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A R T I C L E  I N F O  A B S T R A C T 

The data envelopment analysis (DEA) a data-oriented approach for evaluating 

the relative performance of decision-making units (DMUs). The traditional 

DEA applies only to crisp data, whereas the data collected in the real world 

may be ambiguous and imprecise. The fuzzy DEA is an extension of the DEA 

using the fuzzy variable to deal with uncertain or imprecise data. This paper 

proposes two new fuzzy arithmetic-based DEA models with dynamic weights 

and common weights, formulated as multiple objective decision-making 

(MODM), and proposed models are represented as the linear programs 

providing the compromise solutions. The numerical experiment is illustrated to 

examine the validity of the proposed models, and the experiment shows that the 

proposed models give better results than other models. The proposed fuzzy 

DEA models are applied to predict the energy efficiency of 40 iron and steel 

enterprises in China. 

Article history:  

Received 11 January 2024 

Revised 20 February 2024 

Accepted 9 March 2024 

Available online 9 April 2024 

Keywords: 

Fuzzy Data Envelopment 

Analysis  

Common Weight 

Efficiency Prediction 

Energy Efficiency 

 

 

1. Introduction 
Data Envelopment Analysis (DEA) is a data-oriented approach for evaluating the relative efficiency of a set 

of homogeneous decision-making units (DMUs) which usually consume multiple inputs to produce multiple 

outputs. Traditional data envelopment analysis does not require any prior information, but it applies only to 

crisp data of all inputs and outputs [42]. However, the input and output values observed in real-world 

applications sometimes contain missing data, judgment data, or predictive data, and in general, those are 

imprecise or vague data [1]. The existence of any missing value or outlier in the data might cause the efficiency 

measurement of most DMUs to change drastically [21].  

The uncertain or imprecise data can be expressed by fuzzy numbers [38]. The fuzzy DEA was first 

suggested by Sengupta [36] as an extension of the DEA using the fuzzy variable to deal with uncertain or 

imprecise data. The fuzzy DEA has some advantages [16, 29]. First, uncertainty in measurement can be 

incorporated to different degrees. Second, it can incorporate qualitative variables such as expert judgment trade-

offs and environmental variables. Third, fuzzy DEA can handle missing observations, and finally, decision-
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makers can analyze how efficiency scores change with different levels of uncertainty measured. 

Many researchers have formulated different fuzzy DEA models in recent years. The approach to fuzzy DEA 

in the literature can mainly be classified into four categories, namely, the tolerance approach, the  -level-based 

approach, the possibility approach, and the fuzzy ranking approach [29]. The tolerance approaches, such as 

Sengupta [36] and Kahraman and Tolga [18] , use the concept of fuzziness in DEA modelling by defining 

tolerance levels on constraint violations. The limitation is related to the design of a DEA model with a fuzzy 

objective function and fuzzy constraints which may or may not be satisfied. The  -level-based approaches, 

such as Kao and Liu [21], Angiz et al. [2], Ren et al. [32], and Cinaroglu [8], are based on the basic principle 

that first uses the concept of the  -cuts method to the fuzzy inputs and outputs for a given  -level, then 

mathematically reform the model by   variable. The drawback is that considerable computational effort is 

required to obtain fuzzy efficiencies of DMUs. In the possibility approach, such as Lertworasirikul et al. [24], 

Ruiz and Sirvent [34], Darijani et al. [10], and Omrani et al. [30], there exist two kinds of the approach called 

the “possibility approach” and the “credibility approach”, which modelled the uncertainty in the fuzzy objective 

function and fuzzy constraints with possibility measures from both optimistic and pessimistic viewpoints. In the 

possibility approach, the decision-maker has to determine parameters such as possibility level. In the fuzzy 

ranking approach, such as Lotfi et al. [26], Hatami-Marbini et al. [13], Liu et al. [25], Tabatabaei et al. [39], 

Mahmoudabadi et al. [27], Majdi et al. [28], and Gerami et al. [12], the main idea is to find the fuzzy efficiency 

scores of the DMUs using fuzzy linear programs which require ranking the fuzzy set. 

As a kind of fuzzy ranking approach, there is the fuzzy arithmetic approach on which the paper focuses. In 

some literature, it is even considered an equivalent classification with the fuzzy ranking approach. The fuzzy 

arithmetic approach focuses on the fact that decision-makers are not allowed to convert a fuzzy fractional 

program to a linear problem model using conventional methods. That is to say, 
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[11]. Accordingly, Wang et al. [41] represented the 

fuzzy data as the triangular fuzzy number and introduced a fuzzy arithmetic approach to evaluate the fuzzy 

efficiency of DMUs by using three linear program problems without the need for making any assumptions. 

Bhardwaj et al. [5]  mentioned the flaws of Wang et al. [41] and proposed an improved model to address those 

problems. As pointed out by Bhardwaj et al. [5], the method of Wang et al. [41] provides only the best possible 

solution for each item in fuzzy DEA, which is not a real one. To obtain the optimal fuzzy efficiency of each 

DMU, Bhardwaj et al. [5] proposed a three-step optimization process to maximize the three-mark values of 

fuzzy efficiency in order. In detail, the method first calculates an optimal lower value of the fuzzy efficiency, 

then calculates an optimal modal value of fuzzy efficiency under the constraint of getting the lower value, and 

finally, calculates an optimal upper value of fuzzy efficiency under the constraint of getting both of the lower 

value and the modal value. This method gives the optimal solution for the lower value of fuzzy efficiency, and it 

is not discussed in the whole sense. That is, the optimization process was performed independently three times 

in Wang et al. [41], whereas three-step of serial processing in Bhardwaj et al. [5]. 

Thus, this paper designs the fuzzy DEA based on fuzzy arithmetic by multiple objective decision-making 

(MODM), which simultaneously optimizes the three-mark values of fuzzy efficiency represented as a triangular 

fuzzy number. The best possible solutions obtained from Wang et al. [41] are regarded as the ideal solutions of 

the three markers of fuzzy efficiency. We derive a new model of a compromise solution from producing the 

minimum distance between real mark values and the ideal mark values of fuzzy efficiency and get a linear 

program model. 

