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In this paper, the distance between two vertices in a fuzzy graph is defined in a 

new way. In addition, some new degree-based fuzzy graph polynomials are 

introduced. By using this definition, fuzzy graph polynomials, and a special 

lower triangular matrix, the Wiener index and the generalized Wiener index of 

a fuzzy graph are computed, which coincide with the Wiener index and the 
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1. Introduction 

The first definition of a fuzzy graph was given by Kaufmann [5]. His definition was under Zadeh’s fuzzy 

relation [13]. After that, Rosenfeld [9] introduced the fuzzy graph theory by considering fuzzy relations on 

fuzzy sets. He established some relations concerning the properties of path graph, trees, and various graphs. The 

generalization of a crisp graph is a fuzzy graph. Therefore, there are many similar properties between them. 

Let G=(V, E)  be a graph. We denote the distance between two vertices u and v of G by d(u,v)  and defined 

as the number of edges in the shortest path connecting u and v. The oldest and most studied distance-based 

structure descriptor is the Wiener index introduced as early as in 1947 [11] and defined as the sum of the 

distances between all vertex pairs of the underlying graph: 

{ , }

( ) ( , )
u v V

W G d u v


   

In [10], the authors introduced two new degree-based graph polynomials, and established their relations to 

the Wiener index and the degree distance. In this paper, we intend to define a polynomial similar to one of them 
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for fuzzy graphs, and use it to obtain the Wiener index for fuzzy graphs. But before defining the Wiener index in 

a fuzzy graph, we need to define the distance between two vertices in a fuzzy graph. In the research literature, 

the distance between two vertices in fuzzy graphs is defined in such a way that, in a special case, it does not 

correspond to the concept of distance in crisp graphs (see [2], [4], and [6]). Thus, in the special case, the Wiener 

index of a crisp graph does not follow from the Wiener index of a fuzzy graph. 

We define the distance between vertices in a fuzzy graph in such a way that the distance between two 

vertices in a crisp graph can be obtained in a particular case. Based on this definition, it is easy to see that the 

Wiener index in crisp graphs results from the Wiener index in fuzzy graphs. We will also see that using the 

polynomial mentioned above and the new distance concept, the Wiener index can be calculated as a fuzzy 

graph. Using a special lower triangular matrix, we calculate a generalized Wiener index in the fuzzy graph, and 

finally, we calculate the Wiener index in the fuzzy graphs of certain binary operations on pairs of graphs, and 

we will see that in a particular case, they are equal to crisp graphs. 

2. Preliminaries  

In this section, we collect some of the definitions and the results that will be required afterward. To begin 

with, we go through a few essential definitions from [7]. 

 

Definition 1. A fuzzy subset of a non-empty set S  is a map : [0,1]S   which assigns to each element x  in 

S a degree of membership ( )in [0,1] x  such that 0 ( ) 1x  .  

      If S  represents a set, a fuzzy relation   on S is a fuzzy subset of S S . If V  is a nonempty set, then we 

define the relation ~ on V V  by for all ( , ),( , )x y u v V V  , ( , ) ~ ( , )x y u v  if and only if x u  and  y v or 

x v  and y u . It is easy to show that ~  is an equivalence relation on V V . For all ,x y V , let [( , )]x y  

denote the equivalence class of ( , )x y  with respect to ~ . Then [( , )] {( , ),( , )}.x y x y y x Let

{[( , )] | , , }.V x y x y V x y    Often write  for V  when V  is understood. Let E . A graph is a pair 

( , )V E . The elements of   V are the vertices of the graph and the elements of E as the edges. For ,x y V , we 

let xy denote[( , )]x y . Clearly, we have xy yx . We note that graph ( , )V E  has no loops or parallel edges. 

Definition 2. A fuzzy graph ( , , )G GG V   is a triple consisting of a nonempty set V together with a pair of 

functions : : [0,1]G V    and : : [0,1]G   such that for all ,x y V , ( ) ( ) ( )xy x y    , where 

denote minimum. 

The fuzzy set  is called the fuzzy vertex set of G and  the fuzzy edge set of G . 

Definition 3. [7, pp.15] A path P in a fuzzy graph ( , , )G V   is a sequence of distinct vertices 0 1, , , nx x x

(except possibly 0x and nx ) such that 1( ) 0i ix x    for 1, ,i n . Here n is called the length of the path. We call 

P a cycle if 0 nx x and 3n  . 

