beneficial, when there is uncertainty. Because of Zadeh's development of the F 

concept, language phrases that we inadvertently use on a daily basis are now calculable [42]. 

The classification system was able to transcend the restrictions of math, which had beforehand been limited 

to precision since fuzzy logic was used. This idea started a mode change that diffuse around the world as an 

outcome of its accomplished application in world circumstances. A distinct-function component is either an 

insider of a set in the conventional sense or it is not. Nevertheless, the F notion assesses whether or not a body is 

interested in a set by using a membership function(MF) that appoints an item a membership degree(MD) in [0, 

1].  If the MD of an element of a set is  𝜋𝐴, its non-membership degree (ND) is 1 − 𝜋𝐴, according to F-A. 

Hence, the sum of the degrees of belonging and non-belonging is equal to one. Yet, this situation falls short 

of fully addressing the uncertainty in a number of areas.  As a result, the intuitionistic fuzzy set (IF) theory 

improved the generalization of the F theory [5]. 

Whereas F is intended to simply expose the MD specified in [0,1], IF defines the ND in addition to the MD. 

IF states that MD and ND are in [0, 1]. Yager [41] was the first to introduce Pythagorean fuzzy sets (PF), 

which were occasionally created as extensions of IFs since IFs were insufficient for expressing uncertainty. 

Since MD and ND cannot be combined together to make a decision, PFs use the idea that 𝑀𝐷2 +𝑁𝐷2 ≤ 1. The 

literature has a number of studies on F and its several extensions ([10, 15, 23, 28, 30, 37]). 

The Fermatean fuzzy set (FFS) with 0 ≤ 𝑀𝐷3 +𝑁𝐷3 ≤ 1 has been initiated by Senepati and Yager [32]. 

FFS is better at explaining uncertainties than IFs and PF. This work was continued by Senapati and Yager 

[33], who looked at a variety of new operations and arithmetic mean procedures over FFSs. To solve MCDM 

difficulties, they also applied the FF-weighted product model. FFS-related new aggregation operators have 

been defined and [34] has examined the properties that go along with them. In a short time, many studies on 

FFS have entered the literature [1-3, 19, 24,-26]. 

In [9], a formula for C of Fs is guaranteed, while the correlation for fuzzy info based on traditional statistics 

is provided. According to the accepted concept of Cs, the C of fuzzy info has been investigated in [29]. IF and 

PF produced more thorough and precise results on the basis of the results produced by the F theory. Cs derived 

from IF and PF have been utilized in a wide variety of applications in the literature [4, 6, 8, 9, 27, 29, 36, 38, 39, 

44]. 

In real-world implementations, FFNs have a very large capacity to duplicate uncertain and imprecise 

information; hence, our study improves the FFN-based C to solve MCGDM challenges. By taking into 

account MD and ND, the new Cs between the two FFSs have been determined. The FF environment served as 
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the first definition of new informational energy (IE) in this work. IE measures a random variable's level of 

uncertainty and increases as randomness drops. IE is precisely convex at all times. As the novel Cs and other 

sets have different weights in reality, weighted Cs have been developed according to IE. Many methods have 

been developed to find the Cs between Fs. Nevertheless, these tactics fail when certain values are both MDs 

and NDs of the same element. As it may show the link between the FFSs, this study is interested in identifying 

the correlation between FFE. Our results fall inside the [0, 1] interval since we have left out the equation's 

negative part, commonly known as the reverse correlation because we are working in a fuzzy environment. The 

hypothesis that C belongs to FFSs was developed and put out in light of the fact that FFSs are useful tools for 

figuring out relationships between pieces of confusing information. To demonstrate the success of the new 

strategies, two applications were used: Medical diagnosis and pattern recognition. The old and new Cs were 

contrasted. 

Originality: The traditional Cs have undergone a number of extensions, including F, IF, and PF Cs. The 

Cs are now performing better thanks to these extensions. Considering IFs, PF and FFSs shows that FFSs are 

better able to deal with uncertainty and missing information issues. In this work, the IF Cs and PF Cs 

investigations were taken into consideration for developing the FF Cs. FFSs have the potential to encompass 

more components than IFs and PFs since they satisfy the 𝑀𝐷3 +𝑁𝐷3 ≤ 1 criteria for an object. There is a 

medical application for the new Cs. We compared newly suggested Cs with Cs based on IF and PF from prior 

trials. 

The contributions of this study can be given as follows: 

I. Most correlation coefficients that are now used in fuzzy or nonstandard fuzzy theory have 

values between 0 and 1, which merely shows the strength of the connection. Uncertain concepts 

like ugly vs. beautiful (negatively correlated), heavy vs. big (positively correlated), etc. can be 

easily correlated using a correlation coefficient with a value in [1, 1], but the correlation 

coefficient with a value in [0, 1] is insufficient to describe the correlation between ugly and 

beautiful. 

II. The bulk of studies on fuzzy and non-standard fuzzy sets use fabricated data to support their 

comparative measures. The current IF and PF-based correlation coefficients do not satisfy all 

or some of these requirements. In this study, we thus propose some new correlation coefficients 

for FFSs that exceed the existing correlation coefficients while accounting for these aspects. 

III. For FFSs with values in [1, 1], we suggest four new correlation coefficients, and we also go 

over some of their attractive characteristics. 

IV. With the help of our proposed FF-correlation coefficients, medical diagnostics, and data 

mining applications are studied. Further, the proposed FF Cs are compared with various 

measures of compatibility already existing under FF conditions. 

 

2. Preliminaries 

In this section, we introduce some basic concepts related to FFSs. 

Definition 1. The set 𝑀 = {(𝑢, 𝑓𝑀(𝑢), 𝑔𝑀(𝑢)): 𝑢 ∈ 𝑈} is called FFS with 𝑓𝑀, 𝑔𝑀 ∈ [0,1], 0 ≤  𝑓𝑀
3 + 𝑔𝑀

3 ≤

1. The hesitation degree is represented as ℎ𝑀 = (1 − 𝑓𝑀
3 − 𝑔𝑀

3 )1/3. 

Fermatean fuzzy number (FFN) and the set of all FFS s in U are denoted by (𝑓𝑀(𝑢), 𝑔𝑀(𝑢)), and Γ(𝑈), 

respectively. 