Then, we extend the model to one on common weights. Standard DEA allocates the most favourable 

weights to maximize the efficiency of individual DMUs. If DMUs are experiencing similar circumstances, then 

the pricing of inputs and outputs should apply uniformly across all DMUs, and the use of different weights for 

any DMUs makes their efficiencies unable to be compared and ranked on the same basis [19]. For this, the 

common set of weights (CSW) method in DEA was first proposed by Cook and Kress [9], which calculates the 

efficiency only by common weights for each input and output data and eliminates inter-unit weight flexibility 

[33]. Kao and Hung [20] stated that the frontier produced by a dynamic set of weights (DSW) is ideal and the 

efficiency generated by CSW should be closest to the ideal efficiency generated by DSW. Similar to the need 

for CSW in standard DEA, in the fuzzy DEA, we might need to evaluate DMUs with imprecise data in the same 

circumstance on the same basis. Hence, several approaches also suggested the fuzzy DEA models on CSW, 

such as Saati and Memariani [35], Payan [31], Hu et al. [15], Shabani et al. [37], Kachouei et al. [17] and 
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Kazemi [22]. Some of them are also based on fuzzy arithmetic. Azar et al. [3] extended the fuzzy arithmetic 

approach of Wang et al. [41] to the approach of fuzzy DEA on CSW. Bagheri et al. [4] mentioned that the 

model of Azar et al. [3] has no guarantee to obtain a unique optimal solution and suggested a method to solve 

the multiple objective linear program using a lexicographic approach for it. Although it had advantages such as 

the models being linear and simple to solve, since those models are considered only at the lower value of the 

triangular fuzzy number, the persuasiveness of the solutions is insufficient. With our study, extending the fuzzy 

DEA with dynamic weights mentioned above, a fuzzy DEA with common weights is also developed in the 

direction of multiple objective decision-making. 

After all, this paper proposes two new fuzzy DEA models with dynamic weights and common weights, 

which can be applicable regardless of the circumstances of DMUs. Two models are formulated as linear 

programs for obtaining the compromise solutions. The two proposed models are applied to the experimental 

data of Wang et al. [41], and the results are compared to previous studies. Then, we introduce the two models to 

an actual application, the prediction of energy efficiency of the iron and steel industry in China. Although there 

exist several studies on energy efficiency of the iron and steel industry, such as Chen et al. [7], He et al. [14], 

and Wang et al. [40], those are all limited to the evaluation of existing data. The up-to-dateness of data plays an 

important role in the managerial establishment, but in most cases, we can only use past data due to data access 

rights and data incompleteness. We predict the energy efficiency of 40 iron and steel enterprises in China from 

past periods’ data, through a new prediction framework provided in this paper. The indicator values for next 

year are firstly predicted as a triangle fuzzy number from the past year's data, then two fuzzy DEA models 

proposed are introduced to evaluate the efficiency of virtual DMUs with predicted indicator values. Then, the 

energy efficiencies of enterprises in 2018 are estimated and analyzed. 

Some main advantages of this paper are 1) depending on the nature of the application, we can choose to use 

one of the two fuzzy models with dynamic weights and common weights 2) the models are linear and easy to 

solve, 3) two models give reliable results and make all DMUs are fully ranked, and 4) this is the first approach 

for prediction of energy efficiency about iron and steel industry. 

The paper is organized as follows: Section 2 reviews the background of the fuzzy operator, CCR model, and 

fuzzy DEA. Section 3 introduces two fuzzy DEA models with dynamic weights and common weights. Section 4 

and Section 5 illustrate a numerical experiment and an empirical situation, respectively, and the last section 

concludes the paper. 

 

2. Background 
2.1. Fuzzy Operator 

A fuzzy number is a convex fuzzy set, characterized by a given interval of real numbers, each with a grade 

of membership between 0 and 1. The most commonly used fuzzy numbers are triangular, defined as follows. 

Definition 1: A fuzzy number ( , , )L M UA a a a  is said to be a triangular fuzzy number if its membership 

function is given by 
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                                                                                   (1) 

Definition 2: A triangular fuzzy number ( , , )L M UA a a a  is a positive triangular fuzzy number if and only if 

0La  . 

Let ( , , )L M UA a a a  and ( , , )L M UB b b b  be two positive triangular fuzzy numbers. Then basic fuzzy 

arithmetic operations on these fuzzy numbers are defined as 

Addition :
 

( , , )L L M M U UA B a b a b a b       

Subtraction :
 

( , , )L U M M U LA B a b a b a b      

Multiplication :
 

( , , )L L M M U UA B a b a b a b   
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Division :
 

/ ( , , )UL M

U M L
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The operations on a fuzzy number A  and a crisp number ( 0)c c   can proceed by considering c  as a 

triangular fuzzy number in the form of ( , , )c c c . 

2.2. CCR model 

The CCR model, proposed by Charnes, Cooper, and Rhodes [6], is one of the most basic DEA models. The 

factional program of the CCR model with m  inputs and s  outputs is as follows. 
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where ( 1, , )ru r s  and ( 1, , )iv i m  are the output and input weights assigned to the r th output and the 

i th input; respectively, and 0DMU  refers to the DMU for assessing. 

The following linear program can replace the above fractional program, 
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and it is called the input-oriented CCR multiplier model. The following two facts are satisfied: the fractional 

program model (2) is equivalent to the multiplier model (3); the optimal values of max 
*

0 =   in model (2) and 

model (3) are independent of the units in which the inputs and outputs are measured provided these units are the 

same for every DMU. 

2.3. Fuzzy DEA 

CCR model (2) can only be used for cases where the data are crisp. Model (4) is formulated by introducing 

fuzzy input-output variables to model (2). 
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The fuzzy arithmetic approach considers that the objective 0 01 1
/
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m

i ii
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  unless 1  is assumed to be a crisp number. 

Without loss of generality, all input and output data ijx and rjy  are assumed to be uncertain and 

characterized by triangular fuzzy numbers  , ,L M U

ij ij ij ijx x x x  and  , ,L M U

ij rj rj rjy y y y . Crisp input and output 

data can be considered a special case of triangular fuzzy input and output data ijx and rjy  with 
L M U

ij ij ijx x x   
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and 
L M U

rj rj rjy y y  . Then the efficiency of DMU j
 is defined as 
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The following fuzzy DEA model is constructed to measure the performance of each DMU: 
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For model (6), as long as 
U

j is kept being less than or equal to one, then 1L

j   and 1M

j   will be 

automatically satisfied. The model can therefore be simplified as 
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For model (7), Wang et al. [41] proposed a method to obtain the best possible values of  0 0 0, ,L M U    

captured by the following models: 
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The first n  constraints in the model (8)-(10) are the same; objective functions are different from each other. 

In the Wang et al.’s methods, the values are obtained by solving the crisp DEA models (8)–(10), separately. In 

other words, Wang et al. decomposed the simultaneous optimization problem (7) and converted it into three 

individual optimization problems (8), (9), and (10). As a result, the solutions obtained from models (8), (9), and 

(10) are possible solutions, but are not real solutions for the model (7). Hence, the solutions obtained above 

model (8)–(10) are not the optimal solutions of fuzzy DEA model (4), i.e., it is not possible to find an optimal 

solution of fuzzy DEA model (4) using the Wang et al.’s methods. 