Definition 4. (See [7, Definition 3.3.1]) Let ( , , )G V   be a fuzzy graph. The degree x V  is denoted by 

( )Gd x and defined as ( ) ( )G

y V

d x xy


 . 

Definition 5. [8, Definition 3.1] Let ( , , )G V    be a fuzzy graph. The size of G is denoted by ( )S G and 

defined as ( )
xy

xy


 . 

Definition 6. [4, Definition 3.1] A fuzzy star graph 1 2( ) ( , , )nF S V V    consists of two vertex sets 

1 2 2 3{ } { , ,..., }nV v andV u u u  such that 1( ) 0iv u  for 2 i n  and ( ) 0j ku u  for 2 ,j k n  and j k . 

 

In 1989, Bhutani [1], introduced the concept of a complete fuzzy graph as follows. A complete fuzzy graph 

is a fuzzy graph ( , , )G V   such that ( ) ( ) ( )uv u v    for all ,u v V . In this paper, we present a new 

definition of complete fuzzy graph. 

Definition 7. Let ( , , )G V    be a fuzzy graph. We say that G  is a complete fuzzy graph ( )CFG in which 
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0 ( ) min{ ( ); }uv k v v V     , for all , .u v V  

Definition 8. Let 1 1 1 1( , , )G V    and 2 2 2 2( , , )G V   be two fuzzy graphs such that 1 2V V   . Sum of two 

fuzzy graphs 1G  and 2G  is denoted by 1 2 ( , , )G G V     such that 1 2V V V  ,  

𝜎(𝑣) = {
𝜎1(𝑣)      ,         𝑣 ∈ 𝑉1

𝜎2(𝑣)      ,         𝑣 ∈ 𝑉2
 ,      

1 1

2 2

1 2

( ) , ,

( ) ( ) , ,

, , 

uv u v V

uv uv u v V

k u V v V



 




 
  

, 

where 1 2min{ ( ), ( )}k u v  for every 1 2anV du v V  . 

Definition 9. Let 1 1 1 1( , , )G V   and 2 2 2 2( , , )G V    be two fuzzy graphs. The Cartesian product of graphs 1G  

and 2G is denoted by 1 2 ( , , )G G V    is a fuzzy graph such that 1 2V V V  , 1 2(( , )) ( ) ( )u v u v    , where 

 is denoted maximum and 

2

1

( ) , if 

(( , )( , )) ( ) , if 

0 , .

vv u u

u v u v uu v v

o w



 

 

   

 


 



 

We have 
1 2 1 2

( , ) ( ) ( ).G G G Gd u v d u d v    

 

Definition 10. Let 1 1 1 1( , , )G V    and 2 2 2 2( , , )G V    be two fuzzy graphs. The composition 

1 2 ( , , )G oG V    is a fuzzy graph such that 1 2V V V  , 1 2(( , )) ( ) ( )u v u v    for every 1u V , 2v V and  

2 2

1 1

( ), ( )

(( , )( , )) ( ), ( )

,

,

,

0 .

vv if u u vv G

u v u v uu uu G

o w



 

 

   

  


 



 

We have 
1 2 1 2

( , ) 2 ( ) ( ).G oG G Gd u v d u d v   

3. Main results 

In this section, we will introduce a lower triangular matrix and prove an important theorem by using this 

matrix which we will use to compute the generalized Wiener index in a fuzzy graph. Furthermore, we present 

two polynomials of a fuzzy graph and get some applications. Let 

 

1 0 0 0 0 0 0

1 1 0 0 0 0 0

1 3 1 0 0 0 0

,1 7 6 1 0 0 0

1 15 25 10 1 0 0

1 31 90 65 15 1 0

A

 
 
 
 
 

  
 
 
 
 
 

 

where entry ija of lower triangle of A is as follows: 

( 1)( 1) ( 1)

1 , 1 or 

, 1 .

