
E-ISNN: 2676-7007 

FUZZY OPTIMIZATION AND MODELLING 3(3) (2022) 48-58 
 

 

 

 

Contents lists available at FOMJ 

 
 

Fuzzy Optimization and Modelling 
 
 

Journal homepage: http://fomj.qaemiau.ac.ir/ 

 

Paper Type: Research Paper 

 
* 

Correspondig author 

E-mail address: hnajafi@aihe.ac.ir (H. Saberi Najafi) 

 

DOI: 10.30495/fomj.2022.1970961.1078 

 
On Characterizing Solutions of Optimization Problems with 

Roughness in the Objective Functions 
 

S. A. Eldalatpanaha, Hamiden Abd El- Wahed Khalifab,c, and Hashem Saberi Najafia,* 

 
a Department of Applied Mathematics, Ayandegan Institute of Higher Education, Tonekabon,  

b 
Department of Operations Research, Faculty of Graduate Studies for Statistical Research, Cairo University, Giza 12613, 

Egypt 

c
 Department of Mathematics, College of Science and Arts, Qassim University, Al- Badaya 51951, Saudi Arabia,  

 

 

A R T I C L E  I N F O  A B S T R A C T 

Rough set theory expresses vagueness, not by means of membership, but 

employing a boundary region of a set. If the boundary region of a set is empty, 

it means that the set is crisp. Otherwise, the set is rough. Nonempty boundary 

region of a set means that our knowledge about the set is not sufficient to define 

the set precisely. In this paper, we introduce the concept of rough function and 

its convexity and differentiability based on its boundary region. The RP 

problem is converted into two subproblems namely, lower and upper 

approximation problem. The Kuhn-Tucker. Saddle point of rough programming 

problem (RPP) is discussed. In addition, in the case of differentiability 

assumption the solution of the RP problem is investigated. A numerical 

example is given to illustrate the methodology.  
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1. Introduction 

Rough set theory has found in many interesting applications. The rough set approach seems to be of 

fundamental importance to cognitive sciences, especially in the areas of machine learning, knowledge discovery 

from databases, expert systems, inductive reasoning and pattern recognition. First of all, Pawlak et al. [15] and 

Pawlak [16] introduced the concept of a rough set. There are many applications for the rough set theory as 

artificial intelligence, expert systems, civil engineering [4],  medical data analysis [5], data mining [5, 14, 17, 

23], Pattern recognition [14, 19], and decision theory [8, 9]. 
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According to the decision maker (DM) influence in the optimization process, multiobjective optimization 

(MO) methods can be classified into four categories (Hwang and Masud [7]). Sasaki and Gen [20]) proposed a 

hybridized genetic algorithm for solving multiple- objective nonlinear programming having fuzzy multiple 

objective functions and constraints with generalized upper bounding structure.  Wang and Chaing [23] applied 

user preference enabling method to solve general constrained nonlinear MO problems. Kundu and Islam [12] 

introduced an interactive method to design a high reliable and productivity system with minimum cost to solve 

multi- objective optimization problem.  Waliv et al. [22] studied the effect of capital investment and warehouses 

space on profits as well as shortage cost through sensitivity analysis and compared the efficiency of fuzzy 

nonlinear programming and intuitionistic fuzzy optimization techniques to obtain the solution. Ahmed [1] 

proposed a method to solve MO problems with intuitionistic fuzzy parameters. Liu et al. [13] introduced a new 

systematic method for determining an optimal operation scheme for minimizing octane number loss and 

operational risks.       

In this paper, the concept of rough function and its convexity and differentiability based on its boundary 

region are introduced. In addition, a new kind of rough programming problem and its solutions is discussed 

based on the notion of boundary region. Many researchers investigated the study of rough either in the objective 

functions or constraints or the twice (Khalifa [9]; Khalifa et al. [10]; Garg et al. [6]; Khalifa et al. [11]; Zaher et 

al. [25]; Zaher et al. [26]; Ammar and Emsimir [2]; and Ammar and Al- Asfar[3]). 