 

3. Proposed Method 
3.1. Fuzzy DEA based on DSW (DSW-FDEA) 

To obtain the maximum value of 0 , above model (7) can be considered as MODM which simultaneously 

maximizes all mark values 
0
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M , and 
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The model (11) is a fractional program with multiple objectives and the issue is how to determine the final 

solution from the set of Pareto optimal solutions. 

Let  * * *

0 0 0, ,L M U    denote the ideal efficiency level that  0 0 0, ,L M U    can be attainable in the model 

(11). Then,  * * *

0 0 0, ,L M U    is determined by solving each of three models aiming at each objective under the 

constraint of the model (11), as result, these individual models are equal to (8), (9), and (10). The solution of 

 0 0 0, ,L M U    that we want to obtain can be regarded as finding the solution closest to  * * *

0 0 0, ,L M U   . So, we 

can set the values  * * *

0 0 0, ,L M U    as the ideal solution of  0 0 0, ,L M U    in the model (11) and obtain a 

compromise solution nearest to the ideal. To determine the degree of closeness between the ideal solution 

 * * *

0 0 0, ,L M U    and a real solution 0 0 0, ,L M U   , a generalized family of distance measures is applied. 
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where superscript 3 denotes the dimension of space discussed and p  represents the distance parameter. 
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The following model is derived from model (11). 
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Model (13) is a non-linear program with one objective, so we try to obtain a linear model. 

Before discussing the above, let us first discuss the following transformation of the standard CCR multiplier 

model (3) mentioned in Zohrehbandian’s approach[43].  

Remark 1. In model (3), denoting the efficiency of DMU j  
as *

j , virtual DMU 
*( , )j j jx y  becomes an 

efficient DMU placed on the frontier. The following model (14) gives the same result as in model (3). 
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        (14) 

Proof. The efficiency in model (3) is calculated from the actual DMUs, whereas the one in model (14) is 

calculated from the virtual efficient DMUs corresponding to the actual DMUs. The second constraint in the 

model (14) is only for weight normalization. In detail, as can be seen in the model (14), the optimal value of the 

objective function is 0. Let be the weight vector for 0DMU  obtained from model (3), then 
*

01
1

m

i ii
v x


 , and 

* *

0 01

s
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u y


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u v h

 
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( , )
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 satisfies all constraints of the model (14) and its objective function’s value is 
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So 

* *

( , )
u v

h h
 becomes an optimal solution of model (14). The efficiency calculated by model (14) is 

* *
* * *

0 o o 0

1 1 1 1

s r s r
j i

j io j j i io

j i j i

u v
y x u y v x

h h
 
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, and is the same as one calculated by model (3). Conversely, the solution of model (3) can be obtained from the 

solution of model (14) and both efficiencies are the same. Thus, the efficiency calculated in model (3) and the 

one calculated in the model (14) are the same. In addition, two weight vectors of model (3) and model (14) for 

each DMU are parallel. So, model (2), model (3), and model (14) give the same results. 

 

Now, let us adopt this transform method from model (2) to model (14) to our problem. Since 

 * * * *, ,L M H

j j j j     is the ideal fuzzy efficiency of DMU j , virtual DMUs 
*( , )L U L

j j jx y , 
*( , )M M M

j j jx y , and
 

*( , )U L U

j j jx y  become the efficient ones in the crisp model (8)-(10), separately. The following model (15)-(17) 

can be derived from model (8)-(10), and the results from the two groups of the models are the same. 
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The constraints of the above three models are the same, but the objects are different. The aim is 

simultaneous optimization, not individual optimization. For constructing MODM from the above three models, 

the following model (18) can be established. 
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  (18) 

 

The constraints did not change from the original and the three objectives are grouped. Compared with the 

original model (11), the model (18) is a multiple objective linear program whereas the model (11) is a multiple 

objective fractional program. 

Now, the ideal value of each objective in the model (18) can be regarded as the value obtained from (15)-

(17), respectively. Considering the optimal value of each object in the model (15)-(17) is 0, we can transform 

the objective of the above model (18) into that for producing the nearest distance between the objective vector 

of the model (18) and the 3-dimensional 0 vector. For the concept of distance, we use the equation (12). 

Therefore, we can set a new objective function instead of that of the model (18) as follows: 

  3 * * *

0 0 0 0 0 0 0 0 01 1 1 1 1 1
min (0,0,0), , ,

s m s m s mL L U M M M U U L

p r r i i r r i i r r i ir i r i r i
d u y v x u y v x u y v x  

     
         

This objective function makes us get the compromise solution. When 1p  , the above model becomes a 

linear program. 

    * * *

0 0 0 0 0 0 0 0 01 1

*

1 1

1 1

min

. . 0, 1, ,

1

, 0, 1, , 1, ,

s mL M U L U M M U L

r r r r i i i ir i

s mU U L

r rj i j ijr i

s m

r ir i

r i

u y y y v x x x

s t u y v x j n

u v

u v i m r s

  



 

 

 

     

  

 

  

 

 

 

    (19) 
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We call model (19) the DSW-FDEA simply. By the weight vector  * *,u v  of 0DMU , obtained from model 

(18), its fuzzy efficiency is calculated as follows: 

 
* * *

0 0 01 1 1
0 0 0 * * *

0 0 01 1 1

, , , ,

s s sL M U
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     (20) 

 

3.2. Fuzzy DEA based on CSW (CSW-FDEA) 

In the evaluation by common weights, all DMUs are evaluated on the same basis so fair evaluation can be 

performed. From this, we try to extend the above study of fuzzy DEA to the common weights. 

The fuzzy DEA using common weights can be viewed as the following MODM problem. 
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We can derive the following model (22). 
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Model (22) is a non-linear program with multiple objectives. This model can be derived in the following 

form that simultaneously optimizes every mark value of fuzzy efficiencies. 
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We can also consider  * * * *, ,L M H

j j j j    , the efficiency of DMU j  obtained in the model (8)-(10), as 

the ideal solution of DMU j  in model (23). 

Like the model with dynamic weights in section 3.1, using the transformation in Remark 1, we can obtain 

compromise resolution from the following model (24). 
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There are 3n  items in the objective. Regarding the ideal value of each item in the objective is 0, this model 

can be considered the compromise one to obtain the common weights which produce the nearest distance from 

3n  dimensional 0 vector. 