For two FFN s 𝑀 = (𝑓𝑀, 𝑔𝑀) and 𝑁 = (𝑓𝑁, 𝑔𝑁), 
a. �̅� = (𝑔𝑀 , 𝑓𝑀), 

b. 𝑀⊠𝑁 = (𝑓𝑀 𝑓𝑁 , (𝑔𝑀
3 + 𝑔𝑁

3 − 𝑔𝑀
3 . 𝑔𝑁

3 )
1

3) 

c. 𝑀⊞𝑁 = ((𝑓𝑀
3 + 𝑓𝑁

3 − 𝑓𝑀
3 . 𝑓𝑁

3)1/3, 𝑔𝑀
3 𝑔𝑁

3) 

d. 𝑧.𝑀 = ((1 − (1 − 𝑓𝑀
3)𝑧)1/3, 𝑔𝑀

𝑧 ) 
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e. 𝑀𝑧 = (𝑓𝑀
𝑧, (1 − (1 − 𝑔𝑀

3 )𝑧)1/3) 

Definition 2. For two FFNs 𝑀 = (𝑓𝑀, 𝑔𝑀) and 𝑁 = (𝑓𝑁, 𝑔𝑁), 
a. 𝑀⋃𝑁 = (𝑚𝑎𝑥{𝑓𝑀, 𝑓𝑁}, 𝑚𝑖𝑛{𝑔𝑀 , 𝑔𝑁}) 

b. 𝑀 ∩𝑁 = (𝑚𝑖𝑛{𝑓𝑀, 𝑓𝑁}, 𝑚𝑎𝑥{𝑔𝑀, 𝑔𝑁}) 

c. 𝑀𝑐 = (𝑔𝑀 , 𝑓𝑀) 
d. 𝑀 ≼ 𝑁 if and only if 𝑓𝑀 ≤ 𝑓𝑁, 𝑔𝑀 ≤ 𝑔𝑁. 

Definition 3. For two FFNs 𝑀 = (𝑓𝑀, 𝑔𝑀) and 𝑁 = (𝑓𝑁, 𝑔𝑁), the score functions, and the accuracy functions 

are:  

𝑆𝐶(𝑀) = 𝑓𝑀
3 − 𝑔𝑀

3 ,         𝑆𝐶(𝑁) = 𝑓𝑁
3 − 𝑔𝑁

3 , 

𝐴𝐶(𝑀) = 𝑓𝑀
3 + 𝑔𝑀

3 ,         𝐴𝐶(𝑁) = 𝑓𝑁
3 + 𝑔𝑁

3 . 

Lemma 1. For two FF s 𝑀 = (𝑓𝑀, 𝑔𝑀) and 𝑁 = (𝑓𝑁, 𝑔𝑁), 

a. If 𝑆𝐶(𝑀) < 𝑆𝐶(𝑁), then 𝑀 < 𝑁, 

b. If 𝑆𝐶(𝑀) = 𝑆𝐶(𝑁), 𝐴𝐶(𝑀) < 𝐴𝐶(𝑁),  then 𝑀 < 𝑁, 

c. If 𝑆𝐶(𝑀) = 𝑆𝐶(𝑁), 𝐴𝐶(𝑀) = 𝐴𝐶(𝑁),  then 𝑀 = 𝑁. 

3. Novel Statistical Concepts 

In this section, a few brand-new correlation coefficients for FFSs that, in addition to the degree of 

connection, also indicate whether the two FFSs are positively or negatively associated have been offered. 

Throughout this paper, let Γ(𝑈) denote the set of all FFSs in the universe of discourse 𝑈 = {𝑡1, 𝑡2, … , 𝑡𝑙}. 

First, FF-type correlation coefficients based on variance and covariance have been offered. In order to 

define the correlation coefficients for FFSs, some terms like average, variance, and covariance of FFSs have 

been defined. 

Definition 4. For any 𝑀,𝑁 ∈ Γ(𝑈), 

a. 𝑂𝑟𝑡(𝑀) is said to be the average of M, where 

𝑂𝑟𝑡(𝑀) = (𝑓𝑀̅̅ ̅, 𝑔𝑀̅̅ ̅̅ ) = (
1

𝑛
∑𝑓𝑀(𝑡𝑘),

1

𝑛
∑𝑔𝑀(𝑡𝑘),

𝑛

𝑘=1

𝑛

𝑘=1

)                                                           (1) 

b. 𝑉𝑅𝑁𝐶(𝑀) is said to be the variance of M, where 

𝑉𝑅𝑁𝐶(𝑀) =
1

𝑛 − 1
∑([𝑓𝑀

3(𝑡𝑘) − 𝑓𝑀
3̅̅ ̅]
2
+ [𝑔𝑀

3 (𝑡𝑘) − 𝑔𝑀
3̅̅ ̅̅ ]

2
)

𝑛

𝑘=1

                                                       (2) 

c. K(M, N) is called the covariance of M, for 

𝐾(𝑀,𝑁) =
1

𝑛 − 1
∑({[𝑓𝑀

3(𝑡𝑘) − 𝑓𝑀
3̅̅ ̅] × [𝑓𝑁

3(𝑡𝑘) − 𝑓𝑁
3̅̅ ̅]} + {[𝑔𝑀

3 (𝑡𝑘) − 𝑔𝑀
3̅̅ ̅̅ ] × [𝑔𝑁

3 (𝑡𝑘) − 𝑔𝑁
3̅̅ ̅̅ ]})

𝑛

𝑘=1

        (3) 

Proposition 1. For any 𝑀,𝑁 ∈ Γ(𝑈), 
a. 𝐾(𝑀,𝑁) = 𝐾(𝑁,𝑀), 

b. 𝐾(𝑀,𝑀) = 𝑉𝑅𝑁𝐶(𝑀), 

c. |𝑉𝑅𝑁𝐶(𝑀)| ≤ √𝑉𝑅𝑁𝐶(𝑀)𝑉𝑅𝑁𝐶(𝑁). 

Proof: a.  

𝐾(𝑀,𝑁) =
1

𝑛 − 1
∑({[𝑓𝑀

3(𝑡𝑘) − 𝑓𝑀
3̅̅ ̅] × [𝑓𝑁

3(𝑡𝑘) − 𝑓𝑁
3̅̅ ̅]} + {[𝑔𝑀

3 (𝑡𝑘) − 𝑔𝑀
3̅̅ ̅̅ ] × [𝑔𝑁

3 (𝑡𝑘) − 𝑔𝑁
3̅̅ ̅̅ ]})

𝑛

𝑘=1

 

=
1

𝑛 − 1
∑({[𝑓𝑁

3(𝑡𝑘) − 𝑓𝑁
3̅̅ ̅] × [𝑓𝑀

3(𝑡𝑘) − 𝑓𝑀
3̅̅ ̅]} + {[𝑔𝑁

3 (𝑡𝑘) − 𝑔𝑁
3̅̅ ̅̅ ] × [𝑔𝑀

3 (𝑡𝑘) − 𝑔𝑀
3̅̅ ̅̅ ]}) =

𝑛

𝑘=1

𝐾(𝑁,𝑀). 
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b.  𝐾(𝑀,𝑀) =
1

𝑛−1
∑ ({[𝑓𝑀

3(𝑡𝑘) − 𝑓𝑀
3̅̅ ̅] × [𝑓𝑀

3(𝑡𝑘) − 𝑓𝑀
3̅̅ ̅]} + {[𝑔𝑀

3 (𝑡𝑘) − 𝑔𝑀
3̅̅ ̅̅ ] × [𝑔𝑀

3 (𝑡𝑘) − 𝑔𝑀
3̅̅ ̅̅ ]})𝑛

𝑘=1  

=
1

𝑛 − 1
∑([𝑓𝑀

3(𝑡𝑘) − 𝑓𝑀
3̅̅ ̅]
2
+ [𝑔𝑀

3 (𝑡𝑘) − 𝑔𝑀
3̅̅ ̅̅ ]