     This paper is organized as: Section 2, some preliminaries related to   the rough function and its convexity 

based on its boundary region are introduced. Section 3 concerns with the formulation of rough programming 

problem, the related two problems, which one of them is called upper approximation problem (UAP) and the 

second is the lower approximation problem LAP and surely and possible optimal solution. In Section 4, we 

discuss the Kuhn-Tucker. Saddle point of rough programming (RP) problem. In section 5, we investigate the 

solution of (RPP) in the cases of differentiability.  In Section 6, a numerical example is given in the sake of the 

paper for illustration. Finally, some concluding remarks are reported in Section 7.  

2. Preliminaries 

In this section, definition of rough function and its convexity based on its boundary region is introduced. 

Definition 1.  Let 𝑓𝑅: ℝ𝑛 → ℝ and 𝑢,  �̂�  ∈ ℝ, 𝑢 <  �̂�. Suppose that the universal set 𝑉(𝑉 = {𝑓(𝑥): 𝑓: ℝ𝑛 →

ℝ }). The set of functions {𝑓𝑖} ⊂ 𝑉 is the lower approximation of 𝑓𝑅 which is denoted by 𝑓𝐿𝐴(𝑥) and is defined 

as 𝑓𝐿𝐴(𝑥) = {𝑓(𝑥) ∈ 𝑉: |𝑓𝑗(𝑥) − 𝑓𝑅| < 𝑢}, and the set of functions {𝑓𝑗} ⊂ 𝑉 is the upper approximation of f̃ R 

which is denoted by f UA(x) and is defined as 𝑓𝑈𝐴(𝑥) = {𝑓(𝑥) ∈ 𝑉: |𝑓𝑗(𝑥) − 𝑓𝑅| <  �̂�}. The function 𝑓𝑅   is 

called rough function if 𝑓𝐿𝐴(𝑥) ≠ 𝑓𝑈𝐴(𝑥). 

 

Definition 2.  The boundary function of the rough function 𝑓𝑅 is 𝐹(𝑥) = 𝑓𝑈𝐴(𝑥) − 𝑓𝐿𝐴(𝑥), where 𝑓𝐿𝐴(𝑥), and 

𝑓𝑈𝐴(𝑥) are the lower and upper approximations of 𝑓𝑅; respectively. 

 

Definition 3. A rough function 𝑓𝑅 is said to be convex if the boundary function 𝐹(𝑥)  is convex.  

3. Problem statement 

A rough programming (RP) problem in which the objective function is rough is formulated as 
 

 (RP)           min 𝑓𝑅(𝑥) 

                 

                    Subject to 

    

                       X = {𝑥 ∈ ℝn: ℎ𝑟(𝑥) ≤ 0, 𝑟 = 1, 𝑚}. 

Where, 𝑓𝑅(𝑥) is rough function with lower and upper approximations 𝑓𝐿𝐴(𝑥), and 𝑓𝑈𝐴(𝑥); respectively and 
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𝑓𝐿𝐴(𝑥) ≤ 𝑓𝑅(𝑥) ≤ 𝑓𝑈𝐴(𝑥), and 𝑋 represents the crisp feasible region.  
 
In order to solve the RP problem, let us solve the following boundary problem 
 

 (BP)           𝑚𝑖𝑛 𝐹(𝑥) = 𝑓𝑈𝐴(𝑥) − 𝑓𝐿𝐴(𝑥) 
                 

                    Subject to 

    

                       𝑋 = {𝑥 ∈ ℝ𝑛: ℎ𝑟(𝑥) ≤ 0, 𝑟 = 1, 2, … , 𝑚}. 
Where, 𝑋 is convex set and ℎ𝑟(𝑥), 𝑟 = 1, 2, …,m are convex and continuous functions. 
 
The BP problem can be separated into the following two subproblems as: 
 

(LA)                    𝑚𝑖𝑛 𝐹(𝑥) = 𝑓𝐿𝐴(𝑥) 
                 

                         Subject to 

    

                       X = {𝑥 ∈ ℝ𝑛: ℎ𝑟(𝑥) ≤ 0, 𝑟 = 1, 𝑚}, and  

 

(UA)                    𝑚𝑖𝑛 𝐹(𝑥) = 𝑓𝑈𝐴(𝑥) 
                 

                      Subject to 

    

                       𝑋 = {𝑥 ∈ ℝ𝑛: ℎ𝑟(𝑥) ≤ 0, 𝑟 = 1, 2, … , 𝑚}. 
 