As in the above 3-dimensional space, a generalized family of distance measures in 3n  dimensional space 

can be described as follows: 
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If 1p  , the above model (24) can be derived as following compromise model (25). 

     * * *

1 1 1

*

1 1

1 1

min

. . 0, 1, ,

1

, 0, 1, , 1, ,

n s mL M U L U M M U L

r rj rj rj i j ij j ij j ijj r i

s mU U L

r rj i j ijr i

s m

r ir i

r i

u y y y v x x x

s t u y v x j n

u v

u v i m r s

  



  

 

 

     

  

 

  

  

 

 

    (25) 

This model is a linear program. We call the model (25) the CSW-FDEA simply. By the common weight vector 

 * *,u v  obtained from model (25), the efficiency of DMU j  is calculated by equation (20). 

4. Numerical Experiment 
To illustrate the two models of fuzzy DEA proposed, we consider the example presented in Wang et al. [41]. 

For comparison, models of Wang et al. [41], Azar et al. [3] and Bhardwaj et al. [5] are applied to the example. 

The numerical example of eight DMUs with two inputs  1 2,X X  and two outputs  1 2,Y Y  is presented in 

Table 1. 
Table 1. The numerical example of Wang, Luo [41] 

Enterprises 

(DMUs) 

Inputs Outputs 

MC NOE GOV PQ 

A (2120, 2170, 2210) 1870 (14500, 14790, 14860) (3.1, 4.1, 4.9) 

B (1420, 1460, 1500) 1340 (12470, 12720, 12790) (1.2, 2.1, 3.0) 

C (2510, 2570, 2610) 2360 (17900, 18260, 18400) (3.3, 4.3, 5.0) 

D (2300, 2350, 2400) 2020 (14970, 15270, 15400) (2.7, 3.7, 4.6) 

E (1480, 1520, 1560) 1550 (13980, 14260, 14330) (1.0, 1.8, 2.7) 

F (1990, 2030, 2100) 1760 (14030, 14310, 14400) (1.6, 2.6, 3.6) 

G (2200, 2260, 2300) 1980 (16540, 16870, 17000) (2.4, 3.4, 4.4) 

H (2400, 2460, 2520) 2250 (17600, 17960, 18100) (2.6, 3.6, 4.6) 

 

Before applying the proposed models, it is necessary to scale-transform the numerical data. Units invariance 

is satisfied in not only the original CCR model but the original fuzzy DEA model (4). Of course, Wang et al.’s 

model also satisfies “units invariance”. In the case of this proposal, we can say model (18) satisfies “units 

invariance” but model (19) doesn’t. Because of the difference in the value range of each indicator, the 

compromise optimization of the model (19) is affected by these different value ranges, and model (25). To solve 
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this problem, it is necessary to discuss the values of all indicators in the same value range. So, we transform the 

original data to proportionally scaled values between [0,1], with the maximum value of each indicator being 1. 

The data after scale transformation are shown in Table 2. 
Table 2. The scale-transformed data of Table 1. 

Enterprises 

(DMUs) 

Inputs Outputs 

MC NOE GOV PQ 

A (0.813, 0.832, 0.847) 0.793 (0.789, 0.804, 0.808) (0.62, 0.82, 0.98) 

B (0.545, 0.56, 0.575) 0.568 (0.678, 0.692, 0.696) (0.24, 0.42, 0.6) 

C (0.962, 0.985, 1) 1 (0.973, 0.993, 1) (0.66, 0.86, 1) 

D (0.882, 0.901, 0.92) 0.856 (0.814, 0.83, 0.837) (0.54, 0.74, 0.92) 

E (0.568, 0.583, 0.598) 0.657 (0.76, 0.775, 0.779) (0.2, 0.36, 0.54) 

F (0.763, 0.778, 0.805) 0.746 (0.763, 0.778, 0.783) (0.32, 0.52, 0.72) 

G (0.843, 0.866, 0.882) 0.839 (0.899, 0.917, 0.924) (0.48, 0.68, 0.88) 

H (0.92, 0.943, 0.966) 0.954 (0.957, 0.977, 0.984) (0.52, 0.72, 0.92) 

 

For DMUs of Table 2, the dynamic weights and common weights are calculated separately by the model 

(19) and model (25). Using of obtained DSW and CSW, the fuzzy efficiency for each DMU is calculated by 

equation (20) and presented in the last two columns of Table 3. We have also listed the results by Wang et al. 

[41], Azar et al. [3] and Bhardwaj et al. [5] in this table. 

 
Table 3. The comparison between results from proposed methods and the results from different methods. 

DMUs Wang et al.’s Model 

1. 

Bhardwaj et al.’s 

model  

Azar et al.’s model  DSW-FDEA CSW-FDEA 

A (0.813, 0.904, 1) (0.812, 0.829, 0.833) (0.803, 0.821, 0.828) (0.777, 0.904, 1) (0.813, 0.829, 0.833) 

B (0.975, 0.995, 1) (0.975, 1, 1) (0.969, 0.992, 1) (0.975, 0.995, 1) (0.975, 0.995, 1) 

C (0.795, 0.813, 0.905) (0.797, 0.815, 0.825) (0.791, 0.809, 0.817) (0.795, 0.811, 0.817) (0.795, 0.811, 0.817) 

D (0.777, 0.805, 0.907) (0.776, 0.792, 0.799) (0.767, 0.785, 0.794) (0.688, 0.805, 0.907) (0.777, 0.792, 0.799) 

E (0.961, 0.988, 1) (0.973, 1, 1) (0.949, 0.971, 0.979) (0.961, 0.988, 1) (0.945, 0.964, 0.969) 

F (0.836, 0.852, 0.886) (0.835, 0.852, 0.857) (0.824, 0.844, 0.852) (0.836, 0.852, 0.858) (0.836, 0.852, 0.858) 

G (0.876, 0.893, 0.946) (0.875, 0.893, 0.9) (0.866, 0.886, 0.896) (0.876, 0.893, 0.9) (0.876, 0.893, 0.9) 

H (0.82, 0.837, 0.887) (0.82, 0.836, 0.843) (0.815, 0.834, 0.843) (0.82, 0.837, 0.843) (0.82, 0.837, 0.843) 

 

We found that there is a problem with DMU B, C, and E in the result of Bhardwaj et al.’s model. The modal 

value of the fuzzy efficiency for DMU B, C, and E is larger in Bhardwaj et al.’s model than in Wang et al.’s 

model. Considering each value of fuzzy efficiency obtained by Wang et al.’s model is the ideal maximum, 

Bhardwaj et al.’s model has poor reliability of the results in B, C, and E. From the table, it can be confirmed that 

each mark value of the efficiency obtained by the proposed DSW-FDEA and CSW-FDEA is less than or equal to 

one by Wang et al.’s model. In addition, the mark values of the efficiency obtained from DSW-FDEA are larger 

than the corresponding mark values of CSW-FDEA and Azar et al.’s model. From this, it can be confirmed that 

the efficiency obtained from the fuzzy DEA by dynamic weights is larger than the efficiency obtained from the 

fuzzy DEA by common weights. 