0 , .

ij i j i j

j j i

a a ja j i

o w

  

 


   



 

In the next lemma, the inverse of matrix A is presented. 
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Lemma 1.   The inverse of the matrix A is as follows: 

1

1 0 0 0 0 0 0

1 1 0 0 0 0 0

2 3 1 0 0 0 0

: ,6 11 6 1 0 0 0

24 50 35 10 1 0 0

120 274 225 85 15 1 0

B A

 
 
  

  
 

     
   
 
    
 
 

 

where entry ijb of lower triangle of 1A is as follows: 

1

( 1)( 1) ( 1)

1 ,

( 1) ( 1)! , 1

( 1) , 1

0 , .

i

ij

i j i j

j i

i j
b

b i b j i

o w



  




  
 

   


. 

Proof. Suppose that [ ] .ij n nAB C c    We compute ijc for all ,i j separately. We first consider the special 

case 1.i j   

11 1 1 11 11

1

1.
n

k k

k

c a b a b


    

The case i j will prove similarly; that is, iic = 1. Now consider the case 1i   and 1.j   

1 1 1 11 1

1 2

n n

i ik k i ik k

k k

c a b a b a b
 

     1

( 1)( 1) ( 1)

2

1 ( )(( 1) ( 1)!)
n

k

i k i k

k

a ka k

  



      

1 1

( 1)( 1) ( 1)

2 2

1 ( 1) ( 1)! ( 1) ( 1)!
n n

k k

i k i k

k k

k a k k a 

  

 

         

1 1
1 1

( 1) ( 1) ( 1)

1 2

1 ( 1) ! ( 1) ! ( 1) !
n n

k k n

i k i k i n

k k

k a k a n a
 

 

  

 

         

1
1 1

( 1)1 ( 1)

2

1 ( 1) 1! (( 1) ( 1) ) ! 0 0.
n

k k

i i k

k

a k a




 



         

Now let 1    .i j   

1 2 ( 1)

1

0 0 0 0 0 0
n

ij ik kj i i ii i j nj

k

c a b a a a b b



       . 

Finally we consider the case 1    .j i   

1 2 ( 1) ( 1) ( 1)

1

0 0 0
n

ij ik kj i i i j ij jj i j j j

k

c a b a a a a b a b  



        

( 1) ( 1) ( 1)0 0
i

i j j j ii ij i j nj ik kj

k j

a b a b b b a b  



      

( 1)( 1) ( 1) ( 1)( 1) ( 1)( )
i i i

i k i k kj i k kj i k kj

k j k j k j

a ka b a b ka b     

  

       

1 1

( 1) ( 1) ( 1) ( 1)

1

i i

i k k j i k kj i i ij

k j k j

a b ka b ia b
 

   

  

     
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1 1

( 1) ( 1) ( 1)

1

( )
i i

i k k j kj i k kj

k j k j

a b kb ka b
 

  

  

     

1 1 1

( 1) ( 1) ( 1) ( 1)

1 1

i i i

i k k j i k kj i k kj

k j k j k j

a b ka b ka b
  

   

    

      

1 1 1

( 1) ( 1) ( 1)( 1) ( 1) ( 1) ( 1)

1

( 1)
i i i

i k k j i j j j i k kj i k kj

k j k j k j

a b j a b ka b ka b
  

      

   

        

11 2

( 1) ( 1) ( 2) ( 2) ( 1) 1

1 2

(i-j+1

1

)1 c =0.
i ji i

i k k j i k k j i j k k

k j k j k

a b a b a b
  

     

    

      

Therefore, 𝐴𝐵 = 𝐶 = 𝐼𝑛×𝑛 and 𝐵 = 𝐴−1. 

Lemma 2.   Let { }and{ }n nb t be two sequences of real numbers and  

1

( ) ,n

m
t

n

n

f x b x


  

where x  is a positive real number. Then 

1 1 ( )

1 1

( ),n

m k
tk j j

n n kj

n j

b t x a x f x
 

 

   

where kja is the entry in the kth row and the jth column in matrix ,A k is a positive integer, and ( )jf is 
thj order 

derivative of .f  In particular, 

( )

1 1

(1).
m k

k j

n n kj

n j

b t a f
 

   

Proof. We proceed by induction on ,k with the case 1k  being trivial. Let 1i  and the theorem is true for 

.k i By the induction hypothesis 

1 1 ( )

1 1

( ).n

m i
ti j j

n n ij

n j

b t x a x f x
 

 

   

multiplying the preceding equation by x gives 

( )

1 1

( ).n

m i
ti j j

n n ij

n j

b t x a x f x
 

   

By differentiating the preceding equation with respect to x , we obtain 

11 1 ( ) ( 1)