2
)

𝑛

𝑘=1

= 𝑉𝑅𝑁𝐶(𝑀). 

c. 𝐾(𝑀,𝑁)2 = (
1

𝑛−1
∑ ({[𝑓𝑀

3(𝑡𝑘) − 𝑓𝑀
3̅̅ ̅] × [𝑓𝑁

3(𝑡𝑘) − 𝑓𝑁
3̅̅ ̅]} + {[𝑔𝑀

3 (𝑡𝑘) − 𝑔𝑀
3̅̅ ̅̅ ] × [𝑔𝑁

3 (𝑡𝑘) − 𝑔𝑁
3̅̅ ̅̅ ]})𝑛

𝑘=1 )
2
 

≤ (
1

𝑛 − 1
∑{[𝑓𝑀

3(𝑡𝑘) − 𝑓𝑀
3̅̅ ̅] + [𝑔𝑀

3 (𝑡𝑘) − 𝑔𝑀
3̅̅ ̅̅ ]}

𝑛

𝑘=1

) × (
1

𝑛 − 1
∑{[𝑓𝑁

3(𝑡𝑘) − 𝑓𝑁
3̅̅ ̅] + [𝑔𝑁

3 (𝑡𝑘) − 𝑔𝑁
3̅̅ ̅̅ ]}

𝑛

𝑘=1

) 

= 𝑉𝑅𝑁𝐶(𝑀)𝑉𝑅𝑁𝐶(𝑁). 

Therefore, |𝑉𝑅𝑁𝐶(𝑀)| ≤ √𝑉𝑅𝑁𝐶(𝑀)𝑉𝑅𝑁𝐶(𝑁). 
 
Definition 5. For any 𝑀,𝑁 ∈ Γ(𝑈), 

𝐶(𝑀,𝑁) =
𝐾(𝑀,𝑁)

√𝑉𝑅𝑁𝐶(𝑀)𝑉𝑅𝑁𝐶(𝑁)
                                                                                                                 (4) 

is called the C of M,N where K(M, N) and VRNC(M) utilized as defined by (2) and (3), respectively. 

The new C will be more universal if the FFS hesitation degree h is also employed for it (3.4). This definition 

of C will make it much easier to categorize the sample and will greatly improve its ability to address practical 

situations. We now provide a revised definition of C. 

Definition 6. For any 𝑀,𝑁 ∈ Γ(𝑈), then the C between M, N, 
 

𝐶𝐻(𝑀,𝑁) =
𝐾𝐻(𝑀,𝑁)

√𝑉𝑅𝑁𝐶𝐻(𝑀)𝑉𝑅𝑁𝐶𝐻(𝑁)
                                                                                                             (5) 

where 

𝑉𝑅𝑁𝐶𝐻(𝑀) =
1

𝑛 − 1
∑([𝑓𝑀

3(𝑡𝑘) − 𝑓𝑀
3̅̅ ̅]
2
+ [𝑔𝑀

3 (𝑡𝑘) − 𝑔𝑀
3̅̅ ̅̅ ]

2
+ [ℎ𝑀

3 (𝑡𝑘) − ℎ𝑀
3̅̅ ̅̅ ]

2
)

𝑛

𝑘=1

                              (6) 

and 

𝐾𝐻(𝑀,𝑁) =
1

𝑛 − 1
∑({[𝑓𝑀

3(𝑡𝑘) − 𝑓𝑀
3̅̅ ̅] × [𝑓𝑁

3(𝑡𝑘) − 𝑓𝑁
3̅̅ ̅]} + {[𝑔𝑀

3 (𝑡𝑘) − 𝑔𝑀
3̅̅ ̅̅ ] × [𝑔𝑁

3 (𝑡𝑘) − 𝑔𝑁
3̅̅ ̅̅ ]}

𝑛

𝑘=1

+ {[ℎ𝑀
3 (𝑡𝑘) − ℎ𝑀

3̅̅ ̅̅ ] × [ℎ𝑁
3 (𝑡𝑘) − ℎ𝑁

3̅̅̅̅ ]})                                                                                  (7) 
and also 

ℎ𝑀̅̅ ̅̅ =
1

𝑛
∑ℎ𝑀(𝑡𝑘)

𝑛

𝑘=1

,                 ℎ𝑁̅̅̅̅ =
1

𝑛
∑ℎ𝑁(𝑡𝑘)

𝑛

𝑘=1

. 

Theorem 1. For any 𝑀,𝑁 ∈ Γ(𝑈), the following conditions are held: 

a. 𝐾(𝑀,𝑁) = 𝐾(𝑁,𝑀), 

b. −1 ≤ 𝐾(𝑀,𝑁) ≤ 1, 

c. If 𝑀 = 𝛼𝑁 for some , then 

𝐶(𝑀,𝑁) = {
1,              𝛼 > 0
−1,            𝛼 < 0.

 

4. Novel Pearson type Correlation Coefficients  Formula 

Karl Pearson's Coefficient of Correlation is also known as the Product Moment Correlation Coefficient and 
was developed by Karl Pearson. Along with the scatter diagram and Spearman's rank correlation, it is one of the 
three most effective and widely used techniques for determining the degree of correlation. The quantitative Karl 
Pearson correlation coefficient method provides a number to determine the strength of the linear relationship 
between X and Y. In this section, new Pearson type-correlation coefficients pertaining to FFSs have been 
presented. 
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Let’s start by outlining a few of the equations that will be utilized in this section: 

𝜆1 =
∑ {[𝑓𝑀

3(𝑡𝑘) − 𝑓𝑀
3̅̅ ̅] × [𝑓𝑁

3(𝑡𝑘) − 𝑓𝑁
3̅̅ ̅]}𝑛

𝑘=1

√[𝑓𝑀
3(𝑡𝑘) − 𝑓𝑀

3̅̅ ̅]
2
√[𝑓𝑁

3(𝑡𝑘) − 𝑓𝑁
3̅̅ ̅]
2
                                                                                         (8) 

𝜆2 =
∑ {[𝑔𝑀

3 (𝑡𝑘) − 𝑔𝑀
3̅̅ ̅̅ ] × [𝑔𝑁

3 (𝑡𝑘) − 𝑔𝑁
3̅̅ ̅̅ ]}𝑛

𝑘=1

√[𝑔𝑀
3 (𝑡𝑘) − 𝑔𝑀

3̅̅ ̅̅ ]
2
√[𝑔𝑁

3 (𝑡𝑘) − 𝑔𝑁
3̅̅ ̅̅ ]
2
                                                                                        (9) 

𝜆3 =
∑ {[ℎ𝑀

3 (𝑡𝑘) − ℎ𝑀
3̅̅ ̅̅ ] × [ℎ𝑁

3 (𝑡𝑘) − ℎ𝑁
3̅̅̅̅ ]}𝑛

𝑘=1

√[ℎ𝑀
3 (𝑡𝑘) − ℎ𝑀

3̅̅ ̅̅ ]
2
√[ℎ𝑁

3 (𝑡𝑘) − ℎ𝑁
3̅̅̅̅ ]
2
                                                                                           (10) 

 

Definition 7. Take 𝑀,𝑁 ∈ Γ(𝑈). Using Equations (8) and (9), 

𝐶𝑃(𝑀,𝑁) =
1

2
(𝜆1 + 𝜆2)                                                                                                                                    (11) 

is obtained. The Equation (11) is said to be C. 