To provide a full ranking of all DMUs, Azar et al. [3] recommended the following defuzzification function: 

4
=

6

L M U  


 

          (26) 

Azar et al. [3] stated that other types of defuzzification could also be used and the defuzzification would not 

have much impact on the results. The ranking results by ranking methods recommended by Wang et al. [41] and 

Azar et al. [3] are the same as the experiment results of three models. Hence, we recommend the above 

defuzzification as the ranking method. The ranking result of each method is shown in Table 4. 
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Table 4. The full rankings of DMUs by different methods. 

DMUs Wang et al.’s 
Model 1  

Bhardwaj et al.’s 

model 

Azar et al.’s 

model 

DSW-FDEA CSW-FDEA 

efficiency rank efficiency rank efficiency rank efficiency rank efficiency rank 

A 0.905 3 0.827 6 0.819 6 0.899 3 0.827 6 

B 0.993 1 0.996 1 0.989 1 0.993 1 0.993 1 

C 0.825 7 0.814 7 0.807 7 0.81 7 0.81 7 

D 0.818 8 0.791 8 0.783 8 0.803 8 0.791 8 

E 0.985 2 0.996 2 0.969 2 0.985 2 0.962 2 

F 0.855 5 0.85 4 0.842 4 0.85 5 0.85 4 

G 0.899 4 0.892 3 0.884 3 0.891 4 0.891 3 

H 0.842 6 0.835 5 0.832 5 0.835 6 0.835 5 

From this table, we can notice that the efficiency of each DMU in the DSW-FDEA is smaller than the one 

corresponding to Wang et al.’s model, and is larger than the one corresponding to Azar et al.’s model. Except 

for DMUs B, C, and E, which have problems in Bhardwaj et al.’s model, when comparing the results, the 

efficiency of each DMU is larger in the proposed method. The ranking result of the proposed model with 

dynamic weights is completely consistent with the one by Wang et al.’s model. In addition, the efficiency of 

each DMU in the CSW-FDEA is larger than that of Azar et al.’s model, except for DMU E, and is smaller than 

that of the DSW-FDEA. The ranking result of the DSW-FDEA is consistent with Azar et al.’s model. We don’t 

consider the ranking in Bhardwaj et al.’s model because of the problem above mentioned. 

From these experimental results, the results of the proposed models are reliable. Although the ranking 

results of the proposed DSW-FDEA and Wang et al.’s model are consistent and ones of the proposed CSW-FDEA 

and Azar et al.’s model are consistent, we can notice that the efficiency evaluation of proposed models is more 

accurate than others. The ranking results may differ from other methods if the proposed models are applied to 

other applications. 

5. Empirical Study 
This section reports on the empirical results and the analysis of the proposed models. We describe the data 

and variables for evaluating the energy efficiency of China’s iron and steel industry in 5.1 and explain the 

framework of efficiency prediction in 5.2. Finally, we predict the energy efficiency of 40 iron and steel 

enterprises in 2018 in 5.3. 

5.1. Data and variables 

We estimate the subsequent energy efficiency of 40 iron and steel enterprises in China from the data of past 

years. Due to data access rights, the data of Chinese iron and steel enterprises only in the period 2014-2017 were 

collected, so the purpose of this study is to estimate the energy efficiency of these enterprises in 2018 using 

those data. In selecting indicators for estimating energy efficiency, we considered the views of previous studies. 

He et al. [14] selected three inputs, i.e. net fixed assets, the number of employees, and energy consumption, and 

one desirable output, i.e. industrial value-added, for evaluating the energy efficiency of iron and steel 

enterprises. Here, the industrial value-added is affected by various macroeconomic factors. The prediction of 

industrial value-added in the next period has difficulties due to the influence of several external and 

indeterminate conditions. In addition, some studies such as Kuosmanen [23] argued that using variables 

measured in terms of money, e.g. “net profit”, is not appropriate for measuring (pure) “technical” efficiency. 

If we discuss only the production efficiency with no change in value, we can select the enterprise's crude 

steel production as the output indicator. This indicator is relatively less affected by external conditions such as 

market price fluctuations; it is possible to predict the production of the next period due to its certain regularity. 
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The selected input indicators are as follows: 

- Net fixed assets ( 1X ) – Net fixed assets of the enterprises are the sum of their net investments made 

each year, which are valued at the current price for that year. 

- The number of employees ( 2X ) - Since data on working hours are not available to obtain, the number 

of employed workers is used as the labor force. 

- Energy consumption ( 3X ) – The energy used in iron and steel production, such as coal, electricity, 

fuel, and natural gas, is converted into the corresponding amount of coal needed. 

The selected output indicator is as follows: 

- Crude steel production ( 1Y ) – The qualified output that has completed the whole process of the 

steelmaking production process. 

All data were collected from China Iron and Steel Industry Association, and Table 5 shows the statistical 

summary of the data. These collected data are all crisp values. 
 

Table 5. Statistical summary of data. 

 Variables Unit Mean SD 
a 

Median Min Max 

Inputs Net fixed assets billion Yuan 27.22 20.66 18.26 2.33 91.37 

Energy million tons 5.38 3.57 4.36 0.9 20.09 

Employee thousand workers 21.96 21.34 16.51 5.73 143.11 

Output Crude steel production million tons 8.74 5.1 7.66 2.3 25.66 
a
 Standard deviation 

 

5.2. The framework of efficiency prediction 

The efficiency prediction process consists of the following four steps; 

First, the input/output data of each enterprise in the past is used to estimate the input/output in the next year. 

Second, the input/output values estimated in the first step are expressed as triangular fuzzy numbers. 

Third, by applying the fuzzy DEA, the fuzzy efficiency of each enterprise in the next year is calculated. 

Finally, the defuzzification of fuzzy efficiency is carried out to analyze the ranking. 