1 1 1

( ) ( )n

m i i
ti j j j j

n n ij ij

n j j

b t x ja x f x a x f x
  

  

     

1 ( ) ( 1) ( 1)

1

2 1

( ) ( ) 1 ( ) ( )
i i

j j j j i i

i ij ij ii

j j

a f x ja x f x a x f x a x f x   

 

      

1 ( ) 1 ( ) ( 1)

( 1)1 ( 1) ( 1)( 1)

2 2

( ) ( ) ( ) ( )
i i

j j j j i i

i ij i j i i

j j

a f x ja x f x a x f x a x f x   

   

 

     

1 ( ) ( 1)

( 1)1 ( 1) ( 1)( 1)

2

( ) ( ) ( ) ( )
i

j j i i

i ij i j i i

j

a f x ja a x f x a x f x  

   



    

1
1 ( )

( 1)

1

( ).
i

j j

i j

j

a x f x








  

   By the above Lemma, we will calculate the generalized Wiener index in a fuzzy graph (See Theorem 2). For 

another application of the above lemmas, suppose that { } { }n nb and t are two sequences of real numbers and 

1

( ) ,n

m
t

n

n

f x b x


  

where x is a positive real number. In addition, Let ( )( (1), (1), , (1))kX f f f   and   
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2

1 1 1

( , , , ).
m m m

k

n n n n n n

n n n

Y b t b t b t
  

     

Then 
1 .X A Y  

    

Now, we present two polynomials of the fuzzy graph and get some applications. 

Definition 11. Let ( , , )G V   be a fuzzy graph and let the sequence  

1 2 1 2( , , , ) : ( ( ), ( ), , ( ))n G G G nd d d d v d v d v  

be fuzzy degree sequence of G such that 1 2 .nd d d   We define its  fuzzy degree polynomial  by: 

1

( ) : .i

n
d

G

i

S x x


  

Lemma 3.   Let 1 2( , , , )nd d d be the fuzzy degree sequence of fuzzy graph ( , , )G V   such that 1.id   

Then 
1

0
1

1 1
( ) .

n

G

i i

S x dx
x d

  

Proof. The proof of this fact is straightforward. 

   By the definition, if ( , , )G V   be a fuzzy graph, then we have  1   ;GS V n   and    ' 1  2 .GS S G  

Theorem 1.  Let 1 1 1 1( , , )G V   and 2 2 2 2( , , )G V   be two fuzzy graphs such that 1 1| |V n and 2 2| |V n . Then, 

1)
1 2 1 2

( ) ( ) ( );G G G GS x S x S x    

2) 2 1

1 2 1 2
( ) ( ) ( );kn kn

G G G GS x x S x x S x    

3) 
1 2 1 2

( ) ( ) ( ).G G G GS x S x S x    

Proof. We prove these assertions directly. 

1) 1 2 1 2

1 2 1 2

1 2 1 2

( ) ( ) ( )
( ) ( ) ( ).G G G Gd v d v d v

G G G G

v V V v V v V

S x x x x S x S x



   

        

2)   

2 11 2 1 2

1 2

1 2 1 2

2 1

1 2

( ) ( ) ( )
( )

( ) ( ).

G G G Gd v d v kn d v kn

G G

v V V v V v V

kn kn

G G

S x x x x

x S x x S x

  



   

  

 

  
 

3) 

1 2 1 2

1 2

1 2 1 2

1 2 1 2

1 2

1 2 1 2

( , ) ( ) ( )

( , ) ( , )

( ) ( ) ( ) ( )

, 

( )

( ) ( ).

G G G G

G G G G

d a b d a d b

G G

a b V V a b V V

d a d b d a d b

G G

a V b V a V b V

S x x x

x x x x S x S x

 



   

   

 

     

 

  
 

   Let ( , , )G V   be a connected fuzzy graph. Rosenfeld [19] has defined   length of any u v path P as the 

sum of reciprocals of arc weights in P and distance between u and v called the   distance denoted by 

( , ),d u v as the the smallest   length of P . When G is a crisp graph, Rosenfeld's definition of distance 

between u and v is not the length of the shortest path. Here we introduce a new definition for distance between 

two vertices u and v in a fuzzy graph G . 