Definition 8. Take 𝑀,𝑁 ∈ Γ(𝑈). Using Equations (8), (9), and (10), 

𝐶𝑃𝐻(𝑀,𝑁) =
1

2
(𝜆1 + 𝜆2 + 𝜆3)                                                                                                                          (12) 

is obtained. The Equation (12) is said to be C. 

Theorem 2. Take 𝑀,𝑁 ∈ Γ(𝑈). 
a. 𝐶𝑃(𝑀,𝑁) = 𝐶𝑃(𝑁,𝑀), 

b. −1 ≤ 𝐶𝑃(𝑀,𝑁) ≤ 1, 

c. If 𝑀 = 𝛼𝑁, for some 𝛼, then 

𝐶𝑃(𝑀,𝑁) = {
1,              𝛼 > 0
−1,            𝛼 < 0.

 

Proof: The proof is item a is clear. 

b. Let’s utilize the Cauchy-Schwarz inequality: 
 

(𝜆1)
2 =

(

 
∑ {[𝑓𝑀

3(𝑡𝑘) − 𝑓𝑀
3̅̅ ̅] × [𝑓𝑁

3(𝑡𝑘) − 𝑓𝑁
3̅̅ ̅]}𝑛

𝑘=1

√[𝑓𝑀
3(𝑡𝑘) − 𝑓𝑀

3̅̅ ̅]
2
√[𝑓𝑁

3(𝑡𝑘) − 𝑓𝑁
3̅̅ ̅]
2

)

 

2

 

=
(∑ {[𝑓𝑀

3(𝑡𝑘) − 𝑓𝑀
3̅̅ ̅] × [𝑓𝑁

3(𝑡𝑘) − 𝑓𝑁
3̅̅ ̅]}𝑛

𝑘=1 )
2

(√[𝑓𝑀
3(𝑡𝑘) − 𝑓𝑀

3̅̅ ̅]
2
√[𝑓𝑁

3(𝑡𝑘) − 𝑓𝑁
3̅̅ ̅]
2
)

2  

≤
[∑ [𝑓𝑀

3(𝑡𝑘) − 𝑓𝑀
3̅̅ ̅]
2
× ∑ [𝑓𝑁

3(𝑡𝑘) − 𝑓𝑁
3̅̅ ̅]
2

𝑛
𝑘=1

𝑛
𝑘=1 ]

[∑ [𝑓𝑀
3(𝑡𝑘) − 𝑓𝑀

3̅̅ ̅]
2
× ∑ [𝑓𝑁

3(𝑡𝑘) − 𝑓𝑁
3̅̅ ̅]
2

𝑛
𝑘=1

𝑛
𝑘=1 ]

= 1. 

Then, |(𝜆1)
2| ≤ 1. Similarly, |(𝜆2)

2| ≤ 1. Therefore 

|𝐶𝑃(𝑀,𝑁)| = |
1

2
(𝜆1 + 𝜆2)| ≤

1

2
(|𝜆1| + |𝜆2|) ≤

1

2
(1 + 1) = 1. 

Hence 𝐶𝑃(𝑀,𝑁) ∈ [−1,1]. 

c. If 𝑀 = 𝛼𝑁, then 𝑓𝑀(𝑡𝑘) = 𝛼𝑓𝑁(𝑡𝑘), 𝑔𝑀(𝑡𝑘) = 𝛼𝑔𝑁(𝑡𝑘). For 𝛼 > 0,  

𝜆1 =
∑ {[𝑓𝑀

3(𝑡𝑘) − 𝑓𝑀
3̅̅ ̅] × [𝑓𝑁

3(𝑡𝑘) − 𝑓𝑁
3̅̅ ̅]}𝑛

𝑘=1

√[𝑓𝑀
3(𝑡𝑘) − 𝑓𝑀

3̅̅ ̅]
2
√[𝑓𝑁

3(𝑡𝑘) − 𝑓𝑁
3̅̅ ̅]
2

=
∑ {[𝛼𝑓𝑀

3(𝑡𝑘) − 𝛼𝑓𝑀
3̅̅ ̅] × [𝑓𝑁

3(𝑡𝑘) − 𝑓𝑁
3̅̅ ̅]}𝑛

𝑘=1

√[𝛼𝑓𝑀
3(𝑡𝑘) − 𝛼𝑓𝑀

3̅̅ ̅]
2
√[𝑓𝑁

3(𝑡𝑘) − 𝑓𝑁
3̅̅ ̅]
2
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=
𝛼3∑ {[𝑓𝑀

3(𝑡𝑘) − 𝑓𝑀
3̅̅ ̅] × [𝑓𝑁

3(𝑡𝑘) − 𝑓𝑁
3̅̅ ̅]}𝑛

𝑘=1

𝛼3√[𝑓𝑀
3(𝑡𝑘) − 𝑓𝑀

3̅̅ ̅]
2
√[𝑓𝑁

3(𝑡𝑘) − 𝑓𝑁
3̅̅ ̅]
2

= 1. 

Similarly, 𝜆2 = 1. Hence, 𝐶𝑃(𝑀,𝑁) =
1

2
(𝜆1 + 𝜆2) = 1. 

Take 𝛼 > 0. Choose 𝛼 = −𝑎 for 𝛼 > 0. Therefore, 

𝜆1 =
(−1)𝑎3∑ {[𝑓𝑀

3(𝑡𝑘) − 𝑓𝑀
3̅̅ ̅] × [𝑓𝑁

3(𝑡𝑘) − 𝑓𝑁
3̅̅ ̅]}𝑛

𝑘=1

𝑎3√[𝑓𝑀
3(𝑡𝑘) − 𝑓𝑀

3̅̅ ̅]
2
√[𝑓𝑁

3(𝑡𝑘) − 𝑓𝑁
3̅̅ ̅]
2

= (−1)3 = −1. 

Likewise, 𝜆2 = 1, and the proof is complete. 