Here, we assume that  𝑓𝑈𝐴(𝑥) is convex function and 𝑓𝐿𝐴(𝑥) is concave function. 

  The optimal solution of lower problem (𝐿𝐴) is denoted by 𝑓𝐿𝐴(𝑥∗) = max𝑥∈𝑋 𝑓𝐿𝐴(𝑥), and the optimal 

solution of upper approximation problem (𝑈𝐴)  is denoted by 

      𝑓𝑈𝐴(𝑥∗) = min 𝑥∈𝑋 𝑓𝑈𝐴(𝑥). 

Definition 4.  The optimal solution of the RP problem is  f̃ R(x∗) where 𝑓𝐿𝐴(𝑥∗) ≤ 𝑓𝑅(𝑥∗) ≤ 𝑓𝑈𝐴(𝑥∗), where 

S𝐿, and S𝑈 are the sets of the solutions of problems (𝐿𝐴) and (𝑈𝐴); respectively. 

Definition 5.  A solution 𝑥∗ ∈ 𝑆𝐿 ∩ 𝑆𝑈, 𝐹(𝑥∗) = 0 is called surely optimal solution of the RP problem. 

Definition 6. A solution 𝑥∗ ∈ 𝑆𝐿 ∩ 𝑆𝑈, 𝐹(𝑥∗) ≠ 0n  is called possibly optimal solution of the RP problem. 

Definition 7. A solution 𝑥∗ ∈ S𝐿 ∩ S𝑈  is called nearly possibly optimal solution of the RP problem. 

Lemma 1. If  𝑥∗ is the solution of the boundary problem (BP), then x∗ is the solution for the lower and upper 

approximation problems.   

Proof. Let 𝑥∗ be a solution of the BP, then 

𝑓𝑈𝐴(𝑥∗) − 𝑓𝐿𝐴(𝑥∗) ≤ 𝑓𝑈𝐴(𝑥) − 𝑓𝐿𝐴(𝑥); ∀𝑥 

Suppose that  𝑥∗  is not a solution for the (𝐿𝐴𝑃)and(𝑈𝐴), then there exists an 𝐴 ∈ 𝑋  such that  𝑓𝑈𝐴(𝑥) ≤

𝑓𝑈𝐴(𝑥∗),  this implies that  𝑓𝑈𝐴(𝑥) − 𝑓𝐿𝐴(𝑥) < 𝑓𝑈𝐴(𝑥∗) − 𝑓𝐿𝐴(𝑥), 𝑓𝐿𝐴(𝑥∗) < 𝑓𝐿𝐴(𝑥) which leads to 

𝑓𝑈𝐴(𝑥∗) − 𝑓𝐿𝐴(𝑥∗) > 𝑓𝑈𝐴(𝑥∗) − 𝑓𝐿𝐴(𝑥). 

Thus𝑓𝑈𝐴(𝑥) − 𝑓𝐿𝐴(𝑥) < 𝑓𝑈𝐴(𝑥∗) − 𝑓𝐿𝐴(𝑥∗), contradicts that  𝑥∗ is a solution of BP. Therefore, 𝑥∗  is a 

solution of the two problems (LA) and (UA). 
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4. Rough Kuhn- Tucker Saddle point 

Consider the rough problem  

                𝑚𝑖𝑛 𝑓𝑅(𝑥) 

                 

                    Subject to                                                                                                                                (1) 

    

                       𝑋 = {𝑥 ∈ ℝ𝑛: ℎ𝑟(𝑥) ≤ 0, 𝑟 = 1, 𝑚}, 

 

                              𝑓𝐿𝐴(𝑥) ≤ 𝑓𝑅(𝑥) ≤ 𝑓𝑈𝐴(𝑥). 