Definition 12. Suppose that r is the length of the shortest path between two vertices , .u v V  The distance 

between two vertices u and v of G is denoted by ( , )d u v and is defined as 
1

1 0

0

( , ) min{ ( ); , , }.
r

i i r

i

d u v u u u u u v






      

By our definition, if ( ) 1uv   for all , ,u v V then ( , )d u v is the length of the shortest path as in the crisp graph. 

In what follows, when G is a fuzzy graph we consider ( , )d u v according to the above equation. 

We define Wiener index in the connected fuzzy graph ( , , )G V   as 
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{ , }

( ) ( , ).
u v V

W G d u v


   

We also define generalized Wiener index in the connected fuzzy graph as follows 

{ , }

( ) ( , ) .k k

u v V

W G d u v


   

Example 1. Let ( )nF S be a fuzzy star graph of order n . Then        1 .n nW F S n S F S   

Definition 13. Let ( , , )G V   be a fuzzy graph. We define the polynomial ( , )G x as: 
( , )

{ , }

( , ) .d u v

u v V

G x x


   

Assume that ,V n by the above definition we have: 

( ,1)  and ( ,1) ( ).
2

n
G G W G

 
  

 
 

Example 2. Let ( , , )G V   be a CFG of order 𝑛 (See definition 7). Then 

{ , }

.( , )
2

k k

u v V

n
G x x x



 
   

 
  

Theorem 2.    Let ( , , )G V   be a connected fuzzy graph. Then 

( )

1

( ) ( ,1).
k

k j

kj

j

W G a G


  

Proof. It follows from Lemma 2. 

Theorem 3.   Let   1 1 1 1( , , )G V   and 2 2 2 2( , , )G V   be two connected fuzzy graphs such that 1 1| |V p  and 

2 2.V p  Also assume that ( , ) 2d u v k for every 1,u v V or 2, .u v V Then we have 

1 2

1 2

1 2

( , ) ( , )1 2

1 2 1

( ) ( )
, ,

( , ) ( )
2

G Gu v u vk

uv G uv G
u v V u v V

p
G G x x q x x

 

 
 

 
     

 
   

2 2

2 1 2( )
2

k k
p

q x x p p
 

   
 

 

Proof. By the definition, we have 

1 2 1

1 2 1 1

1 1

( , ) ( , ) 2

1 2

{ , } ( ) ( )
, ,

( , ) G G Gd u v u v k

u v V V uv G uv G
u v V u v V

G G x x x x


   
 

       

2

2 2 1

2 2 2

( , ) 2

( ) ( )
, ,

G u v k k

uv G uv G u V
u v V u v V v V

x x x


  
  

      

1 2

1 2

1 2

( , ) ( , )1 2

1

( ) ( )
, ,

( )
2

G Gu v u vk

uv G uv G
u v V u v V

p
x q x x
 

 
 

 
    

 
   

 

2 2

2 1 2.( )
2

k k
p

q x x p p
 

   
 

 

From the above theorem, we can compute the Wiener index in the fuzzy graph 𝐺1 ∨ 𝐺2. 

1

1

1

1

( , ) 1 1 2 1

1 2 1

( )
,

( , ) ( , ) 2 ( )
2

G u v k

G

uv G
u v V

p
G G x u v x k q x




 




 
     

 
  

2

2

2

2

( , ) 1 2 2 1 1

2 1 2

( )
,

.( , ) 2 ( )
2

G u v k k

G

uv G
u v V

p
u v x k q x kx p p




  




 
    

 
  

So, 
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1 2

1 2 1 2 1 2 1 2 1 2( ,1) ( ) ( ) ( ) 2 ( ) .
2 2

p p
G G W G G S G S G k q q kp p

   
             

   
 

Corollary 1. When 1G and 2G  are two connected crisp graphs, we have 1 1 2 2( ) , ( )S G q S G q  and 1.k   

Therefore, 

1 2

1 2 1 2 1 2( ) 2 2 ( ).
2 2

p p
W G G p p q q

   
        

   
 

The above result coincides with [12, Theorem 2]. 