Theorem 3. Take 𝑀,𝑁 ∈ Γ(𝑈). Then, 

d. 𝐶𝑃𝐻(𝑀,𝑁) = 𝐶𝑃𝐻(𝑁,𝑀), 

e. −1 ≤ 𝐶𝑃𝐻(𝑀, 𝑁) ≤ 1, 

f. If 𝑀 = 𝛼𝑁, for some 𝛼, then 

𝐶𝑃𝐻(𝑀,𝑁) = {
1,              𝛼 > 0
−1,            𝛼 < 0.

 

 

5. Applications 

5.1. Medical Application 

For this study, Kirisci and Şimşek [28] example of infectious illness was was modified to illustrate how the 

recommended strategy in MCDM may be applied. The illness state of the patients will be determined by taking 

into account their symptoms and using the distance, similarity, and correlation criteria. The ailment from which 

the patient suffers the most will be identified based on the findings. 

 

Let 𝐻 = {𝐻1, 𝐻2, 𝐻3, 𝐻4} and 

𝑈 = {𝐻𝑒𝑝𝑎𝑡𝑖𝑡𝑢𝑠 𝐶, 𝐶𝑟𝑖𝑚𝑒𝑎𝑛 𝐻𝑒𝑚𝑜𝑟𝑟ℎ𝑎𝑔𝑖𝑐 𝐹𝑒𝑣𝑒𝑟(𝐶𝐶𝐻𝐹), 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑧𝑎(𝐻1𝑁1), 𝑠𝑎𝑛𝑑𝑙𝑦 𝑓𝑒𝑣𝑒𝑟, 𝑛𝑜𝑟𝑜𝑣𝑖𝑟𝑢𝑠} 
= {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5} 

be the set of patients and the set of five infectious diseases, respectively. Further, let 

𝑆 = {𝑐ℎ𝑒𝑠𝑡 𝑝𝑎𝑖𝑛, 𝑐𝑜𝑢𝑔ℎ, 𝑠𝑡𝑜𝑚𝑎𝑐ℎ 𝑝𝑎𝑖𝑛, ℎ𝑒𝑎𝑑𝑎𝑐ℎ𝑒, 𝑡𝑒𝑚𝑝𝑟𝑎𝑡𝑢𝑟𝑒} = {𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5} be the set of symptoms. 

 

The links between disease-symptoms (DS) and patient-symptoms (PS) will be analyzed using the 

maximization of correlation, minimization of distance, and maximization of similarity. 

 
Table 1. Disease-symptoms  

 𝒔𝟏 𝒔𝟐 𝒔𝟑 𝒔𝟒 𝒔𝟓 

𝑼𝟏 (0.1, 0.9) (0.2, 0.9) (0.8, 0.5) (0.4, 0.5) (0.9, 0.2) 

𝑼𝟐 (0.2, 0.7) (0.7, 0.6) (0.7, 0.4) (0.8, 0.4) (0.9, 0.1) 

𝑼𝟑 (0.4, 0.6) (0.9, 0.2) (0.1, 0.7) (0.7, 0.5) (0.8, 0.4) 

𝑼𝟒 (0.5, 0.7) (0.2, 0.7) (0.6, 0.6) (0.8, 0.3) (0.9, 0.1) 

𝑼𝟓 (0.3, 0.7) (0.2, 0.8) (0.8, 0.5) (0.9, 0.1) (0.4, 0.6) 

 
Table 2. Patient-symptoms  

 𝒔𝟏 𝒔𝟐 𝒔𝟑 𝒔𝟒 𝒔𝟓 

𝑯𝟏 (0.0, 0.6) (0.6, 0.3) (0.8, 0.1) (0.2, 0.6) (0.8, 0.3) 

𝑯𝟐 (0.1, 0.4) (0.4, 0.5) (0.6, 0.3) (0.7, 0.4) (0.8, 0.1) 

𝑯𝟑 (0.1, 0.5) (0.8, 0.1) (0.3, 0.7) (0.5, 0.7) (0.8, 0.2) 

𝑯𝟒 (0.3, 0.5) (0.0, 0.8) (0.2, 0.6) (0.6, 0.5) (0.9, 0.1) 
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Table 3. Values of C 

 𝑼𝟏 𝑼𝟐 𝑼𝟑 𝑼𝟒 𝑼𝟓 

𝑯𝟏 0.6347 -0.1614 0.7791 -0.0138 0.5217 

𝑯𝟐 0.1290 -0.3876 0.7958 -0.2451 0.4592 

𝑯𝟑 0.2193 0.2682 0.5135 -0.1405 0.1470 

𝑯𝟒 0.5315 0.3758 0.5016 0.4816 0.6973 

 

 
Table 4. Values of CH 

 𝑼𝟏 𝑼𝟐 𝑼𝟑 𝑼𝟒 𝑼𝟓 

𝑯𝟏 0.4233 -0.5857 0.7225 -0.0079 0.2851 

𝑯𝟐 0.0894 -0.3165 0.7143 -0.2017 0.1928 

𝑯𝟑 0.0065 0.1436 0.2619 -0.0291 0.0790 

𝑯𝟒 0.5315 0.3758 0.5016 0.4816 0.6184 

 

 
Table 5. Values of CP 

 𝑼𝟏 𝑼𝟐 𝑼𝟑 𝑼𝟒 𝑼𝟓 

𝑯𝟏 0.6198 0.5983 0.3704 -0.2177 0.1912 

𝑯𝟐 0.7354 -0.1508 0.1005 0.1606 -0.0810 

𝑯𝟑 0.2268 0.1325 0.4913 -0.0190 -0.0125 

𝑯𝟒 0.1798 0.6784 0.0672 0.1609 0.7164 

 

 
Table 6. Values of CPH 

 𝑼𝟏 𝑼𝟐 𝑼𝟑 𝑼𝟒 𝑼𝟓 
𝑯𝟏 0.6829 0.4136 0.1184 -0.0189 0.0463 
𝑯𝟐 0.3381 0.6932 0.1057 0.2460 -0.1340 
𝑯𝟑 0.0136 0.1695 0.2656 -0.1298 -0.0450 
𝑯𝟒 0.1073 0.3407 0.0506 -0.2741 0.4713 

 

 

5.2. Data Mining Application: Pattern Recognition 

Pattern recognition on the other hand is an engineering application of data mining and machine learning, it 

is a process of recognizing patterns such as images or speech. Once a neural net is trained using machine 

learning algorithms it can be used for pattern recognition. Other methods, even ones not related to machine 

learning and data mining can be used for pattern recognition such as a fully handcrafted pattern recognition 

system. 

Pattern recognition can be defined as the classification of data based on knowledge already gained or on 

statistical information extracted from patterns and/or their representation. One of the important aspects of 

pattern recognition is its application potential. In this context, pattern recognition refers to the classification of 

an unknown pattern into some known patterns with the help of compatibility measures. Here, use of our 

proposed correlation coefficients in pattern recognition has been made. 