The data for the past four years is used to predict the efficiency for the next year. We assume that managers' 

efforts to improve the efficiency do not change. In other words, it implicitly assumes that the efforts between 

2014 and 2017 will be continued in 2018. Linear estimation based on ordinary least squares (OLS) is introduced 

to predict the next value from four-time series data. The linear estimation is simple to use and is advantageous in 

short time series analysis. OLS is the most fundamental form of linear estimation and requires the least 

conditions of the model. OLS finds a regression line that the sum of the distances from all observations to the 

regression line is the smallest. We estimate the fifth value from the past four data. However, the prediction 

always exists error, so we express the predicted value as a triangular fuzzy number. In detail, the crisp value 

obtained by the linear estimation becomes the modal value of the triangular fuzzy number, and the variance of 

the linear estimation is used as the width of the ambiguity, as follows: 

Mp  = Estimation value 

Lp  = Estimation value – Variance of estimation 

Up  = Estimation value + Variance of estimation 

Then, the prediction value is expressed as the following fuzzy number, 

( , , )L M UP p p p  

If we assume the error term of the estimation follows a normal distribution, the prediction range represented 

by the above fuzzy number occupies 68.2% of the possible value range. Therefore, we get the prediction value 

with about 70% reliability. As result, 40 DMUs with three fuzzy inputs and one fuzzy output are created. The 

scale transforming to [0,1] is carried out to reduce the effectiveness of the value range of each indicator in 

resolving the optimal problem. Then, the fuzzy DEA is applied. DSW-FDEA and CSW-FDEA are separately 

applied to evaluate energy efficiency from different viewpoints. 

To provide a full ranking of all DMUs, the defuzzification function (26) is used. 
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5.3. Energy efficiency prediction 

We use data during 2014-2017 to predict the efficiency in 2018. Linear estimation is carried out to predict 

the input and output data for 2018; we expressed it as triangular fuzzy numbers; the result is shown in Table A1 

(Appendix A). 

For 40 virtual DMUs, fuzzy efficiency is calculated from DSW-FDEA and CSW-FDEA, respectively. The 

result is shown in Table A2 (Appendix A). 

In the next step, we proceed with the defuzzification of fuzzy efficiency for ranking DMUs, and we get two 

kinds of efficiencies. The final crisp efficiencies predicted are shown in Table 6. For analysis, we have also 

listed the efficiencies and the ranking results of 2017, which were respectively calculated by DSW and CSW, in 

this table. 
Table 6. The full rankings of 40 iron and steel enterprises in China by different method. 

DMU 2017 (DSW) 2018 (DSW-FDEA) 2017 (CSW) 2018 (CSW-FDEA) 

efficiency rank efficiency rank efficiency rank efficiency rank 

1 0.588 37 0.443 37 0.584 32 0.351 38 

2 0.487 38 0.383 39 0.308 40 0.369 37 

3 0.672 29 0.633 27 0.641 26 0.633 18 

4 0.763 19 0.917 5 0.701 22 0.553 31 

5 0.673 28 0.611 29 0.604 30 0.607 24 

6 0.828 10 0.857 9 0.821 9 0.674 12 

7 0.648 32 0.577 32 0.493 35 0.575 28 

8 0.657 31 0.464 36 0.638 27 0.464 35 

9 0.667 30 0.738 14 0.436 36 0.736 6 

10 0.826 11 0.728 16 0.733 19 0.691 10 

11 0.75 22 0.637 25 0.75 17 0.619 20 

12 0.701 26 0.583 31 0.7 23 0.583 27 

13 0.357 40 0.28 40 0.357 39 0.261 40 

14 0.709 25 0.615 28 0.575 34 0.605 25 

15 0.739 23 0.679 21 0.739 18 0.679 11 

16 0.39 39 0.738 14 0.376 38 0.302 39 

17 0.816 14 0.704 20 0.815 12 0.7 9 

18 0.697 27 0.635 26 0.692 24 0.611 23 

19 1 1 0.978 1 0.989 3 0.89 2 

20 0.643 33 0.389 38 0.417 37 0.389 36 

21 0.725 24 0.65 24 0.704 21 0.646 17 

22 0.841 9 0.705 19 0.836 7 0.656 15 

23 0.764 18 0.785 11 0.763 16 0.66 14 

24 0.941 5 0.724 17 0.941 4 0.575 28 

25 0.623 35 0.54 34 0.622 28 0.54 32 

26 0.896 6 0.944 4 0.883 6 0.936 1 

27 1 1 0.958 2 1 1 0.703 8 

28 0.822 12 0.743 13 0.822 8 0.743 5 

29 1 1 0.818 10 1 1 0.815 3 

30 0.821 13 0.719 18 0.82 10 0.628 19 

31 0.763 19 0.653 23 0.665 25 0.649 16 

32 0.635 34 0.557 33 0.594 31 0.557 30 

33 0.775 17 0.671 22 0.774 15 0.671 13 

34 1 1 0.948 3 0.904 5 0.717 7 

35 0.786 16 0.884 7 0.786 14 0.617 21 

36 0.858 8 0.883 8 0.82 10 0.599 26 
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37 0.811 15 0.591 30 0.811 13 0.508 34 

38 0.864 7 0.772 12 0.718 20 0.772 4 

39 0.756 21 0.915 6 0.581 33 0.616 22 

40 0.609 36 0.524 35 0.609 29 0.524 33 

 

In the case of DSW-FDEA, DMU 19, 27, and 34 took the lead in 1st, 2nd, and 3rd places, respectively. 

Interestingly, all of these units had CCR efficiencies of 1 in 2017. DMU 13 took the last place in evaluation of 

both CCR and DSW-FDEA. In CSW-FDEA, DMU 26, 19, and 29 took the lead in 1st, 2nd, and 3rd, 

respectively, and DMU 13 occupies the last place. DMU 13 took the last place in the evaluation of both DSW 

and CSW. 

For intuitive comparison, both the efficiency in 2017 and the efficiency predicted in 2018 according to the 

DMU are graphed. Fig. 1 and 2 show the efficiency results for DSW and CSW, respectively. We can see that the 

prediction efficiency has a pattern similar to the real efficiency in 2017 in the overall phase, regardless of 

whether in DSW or CSW. 

 
Fig. 1. Efficiencies by enterprise (DSW).  

 
Fig. 2. Efficiencies by enterprise (CSW).  

 

Discussing the ranking change in DSW-FDEA from the final year, the largest change in ranking occurred in 

DMU 16. The ranking of this rose from the original 39th to 14th. Except for this DMU, the rankings differed by 

more than 10 in the other 6 DMUs. 

For the CSW method, the largest change in ranking occurred in DMU 9, 24, and 37. The first rose from the 

original 36th to 6th; the second fell from the original 4th to 28th; the third fell from 13th to 34th. Except for 

those three DMUs, the rankings differed by more than 10 in the other 3 DMUs. 