Theorem 4.  Let 1 1 1 1( , , )G V   and 2 2 2 2( , , )G V   be two connected fuzzy graphs such that 1 1| |V p and 

2 2.V p Then 

2 1 2 11 2 1 2( , ) ( ) ( ) 2 ( ) ( )G G G GG G x p x p x x x     

Proof. It is easy to prove that 

1 2 1 2
(( , ),( , )) ( , ) ( , ).G G G Gd u v u v d u u d v v

      

So, by the definition we have 

1 2
(( , ),( , ))

1 2( , )
( , ),( , )} 1 2

G Gd u v u v
G G x x

u v u v V V

  
 

   
  

1 2 2
( , ) ( , ) ( , )

{( , ),( , )} 1 2
{ , } 2

G G Gd u u d v v d v v
x x

u v u v V V u u

v v V

  
 

    

 

   

1 1 2
( , ) ( , ) ( , )

1 2( , )

,
{ , } 1

G G Gd u u d u u d v v
x x p G x

v v u u v v
u u V

  
  

    
 

   

1 2
( , ) ( , )

2 1( , ) 2
{ , } { , }1 2

G Gd u u d v v
p G x x x

u u V v v V

 
  

  
   

1 2 2 1 1 2( , ) ( , ) 2 ( , ) ( , ).p G x p G x G x G x     

From the above theorem we have 

2

1 2 1 2 1 2 2 1 1( ,1) ( ) ( ) ( ) 2 ( )
2

p
G G W G G pW G p W G W G

 
        

 
 

1 2 2

2 1 2 2 1 1 2 2 2 1 12 ( ) ( ) ( ) ( )( ) ( )( )
2

p
W G pW G p W G W G p p W G p p

 
       

 
 

2 2

1 2 2 1( ) ( ).p W G p W G   

By [12, Theorem 1], if 1G and 2G are two connected graphs, then 
2 2

1 2 1 2 2 1( ) ( ) ( ).W G G p W G p W G    

So, we can see that our result is true in the crisp graphs. 

Remark 1.  Let 1 1 1 1( , , )G V    and 2 2 2 2( , , )G V   be two connected fuzzy graphs. By our definition of 

distance between two vertices in a fuzzy graph ,G we have 

1

1 2 2

1

1

2

( , ) , if { , }

(( , )( , )) ( , ) , if ,{ , } .

( , ) ,

 

 

,

.

 

 

  

G

G oG G

G

d u u v v u u V

d u v u v d v v u u v v V

d u u o w



   

   


  




 

Theorem 5.  Let 1 1 1 1( , , )G V   be a connected fuzzy graph and 2 2 2 2( , , )G V   be a fuzzy graph such that 

2 ( ) 0uv  for every ,u v in 2 .V  Then 
2

1 2 2 1 1 2( ) ( ) ( ).W G oG p W G p S G   
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Proof. By our definition, we have 

 

    1 2
(( , ),( , ))

1 2( , )
{( , ),( , )} 1 2

G oGd u v u v
G oG x x

u v u v V V

 


   
   1 1

( , ) ( , )

{ , } { , }1 2

  

G Gd u u d v v
x x

v v u u
u u V v v V

 
 

  
 

   

                              1 1 2
( , ) ( , ) ( )

2

{ , } , { , }1 2
{ , } ( )2

   

1

 

G Gd u u d u u vvx x x
u u V v v V v v u u

u u V vv G

  
  

      
  

    

1
( , )

2 .
{ , } , { , }1 2

Gd u u
x

u u V v v V




  
  

 

So, 

2

1 2 1 2 2 1 1 2 1( ,1) ( ) ( ) ( ) 2 ( )
2

p
G oG W G oG p W G p S G W G

 
      

 

2

2 1 1 2( ) ( ).p W G p S G   

Example 3. Let ( )pF S be a fuzzy star graphs and let ( , , )G V   be a  CFG of order n and vertex degrees .k

Then  

2( ( ) ) ( 1) ( ( )) .
2

p p

n
W F S oG n p S F S pk

 
    

 
 

4. Conclusion 

In this paper, the distance between two vertices in a fuzzy graph is defined in a different way. Also, some 

new degree-based fuzzy graph polynomials are introduced. By utilizing a special lower triangular matrix, the 

Wiener index and the generalized Wiener index of a fuzzy graph are computed, which coincide with the Wiener 

index and the generalized Wiener index in the crisp graph. The result is used to compute the Wiener index of the 

sum, products, and composition of two fuzzy graphs. It seems that by defining other suitable polynomials, it is 

possible to calculate other topological indices such as the Zagreb index in the fuzzy graph. 
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