Now, we take some known patterns 𝑀𝑖 = {(𝑢𝑘, 𝑓𝑀(𝑢𝑘), 𝑔𝑀(𝑢𝑘)):  𝑢𝑘 ∈ 𝑈,   𝑘 = 1,2,… , 𝑙}  for 𝑖 =

1,2,… ,𝑚. Further, we chooses an unknown pattern 𝑁 = {(𝑢𝑘 , 𝑓𝑁(𝑢𝑘), 𝑔𝑁(𝑢𝑘)):  𝑢𝑘 ∈ 𝑈,   𝑘 = 1,2, … , 𝑙}. 
In this application, our aim is to classify the unknown model 𝑁 to one of the known models 𝑀𝑖. In order to 

achieve this goal, the unknown 𝑁 model will be assigned to one of the known  𝑀𝑖  (𝑖 = 1,2,… ,𝑚) models 

according to the following methods: 

Firstly, we will use the distance method. Let 𝐷(𝑀𝑖, 𝑁) denote the distance between the known pattern. 𝑀𝑖 
and the unknown pattern 𝑁. According to this method, 𝑁 is assigned to 𝑀𝑖∗ , where 𝑖∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑖𝐷(𝑀𝑖, 𝑁) for 

𝑖 = 1,2, … ,𝑚. 

Secondly, we will use the correlation method. Let 𝐶(𝑀𝑖, 𝑁) denote the correlation between the known 

pattern. 𝑀𝑖  and the unknown pattern 𝑁 . According to this method, 𝑁  is assigned to 𝑀𝑖∗ , where 𝑖∗ =



M. Kirisci / FOMJ 4(1) (2023) 1–14                                                                                   9 

𝑎𝑟𝑔𝑚𝑎𝑥𝑖𝐶(𝑀𝑖, 𝑁) for 𝑖 = 1,2, … ,𝑚. 

 

Thirdly, we will use the similarity method. Let 𝑆(𝑀𝑖, 𝑁) denote the similarity between the known pattern. 

𝑀𝑖 and the unknown pattern 𝑁. According to this method, 𝑁 is assigned to 𝑀𝑖∗ , where 𝑖∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖𝑆(𝑀𝑖, 𝑁) 
for 𝑖 = 1,2, … ,𝑚. 

 

Shahzaib et al’s [35] distance measures: 

𝐷𝑆𝐻𝐴𝐻1(𝑀,𝑁) =
1

2|𝑈|
∑(|𝑓𝑀

3 − 𝑓𝑁
3| + |𝑔𝑀

3 − 𝑔𝑁
3 | + |ℎ𝑀

3 − ℎ𝑁
3 |)

𝑢𝑖∈𝑈

 

𝐷𝑆𝐻𝐴𝐻2(𝑀,𝑁) =
1

4|𝑈|
[∑(|𝑓𝑀

3 − 𝑓𝑁
3| + |𝑔𝑀

3 − 𝑔𝑁
3 | + |ℎ𝑀

3 − ℎ𝑁
3 |)

𝑢𝑖∈𝑈

+ ∑(|𝑓𝑀
3 − 𝑓𝑁

3| + |𝑔𝑀
3 − 𝑔𝑁

3 |)

𝑢𝑖∈𝑈

] 

 

Kirisci’s [24] Euclidean distance measures: 

 

𝐷𝐾𝐼𝑅𝐼𝑆𝐶𝐼1(𝑀,𝑁) =
1

2𝑛
(∑(|𝑓𝑀

3 − 𝑓𝑁
3| + |𝑔𝑀

3 − 𝑔𝑁
3 | + |ℎ𝑀

3 − ℎ𝑁
3 |)

𝑢𝑖∈𝑈

)

2

 

𝐷𝐾𝐼𝑅𝐼𝑆𝐶𝐼1(𝑀,𝑁) =
1

2𝑛
(∑ 𝜔𝑖(|𝑓𝑀

3 − 𝑓𝑁
3| + |𝑔𝑀

3 − 𝑔𝑁
3 | + |ℎ𝑀

3 − ℎ𝑁
3 |)

𝑢𝑖∈𝑈

)

2

 

 

Shahzaib et al’s [35] similarity measures: 

 

𝑆𝑆𝐻𝐴𝐻1(𝑀,𝑁) = 1 −
1

2|𝑈|
∑(|𝑓𝑀

3 − 𝑓𝑁
3| + |𝑔𝑀

3 − 𝑔𝑁
3 | + |ℎ𝑀

3 − ℎ𝑁
3 |)

𝑢𝑖∈𝑈

 

 

𝑆𝑆𝐻𝐴𝐻2(𝑀,𝑁) = 1 −
1

4|𝑈|
[∑(|𝑓𝑀

3 − 𝑓𝑁
3| + |𝑔𝑀

3 − 𝑔𝑁
3 | + |ℎ𝑀

3 − ℎ𝑁
3 |)

𝑢𝑖∈𝑈

+ ∑(|𝑓𝑀
3 − 𝑓𝑁

3| + |𝑔𝑀
3 − 𝑔𝑁

3 |)

𝑢𝑖∈𝑈

] 

 

Kirisci’s [24] cosine similarity measures: 

 

𝑆𝐾𝐼𝑅𝐼𝑆𝐶𝐼1(𝑀,𝑁) =
1

𝑛
∑

𝑓𝑀
3(𝑢𝑖)𝑓𝑁

3(𝑢𝑖) + 𝑔𝑀
3 (𝑢𝑖)𝑔𝑁

3 (𝑢𝑖) + ℎ𝑀
3 (𝑢𝑖)ℎ𝑁

3 (𝑢𝑖)

(𝑓𝑀
6(𝑢𝑖) + 𝑔𝑀

6 (𝑢𝑖) + ℎ𝑀
6 (𝑢𝑖))

1/3(𝑓𝑁
6(𝑢𝑖) + 𝑔𝑁

6 (𝑢𝑖) + ℎ𝑁
6 (𝑢𝑖))

1/3

𝑛

𝑘=1

 

𝑆𝐾𝐼𝑅𝐼𝑆𝐶𝐼2(𝑀,𝑁) =
1

𝑛
∑𝜔𝑖

𝑓𝑀
3(𝑢𝑖)𝑓𝑁

3(𝑢𝑖) + 𝑔𝑀
3 (𝑢𝑖)𝑔𝑁

3 (𝑢𝑖) + ℎ𝑀
3 (𝑢𝑖)ℎ𝑁

3 (𝑢𝑖)

(𝑓𝑀
6(𝑢𝑖) + 𝑔𝑀

6 (𝑢𝑖) + ℎ𝑀
6 (𝑢𝑖))

1/3(𝑓𝑁
6(𝑢𝑖) + 𝑔𝑁

6 (𝑢𝑖) + ℎ𝑁
6 (𝑢𝑖))

1/3

𝑛

𝑘=1

 

 

 