Comparing the ranking results of DSW-FDEA and CSW-FDEA, there are large rank differences of more than 

10 in DMU 38 and 39. This means that if DMU 38 and 39 are evaluated by the common weights, their rank will 

be evaluated lower than the ones by the dynamic weights. 

The ranking was not clear in the method by CCR because there are 4 efficient DMUs, whereas, in the case 

of the two models proposed, the ranking was determined for all DMUs. 

 

6. Conclusions 
Although traditional DEA is a non-parametric method that does not require any prior information to 

evaluate the relative performance of DMUs, it is applicable only to crisp data. Recently, the application of fuzzy 

DEA proceeding with imprecise data is expanding. The fuzzy arithmetic approach, a kind of fuzzy DEA 

approach, has been performed in some literature, but they gave inappropriate solutions. 

This paper proposed two fuzzy DEA models, obtaining the compromise solution by formulating them as 

MODM. First, we transformed the previous fuzzy DEA model with dynamic weights as a MODM problem to 
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simultaneously maximize three-mark efficiency values given as triangular fuzzy numbers and derived a linear 

program. Considering various studies for evaluating DMUs in the same scale are also active, the first proposed 

fuzzy DEA model has been expanded to common weights. 

The two models proposed in this paper, called DSW-FDEA and CSW-FDEA, were applied to the 

experimental data commonly used in the previous studies, and the results were compared with others. As a 

result of the numerical experiment, it was found that the models proposed derived reliable results and were 

better than the result of previous studies. 

Finally, the two models proposed were applied to predict the energy efficiency of 40 iron and steel 

enterprises in China. We selected three input indicators and one output indicator for energy efficiency 

evaluation and suggested a new framework for efficiency prediction. Using data during 2014-2017, the energy 

efficiency in 2018 was predicted from two aspects: DSW-FDEA and CSW-FDEA. 

Two fuzzy DEA models proposed in this paper will be effective in evaluating and ranking the efficiency of 

DMUs with imprecise data due to data measurement error, data dropout, etc., as well as prediction. Since two 

models with the dynamic weights and the common weights are proposed separately, the model corresponding to 

the application can be selected and applied. The efficiency prediction framework suggested in this paper will be 

applicable in various fields to need the prediction of efficiency. Although the paper predicted for one year, 2018, 

due to the condition of the data, we can use the framework to continuously predict for not only one year but also 

multiple years. 

However, the method proposed has some defects. In the paper, fuzzy numbers only expressed with 

triangular membership functions are used, and ones with other types of membership functions are not applicable. 

And the proposed models have complex calculation stages. In addition, the indicator values of the next year are 

predicted by simple linear estimation and expressed by triangular fuzzy numbers in empirical studies, but there 

is a lack of consideration for the characteristics of each indicator. The future studies could discuss the fuzzy 

DEA based on fuzzy arithmetic in the consideration of various forms of fuzzy membership functions. And it 

could be discussed of introducing various estimation methods such as grey model – GM (1,1), instead of the 

linear estimation method, in the efficiency prediction framework. 
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Appendix A 
 

Table A1. 40 virtual DMUs scale-transformed (predict in 2018). 

DMU Net fixed assets Energy Employee Crude steel production 

1 (0.135, 0.138, 0.14) (0.448, 0.468, 0.488) (0.088, 0.09, 0.091) (0.29, 0.291, 0.291) 

2 (0.63, 0.636, 0.643) (0.945, 0.972, 1) (0.962, 0.981, 1) (0.663, 0.669, 0.674) 

3 (0.898, 0.918, 0.939) (0.538, 0.543, 0.547) (0.216, 0.223, 0.231) (0.608, 0.618, 0.628) 

4 (0.179, 0.222, 0.266) (0.891, 0.904, 0.918) (0.063, 0.078, 0.092) (0.879, 0.882, 0.885) 

5 (0.075, 0.083, 0.091) (0.128, 0.142, 0.156) (0.056, 0.062, 0.069) (0.14, 0.154, 0.169) 

6 (0.057, 0.06, 0.063) (0.21, 0.218, 0.225) (0.04, 0.042, 0.044) (0.251, 0.26, 0.269) 

7 (0.683, 0.686, 0.689) (0.53, 0.543, 0.556) (0.422, 0.422, 0.422) (0.561, 0.573, 0.585) 

8 (0.132, 0.152, 0.171) (0.132, 0.137, 0.142) (0.038, 0.041, 0.043) (0.11, 0.114, 0.118) 

9 (0.179, 0.183, 0.187) (0.045, 0.057, 0.07) (0.099, 0.104, 0.109) (0.071, 0.08, 0.089) 

10 (0.121, 0.122, 0.123) (0.326, 0.33, 0.334) (0.142, 0.143, 0.143) (0.404, 0.41, 0.416) 

11 (0.186, 0.188, 0.189) (0.263, 0.268, 0.274) (0.068, 0.07, 0.072) (0.292, 0.296, 0.299) 

12 (0.517, 0.526, 0.536) (0.387, 0.397, 0.407) (0.137, 0.137, 0.137) (0.405, 0.414, 0.422) 

13 (0.588, 0.589, 0.589) (0.463, 0.473, 0.482) (0.111, 0.112, 0.113) (0.21, 0.219, 0.228) 

14 (0.095, 0.095, 0.096) (0.198, 0.202, 0.206) (0.116, 0.117, 0.117) (0.217, 0.222, 0.227) 

15 (0.126, 0.126, 0.126) (0.113, 0.123, 0.133) (0.035, 0.036, 0.037) (0.147, 0.148, 0.15) 

16 (0.014, 0.023, 0.032) (0.214, 0.218, 0.222) (0.048, 0.048, 0.048) (0.115, 0.117, 0.119) 

17 (0.101, 0.103, 0.106) (0.225, 0.228, 0.232) (0.066, 0.066, 0.067) (0.28, 0.285, 0.29) 

18 (0.096, 0.102, 0.107) (0.265, 0.267, 0.269) (0.071, 0.077, 0.083) (0.289, 0.291, 0.293) 

19 (0.081, 0.081, 0.082) (0.276, 0.283, 0.29) (0.077, 0.078, 0.078) (0.443, 0.449, 0.456) 

20 (0.424, 0.431, 0.437) (0.124, 0.128, 0.131) (0.153, 0.158, 0.164) (0.084, 0.093, 0.103) 

21 (0.113, 0.115, 0.117) (0.16, 0.163, 0.166) (0.079, 0.082, 0.085) (0.187, 0.19, 0.193) 

22 (0.157, 0.158, 0.158) (0.396, 0.401, 0.405) (0.101, 0.102, 0.103) (0.461, 0.468, 0.476) 