 

The rough Kuhn- Tucker saddle point for problem (1) takes the form 

      𝑓𝑅(𝑥∗) + ∑ 𝛾𝑟ℎ𝑟(𝑥∗)𝑚
𝑟=1 + 𝛾𝑚+1(𝑓𝐿𝐴(𝑥∗) − 𝑓𝑅(𝑥∗)) + 𝛾𝑚+2 (𝑓𝑅(𝑥∗) − 𝑓𝑈𝐴(𝑥∗)) 

          ≤      𝑓𝑅(𝑥∗) + ∑ 𝛾𝑟
∗ ℎ𝑟(𝑥∗)𝑚

𝑟=1 + 𝛾𝑚+1
∗ (𝑓𝐿𝐴(𝑥∗) − 𝑓𝑅(𝑥∗)) + 𝛾𝑚+2

∗ (𝑓𝑅(𝑥∗) − 𝑓𝑈𝐴(𝑥∗)) 

         ≤      𝑓𝑅(𝑥) + ∑ 𝛾𝑟
∗ ℎ𝑟(𝑥)𝑚

𝑟=1 + 𝛾𝑚+1
∗ (𝑓𝐿𝐴(𝑥) − 𝑓𝑅(𝑥)) + 𝛾𝑚+2

∗ (𝑓𝑅(𝑥) − 𝑓𝑈𝐴(𝑥)), or 

                  (1 − 𝛾𝑚+1 + 𝛾𝑚+2) 𝑓𝑅(𝑥∗) + ∑ 𝛾𝑟ℎ𝑟(𝑥∗)𝑚
𝑟=1 + 𝛾𝑚+1𝑓𝐿𝐴(𝑥∗) − 𝛾𝑚+2𝑓𝑈𝐴(𝑥∗) 

         ≤ (1 − 𝛾𝑚+1
∗ + 𝛾𝑚+2

∗ ) 𝑓𝑅(𝑥) + ∑ 𝛾𝑟
∗ℎ𝑟(𝑥∗)𝑚

𝑟=1 + 𝛾𝑚+1
∗ 𝑓𝐿𝐴(𝑥∗) − 𝛾𝑚+2𝑓𝑈𝐴(𝑥∗) 

         ≤ (1 − 𝛾𝑚+1
∗ + 𝛾𝑚+2

∗ ) 𝑓𝑅(𝑥) + ∑ 𝛾𝑟
∗ℎ𝑟(𝑥)𝑚

𝑟=1 + 𝛾𝑚+1
∗ 𝑓𝐿𝐴(𝑥) − 𝛾𝑚+2𝑓𝑈𝐴(𝑥). 

Theorem 1.  If (𝑥∗, 𝛾𝑟
∗), where  𝛾𝑟

∗ ≥ 0, 𝑟 = 1, 𝑚 + 2, and ∑  𝛾𝑟
∗𝑚+1

𝑟=1  is a rough Kuhn- Tucker saddle point, then 

𝑥∗ is a solution of the RP problem.  

Proof. Assume that (𝑥∗, 𝛾𝑟
∗), 𝑟 = 1, 𝑚 + 2  is  a rough Kuhn- Tucker saddle point, then for γr ≥ 0, γr  ∈ ℝ𝑚+2, 

we get 

(1 − 𝛾𝑚+1 + 𝛾𝑚+2) 𝑓𝑅(𝑥∗) + ∑ 𝛾𝑟ℎ𝑟(𝑥∗)

𝑚

𝑟=1

+ 𝛾𝑚+1𝑓𝐿𝐴(𝑥∗) − 𝛾𝑚+2𝑓𝑈𝐴(𝑥∗) 

≤ (1 − 𝛾𝑚+1
∗ + 𝛾𝑚+2

∗ ) 𝑓𝑅(𝑥∗) + ∑ 𝛾𝑟
∗ℎ𝑟(𝑥∗)

𝑚

𝑟=1

+ 𝛾𝑚+1
∗ 𝑓𝐿𝐴(𝑥∗) − 𝛾𝑚+2

∗ 𝑓𝑈𝐴(𝑥∗) 

≤ (1 − 𝛾𝑚+1
∗ + 𝛾𝑚+2

∗ ) 𝑓𝑅(𝑥) + ∑ 𝛾𝑟
∗ℎ𝑟(𝑥)

𝑚

𝑟=1

+ 𝛾𝑚+1
∗ 𝑓𝐿𝐴(𝑥) − 𝛾𝑚+2

∗ 𝑓𝑈𝐴(𝑥). 