Example 1. Let 𝑀1,𝑀2 and 𝑀3 be three known patterns and 𝑈 = {𝑢1, 𝑢2, 𝑢3, 𝑢4}. Then, the known patterns 𝑀𝑖 
is given as 

𝑀1 = {(𝑢1, 0.46, 0.68), (𝑢2, 0.55, 0.73), (𝑢3, 0.38, 0.84), (𝑢4, 0.70, 0.25)} 
𝑀2 = {(𝑢1, 0.81, 0.34), (𝑢2, 0.24, 0.91), (𝑢3, 0.27, 0.79), (𝑢4, 0.35, 0.65)} 
𝑀3 = {(𝑢1, 0.18, 0.85), (𝑢2, 0.43, 0.67), (𝑢3, 0.54, 0.39), (𝑢4, 0.70, 0.25)} 

 

An unknown pattern 𝑁 is shown as 

𝑁 = {(𝑢1, 0.67, 0.33), (𝑢2, 0.39, 0.44), (𝑢3, 0.51, 0.55), (𝑢4, 0.42, 0.29)} 
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Our aim is to find out the pattern to which 𝑁  belongs. For this, we calculate the 

correlation/distance/similarity between 𝑁 and 𝑀𝑖 (i = 1, 2, 3), and the results are listed in Table 7. Weights are 

𝜔 = {0,36, 0.14, 0.22, 0.28}. 
 
 

Table 7. Calculated values of various measures 

 (𝑴𝟏, 𝑵) (𝑴𝟐, 𝑵) (𝑴𝟑, 𝑵) Outcomes 

𝑪(𝑴,𝑵) 0.403 0.485 0.332 𝑴𝟏 

𝑪𝑯(𝑴,𝑵) 0.462 0.617 0.378 𝑴𝟐 

𝑪𝑷(𝑴,𝑵) 0.681 0.734 0.543 𝑴𝟐 

𝑪𝑷𝑯(𝑴,𝑵) 0.605 0.698 0.499 𝑴𝟐 

𝑫𝑺𝑯𝑨𝑯𝟏(𝑴,𝑵) 0,378 0.500 0,434 𝑴𝟐 

𝑫𝑺𝑯𝑨𝑯𝟐(𝑴,𝑵) 0.279 0.386 0,312 𝑴𝟐 

𝑫𝑲𝑰𝑹𝑰𝑺𝑪𝑰𝟏(𝑴,𝑵) 0.422 0.422 0.4221 Not Classified 

𝑫𝑲𝑰𝑹𝑰𝑺𝑪𝑰𝟐(𝑴,𝑵) 0.026 0.022 0.035 𝑴𝟑 

𝑺𝑺𝑯𝑨𝑯𝟏(𝑴,𝑵) 0.622 0.500 0.566 𝑴𝟏 

𝑺𝑺𝑯𝑨𝑯𝟐(𝑴,𝑵) 0.721 0.614 0.688 𝑴𝟏 

𝑺𝑲𝑰𝑹𝑰𝑺𝑪𝑰𝟏(𝑴,𝑵) 0.031 0.038 0.025 𝑴𝟐 

𝑺𝑲𝑰𝑹𝑰𝑺𝑪𝑰𝟐(𝑴,𝑵) 0.007 0.007 0.007 Not Classified 

 

 

5.3. Comparative Analysis 

 

The Cs suggested in this work will be contrasted with previously with previously investigated measuring 

methods. 

 

First method [7]: 

𝐶𝐶𝐻𝐸𝑁𝐺𝐶𝐻𝐴𝑁𝐺(𝑀,𝑁) = 1 −
1

𝑛
∑([𝑓𝑀(𝑡𝑘) − 𝑓𝑁(𝑡𝑘)] × [1 −

ℎ𝑀(𝑡𝑘) + ℎ𝑁(𝑡𝑘)

2
])

𝑛

𝑘=1

 

+[∫ |𝑓𝑀(𝑡𝑘) − 𝑓𝑁(𝑡𝑘)|𝑑𝑥
1

0

] × [
ℎ𝑀(𝑡𝑘) + ℎ𝑁(𝑡𝑘)

2
]                                                                                  (13) 

where 

𝑓𝑀𝑡𝑘
(𝑥) =

{
 

 
1,                                                     𝑖𝑓 𝑥 = 𝑓𝑀(𝑡𝑘) = 1 − 𝑔𝑀(𝑡𝑘),

1 − 𝑔𝑀(𝑡𝑘) − 𝑥

1 − 𝑓𝑀(𝑡𝑘) − 𝑔𝑀(𝑡𝑘)
,             𝑖𝑓 𝑥 ∈ [𝑓𝑀(𝑡𝑘), 1 − 𝑔𝑀(𝑡𝑘)],

0,                                                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

Second method [31]: 

𝐶𝑃𝐸𝑁𝐺1(𝑀,𝑁) =
1

𝑛
∑ [

(𝑓𝑀(𝑡𝑘))
2
∧ (𝑓𝑁(𝑡𝑘))

2
+ ((𝑔𝑀(𝑡𝑘))

2
) ∧ ((𝑔𝑁(𝑡𝑘))

2
)

(𝑓𝑀(𝑡𝑘))
2
∨ (𝑓𝑁(𝑡𝑘))

2
+ ((𝑔𝑀(𝑡𝑘))

2
) ∨ ((𝑔𝑁(𝑡𝑘))

2
)
]

𝑛

𝑘=1

                              (14) 

 

 

𝐶𝑃𝐸𝑁𝐺1(𝑀, 𝑁) =
1

𝑛
∑ [

(𝑓𝑀(𝑡𝑘))
2
∧ (𝑓𝑁(𝑡𝑘))

2
+ (1 − (𝑔𝑀(𝑡𝑘))

2
) ∧ (1 − (𝑔𝑁(𝑡𝑘))

2
)

(𝑓𝑀(𝑡𝑘))
2
∨ (𝑓𝑁(𝑡𝑘))

2
+ (1 − (𝑔𝑀(𝑡𝑘))

2
) ∨ (1 − (𝑔𝑁(𝑡𝑘))

2
)
]

𝑛

𝑘=1

                (15) 

 

Third method [40]: 
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𝐶𝑊𝐸𝐼(𝑀,𝑁) =
1

𝑛
∑

[
 
 
 (𝑓𝑀(𝑡𝑘))

2
(𝑓𝑁(𝑡𝑘))

2
+ ((𝑔𝑀(𝑡𝑘))

2
) ((𝑔𝑁(𝑡𝑘))

2
)

√(𝑓𝑀(𝑡𝑘))
4
+ (𝑔𝑀(𝑡𝑘))

4
+√(𝑓𝑁(𝑡𝑘))

4
+ (𝑔𝑁(𝑡𝑘))

4

]
 
 
 𝑛

𝑘=1

                                      (16) 

Fourth method [43]: 

 

𝐶𝑍𝐻𝐴𝑁𝐺(𝑀,𝑁)