23 (0.357, 0.379, 0.4) (0.516, 0.518, 0.52) (0.087, 0.094, 0.101) (0.603, 0.606, 0.609) 

24 (0.235, 0.248, 0.261) (0.374, 0.393, 0.412) (0.059, 0.06, 0.06) (0.397, 0.399, 0.401) 

25 (0.527, 0.555, 0.583) (0.199, 0.206, 0.214) (0.066, 0.071, 0.077) (0.196, 0.2, 0.203) 

26 (0.066, 0.068, 0.07) (0.142, 0.15, 0.159) (0.04, 0.042, 0.044) (0.248, 0.251, 0.253) 

27 (0.374, 0.376, 0.378) (0.767, 0.784, 0.802) (0.09, 0.091, 0.092) (0.946, 0.973, 1) 

28 (0.409, 0.436, 0.463) (0.337, 0.344, 0.35) (0.103, 0.104, 0.105) (0.446, 0.456, 0.466) 

29 (0.126, 0.135, 0.145) (0.263, 0.263, 0.264) (0.096, 0.096, 0.096) (0.368, 0.385, 0.401) 

30 (0.924, 0.962, 1) (0.617, 0.62, 0.622) (0.121, 0.125, 0.129) (0.687, 0.691, 0.695) 

31 (0.051, 0.051, 0.051) (0.096, 0.099, 0.103) (0.037, 0.038, 0.04) (0.11, 0.116, 0.121) 

32 (0.189, 0.192, 0.195) (0.088, 0.094, 0.099) (0.049, 0.049, 0.049) (0.089, 0.094, 0.1) 

33 (0.384, 0.402, 0.421) (0.328, 0.33, 0.331) (0.121, 0.123, 0.124) (0.394, 0.397, 0.4) 

34 (0.04, 0.042, 0.043) (0.184, 0.188, 0.192) (0.042, 0.045, 0.048) (0.234, 0.24, 0.245) 

35 (0.031, 0.036, 0.042) (0.156, 0.158, 0.16) (0.023, 0.025, 0.027) (0.171, 0.172, 0.174) 

36 (0.128, 0.144, 0.159) (0.547, 0.552, 0.556) (0.065, 0.071, 0.076) (0.573, 0.584, 0.594) 

37 (0.17, 0.176, 0.182) (0.239, 0.248, 0.257) (0.047, 0.048, 0.049) (0.221, 0.223, 0.226) 

38 (0.131, 0.134, 0.138) (0.068, 0.069, 0.071) (0.043, 0.043, 0.044) (0.094, 0.097, 0.1) 

39 (0.053, 0.059, 0.066) (0.302, 0.303, 0.304) (0.177, 0.178, 0.18) (0.337, 0.339, 0.341) 

40 (0.124, 0.137, 0.151) (0.101, 0.105, 0.108) (0.03, 0.032, 0.034) (0.096, 0.098, 0.1) 

 
 

 

 

 

 



52 N. Hyok Kim et al. / FOMJ 5(2) (2024) 32–52 

 

Table A2. Fuzzy efficiencies calculated by proposed DSW-FDEA and CSW-FDEA (predicted in 2018). 

DMU DSW-FDEA CSW-FDEA 

1 (0.429, 0.443, 0.457) (0.335, 0.351, 0.367) 

2 (0.369, 0.383, 0.397) (0.356, 0.369, 0.383) 

3 (0.618, 0.633, 0.649) (0.618, 0.633, 0.649) 

4 (0.843, 0.915, 1) (0.543, 0.553, 0.564) 

5 (0.499, 0.607, 0.738) (0.497, 0.604, 0.734) 

6 (0.792, 0.856, 0.927) (0.627, 0.673, 0.723) 

7 (0.552, 0.577, 0.602) (0.55, 0.574, 0.6) 

8 (0.431, 0.464, 0.498) (0.431, 0.464, 0.498) 

9 (0.536, 0.722, 1) (0.534, 0.72, 1) 

10 (0.709, 0.728, 0.748) (0.673, 0.691, 0.71) 

11 (0.616, 0.637, 0.659) (0.6, 0.618, 0.638) 

12 (0.556, 0.582, 0.61) (0.556, 0.582, 0.61) 

13 (0.265, 0.28, 0.296) (0.245, 0.26, 0.276) 

14 (0.59, 0.615, 0.642) (0.58, 0.604, 0.63) 

15 (0.619, 0.677, 0.746) (0.619, 0.677, 0.746) 

16 (0.555, 0.718, 1) (0.292, 0.302, 0.312) 

17 (0.679, 0.703, 0.729) (0.677, 0.699, 0.723) 

18 (0.621, 0.635, 0.649) (0.602, 0.611, 0.621) 

19 (0.956, 0.978, 1) (0.858, 0.89, 0.924) 

20 (0.34, 0.388, 0.44) (0.34, 0.388, 0.44) 

21 (0.627, 0.65, 0.674) (0.623, 0.646, 0.67) 

22 (0.687, 0.705, 0.723) (0.638, 0.656, 0.675) 

23 (0.759, 0.785, 0.811) (0.654, 0.66, 0.667) 

24 (0.696, 0.723, 0.753) (0.546, 0.574, 0.606) 

25 (0.51, 0.54, 0.571) (0.51, 0.54, 0.571) 

26 (0.892, 0.944, 1) (0.877, 0.935, 1) 

27 (0.917, 0.958, 1) (0.668, 0.702, 0.738) 

28 (0.714, 0.743, 0.773) (0.714, 0.743, 0.773) 

29 (0.78, 0.818, 0.857) (0.778, 0.815, 0.853) 

30 (0.705, 0.719, 0.734) (0.622, 0.628, 0.635) 

31 (0.601, 0.652, 0.706) (0.598, 0.649, 0.703) 

32 (0.497, 0.556, 0.621) (0.497, 0.556, 0.621) 

33 (0.664, 0.671, 0.679) (0.664, 0.671, 0.679) 

34 (0.898, 0.948, 1) (0.685, 0.716, 0.75) 

35 (0.787, 0.88, 0.997) (0.603, 0.617, 0.631) 

36 (0.829, 0.882, 0.94) (0.583, 0.599, 0.614) 

37 (0.566, 0.591, 0.617) (0.484, 0.508, 0.533) 

38 (0.733, 0.772, 0.811) (0.733, 0.772, 0.811) 

39 (0.839, 0.913, 1) (0.61, 0.616, 0.622) 

40 (0.499, 0.524, 0.551) (0.499, 0.524, 0.551) 

 

 