From the first inequality, we have 

                   (1 − 𝛾𝑚+1 + 𝛾𝑚+2) 𝑓𝑅(𝑥∗) + ∑ 𝛾𝑟ℎ𝑟(𝑥∗)𝑚
𝑟=1 + 𝛾𝑚+1𝑓𝐿𝐴(𝑥∗) − 𝛾𝑚+2𝑓𝑈𝐴(𝑥∗) 

                          ≤ (1 − 𝛾𝑚+1
∗ + 𝛾𝑚+2

∗ ) 𝑓𝑅(𝑥) + ∑ 𝛾𝑟
∗ℎ𝑟(𝑥∗)𝑚

𝑟=1 + 𝛾𝑚+1
∗ 𝑓𝐿𝐴(𝑥∗) − 𝛾𝑚+2𝑓𝑈𝐴(𝑥∗),   

Or    

(1 − 𝛾𝑚+1 + 𝛾𝑚+2 + 1 − 𝛾𝑚+1
∗ + 𝛾𝑚+2

∗ ) 𝑓𝑅(𝑥∗) + ∑(𝛾𝑟 − 𝛾𝑟
∗)ℎ𝑟(𝑥∗)

𝑚

𝑟=1

    

 +(𝛾𝑚+1 − 𝛾𝑚+1
∗ )𝑓𝐿𝐴(𝑥∗) − (𝛾𝑚+2 − 𝛾𝑚+2

∗ )𝑓𝑈𝐴(𝑥∗) ≤ 0,  

which implies to  
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(𝛾𝑚+1 − 𝛾𝑚+1
∗ ) (𝑓𝐿𝐴(𝑥∗) − 𝑓𝑅(𝑥∗)) + (𝛾𝑚+2 − 𝛾𝑚+2

∗ ) (𝑓𝑅(𝑥∗) − 𝑓𝑈𝐴(𝑥∗)) + ∑(𝛾𝑟 − 𝛾𝑟
∗)

𝑚

𝑟=1

ℎ𝑟(𝑥∗) ≤ 0. 

This inequality is true for all 𝛾𝑟 , 𝛾𝑟
∗, 𝛾𝑚+1, 𝛾𝑚+1

∗ , 𝛾𝑚+2, 𝛾𝑚+2.
∗    In the case,  𝛾𝑚+1 = 𝛾𝑚+1

∗  and 𝛾𝑚+2 = 𝛾𝑚+2 
∗ , we 

have ∑ (𝛾𝑟 −  𝛾𝑟
∗)𝑚

𝑟=1 hr(x∗) ≤ 0.  Assume that 𝛾𝑟 = 𝛾𝑟
∗, 𝑟 = 1, 2, … , 𝑖 − 1, 𝑖 + 1, … , 𝑚  and 𝛾𝑖

∗ = 𝛾𝑖 − 1 . Then, 

ℎ𝑟(𝑥∗) ≤ 0. By repeating this for all 𝑖, we have ℎ𝑟(𝑥∗) ≤ 0 and hence x∗ is feasible point. Since 𝛾𝑟
∗ ≥ 0 and 

ℎ𝑟(𝑥∗) ≤ 0, we get ∑ 𝛾𝑟
∗𝑚

𝑟=1 ℎ𝑟(𝑥∗) ≤ 0. Again and from the first inequality, where 𝛾𝑚+1 = 𝛾𝑚+1
∗  and 𝛾𝑚+2 =

𝛾𝑚+2 
∗ ,  and by setting 𝛾𝑟 we obtain ∑ 𝛾𝑟

∗𝑚
𝑟=1 ℎ𝑟(𝑥∗) ≥ 0. Hence, ∑ 𝛾𝑟

∗𝑚
𝑟=1 ℎ𝑟(𝑥∗) = 0. Thus, 

(𝛾𝑚+1 − 𝛾𝑚+1
∗ ) (𝑓𝐿𝐴(𝑥∗) − 𝑓𝑅(𝑥∗)) + (𝛾𝑚+2 − 𝛾𝑚+2

∗ ) (𝑓𝑅(𝑥∗) − 𝑓𝑈𝐴(𝑥∗)) + ∑(𝛾𝑟 − 𝛾𝑟
∗)

𝑚

𝑟=1

ℎ𝑟(𝑥∗) ≤ 0. 