=
1

𝑛
∑

[|𝑓𝑀(𝑡𝑘)
2 − 𝑔𝑁(𝑡𝑘)

2| + |𝑔𝑀(𝑡𝑘)
2 − 𝑓𝑁(𝑡𝑘)

2| + |ℎ𝑀(𝑡𝑘)
2 − ℎ𝑁(𝑡𝑘)

2|]

[
|𝑓𝑀(𝑡𝑘)

2 − 𝑓𝑁(𝑡𝑘)
2| + |𝑔𝑀(𝑡𝑘)

2 − 𝑔𝑁(𝑡𝑘)
2| + |ℎ𝑀(𝑡𝑘)

2 − ℎ𝑁(𝑡𝑘)
2| + |𝑓𝑀(𝑡𝑘)

2 − 𝑔𝑁(𝑡𝑘)
2|

+|𝑔𝑀(𝑡𝑘)
2 − 𝑓𝑁(𝑡𝑘)

2| + |ℎ𝑀(𝑡𝑘)
2 − ℎ𝑁(𝑡𝑘)

2|
]

𝑛

𝑘=1

      (17) 

 

 

Table 8 shows that all tests produced the same results, proving that patients H3 and H4 had the norovirus 

and influenza A (H1N1) viruses, respectively. Six measurements for the H1 patient revealed that he had hepatitis 

C, two measurements revealed that he had influenza A (H1N1) disease, and one measurement revealed that he 

had sandfly fever disease when the findings of all techniques were combined. Similarly, five tests revealed 

Hepatitis C, three revealed influenza A(H1N1), and one revealed Crimean-Congo Haemorrhagic Fever (CCHF) 

in patient H2. The findings obtained using the Cs indicated in this investigation were discovered to be identical 

to the measurements of (13) − (17). 
 

Table 8. Comparison results 

 𝑯𝟏 𝑯𝟐 𝑯𝟑 𝑯𝟒 

C 𝑈3 𝑈3 𝑈3 𝑈5 

𝑪𝑯 𝑈3 𝑈3 𝑈3 𝑈5 

𝑪𝑷 𝑈1 𝑈1 𝑈3 𝑈5 

𝑪𝑷𝑯 𝑈1 𝑈2 𝑈3 𝑈5 

𝑪𝑪𝑯𝑬𝑵𝑮_𝑪𝑯𝑬𝑵𝑮 𝑈1 𝑈1 𝑈3 𝑈5 

𝑪𝑷𝑬𝑵𝑮𝟏 𝑈1 𝑈1 𝑈3 𝑈5 

𝑪𝑷𝑬𝑵𝑮𝟐 𝑈1 𝑈1 𝑈3 𝑈5 

𝑪𝑾𝑬𝑰 𝑈4 𝑈3 𝑈3 𝑈5 

𝑪𝒁𝑯𝑨𝑵𝑮 𝑈1 𝑈1 𝑈3 𝑈5 

 

6. Discussion 

There are several applications for fuzzy and non-standard fuzzy C implementations, including image 

segmentation, cluster analysis, pattern classification, etc. While appearing to have the same effects, these acts in 

this scenario lead to different results. Various findings are achieved using various similarity, distance, and 

correlation measurements. This discrepancy results from these metrics' inability to assess the full degree of 

uncertainty or needed accuracy in such sets. 

The benefits of the suggested techniques can be explained as follows: A beneficial, useful, and greatly 

generalized model of IFs and PFs is the FFS method. In this situation, professionals offer their opinions 

concerning the degree of membership with more independence. If uncertain data are forced to adopt the 

constrained form of IFNs and PFNs, then the ability to choice the optimal alternative from a collection of 

alternatives is hindered. Data mutilation would result from the aforementioned situations. To offer effective 

answers in such pressing situations, a more comprehensive version is required. Given that they are a useful 

extension of IFs and PFs, FFSs produce more accurate and precise results when applied to real-world 

MCGDM situations that contain FF information. 

The first differentiating aspect of FF-based Cs is that they are more comparable to human judgment due to 
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the presence of additional cognitive ambiguity features such as MD, ND, and neutrality. Once they get their 

values in the range [-1, 1], the new Cs are able to appreciate two negatively associated qualities. Given these 

advantages, the proposed Cs appear to be useful for estimating real-world knowledge in data challenges. 

Notwithstanding all of the benefits, the new Cs have several restrictions. The Cs for FFSs are difficult to 

implement to the clean data present in storages and other places. This may be achieved via transformation 

equations or by establishing a multi-dimensional language database. 

 

Weakness of the new approach: The proposed extension of the C method uses variance and covariance. 

When C is calculated according to the values obtained in these concepts, the formation of equal values will 

complicate the decision-making process. In this case, the variance and covariance values need to be 

reconsidered. 

 

7. Conclusion 

First, let us go through the benefits of the provided strategy and how it differs from others. FFSs, as is well 

known, can examine situations with ambiguity and insufficient info more effectively than IFs. Given that the 

sets of Pythagorean and intuitionistic MDs are not as large as the sets of Fermatean FMs [32], it is obvious that 

FFSs will have far more comprehensive options for finding and resolving uncertainty than IF and PF. 

As defined by MD + ND  1, IF is a accomplished extension of F for dealing with ambiguity. In some 

circumstances, it will be MD+ND>1. The IF approach will be inadequate to fix this problem in these 

circumstances. PF, which Yager pioneered, has evolved to address this shortcoming. PF is a natural expansion 

of F theory that yields positive outcomes. However, there are some cases where MD
2
+ ND

2
>1 becomes. In this 

case PF will not be an effective solution technique. 

In the literature, there exist Cs derived using IFs and PFs, as well as methods established employing these 

Cs. As previously stated, some instances may not be represented by IFs and PFs, and therefore suitable 

outcomes from their respective algorithms may not be produced. The Cs acquired with IFs and PFs are a 

subset of the Cs obtained with FFSs. The proposed C is hence more generic than current ones and better suited 

to handling real-world situations. 

Correlation is a statistical method that reveals the relationship between two components. A C is the primary 

consequence of a correlation. This research is devoted to characterizing a C for FFS. In this paper, the 

restriction criteria MD+ND  1 for IF and MD
2
 + ND

2
  1 for PF were extended to the FFS C. The numerical 

example that demonstrates supplied C may readily operate in situations where the existing Cs in the IF and PF 

structures fail. The essential properties of FFSs are that each FFS has an MF and an NF based on the items in 

the sample space. As a result, the association between FFSs has distinct properties. The Cs of FFSs according 

to both MFs and NFs are examined, as have the results acquired by numerous researchers in prior studies. The 

example cases demonstrate how the provided C in the FFS structure may easily operate the real-life problem 

with their goals. The benefits of Cs characterized in the FFS are demonstrated by computed outcomes as 

follows: The findings obtained with the proposed Cs are more sensitive. As a consequence, computational 

overheads are decreased, and the outcomes are more applicable to real-world settings. 
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