By taking, 𝛾𝑚+1 = 𝛾𝑚+1
∗ − 1,  and 𝛾𝑚+2 = 𝛾𝑚+2 

∗ − 1,   we have  

(𝛾𝑚+1 − 1 − 𝛾𝑚+1
∗ ) (𝑓𝐿𝐴(𝑥∗) − 𝑓𝑅(𝑥∗)) + (𝛾𝑚+2 − 1 − 𝛾𝑚+2

∗ ) (𝑓𝑅(𝑥∗) − 𝑓𝑈𝐴(𝑥∗)) + ∑ 𝛾𝑟
𝑚
𝑟=1 ℎ𝑟(𝑥∗) ≤ 0. 

This leads to 

(𝑓𝐿𝐴(𝑥∗) − 𝑓𝑅(𝑥∗)) + (𝑓𝑅(𝑥∗) − 𝑓𝑈𝐴(𝑥∗)) + ∑ 𝛾𝑟
𝑚
𝑟=1 ℎ𝑟(𝑥∗) ≤ 0. 

Since the inequality is valid for each 𝛾𝑟 ≥ 0, then for 𝛾𝑟 = 0, we get (𝑓𝐿𝐴(𝑥∗) − 𝑓𝑅(𝑥∗)) + (𝑓𝑅(𝑥∗) −

𝑓𝑈𝐴(𝑥∗)) ≤ 0, and 

      𝑓𝑈𝐴(𝑥∗) − 𝑓𝐿𝐴(𝑥∗) ≤ 0.                                                                                                                                (2) 

Taking  𝛾𝑚+1 = 𝛾𝑚+1
∗ + 1,  and 𝛾𝑚+2 = 𝛾𝑚+2 

∗ + 1,   we have 

  (𝛾𝑚+1 + 1 − 𝛾𝑚+1
∗ ) (𝑓𝐿𝐴(𝑥∗) − 𝑓𝑅(𝑥∗)) + (𝛾𝑚+2 + 1 − 𝛾𝑚+2

∗ ) (𝑓𝑅(𝑥∗) − 𝑓𝑈𝐴(𝑥∗)) + ∑ 𝛾𝑟
𝑚
𝑟=1 ℎ𝑟(𝑥∗) ≤ 0. 

Thus,  

        (𝑓𝐿𝐴(𝑥∗) − 𝑓𝑅(𝑥∗)) + (𝑓𝑅(𝑥∗) − 𝑓𝑈𝐴(𝑥∗)) + ∑ 𝛾𝑟
𝑚
𝑟=1 ℎ𝑟(𝑥∗) ≤ 0. 

Since the inequality is valid for each 𝛾𝑟 ≥ 0, then for 𝛾𝑟 = 0, we have (𝑓𝐿𝐴(𝑥∗) − 𝑓𝑅(𝑥∗)) + (𝑓𝑅(𝑥∗) −

𝑓𝑈𝐴(𝑥∗)) ≤ 0, and 

               𝑓𝑈𝐴(𝑥∗) − 𝑓𝐿𝐴(𝑥∗) ≥ 0.                                                                                                                 (3) 

Hence from (2) and (3), we conclude that 𝑓𝐿𝐴(𝑥∗) = 𝑓𝑅(𝑥∗) = 𝑓𝑈𝐴(𝑥∗) (i. e., x∗ is a surely optimal solution 

for the RP problem. 

 
From the second inequality we have, 
 

 (1 − 𝛾𝑚+1
∗ + 𝛾𝑚+2

∗ ) 𝑓𝑅(𝑥∗) + ∑ 𝛾𝑟
∗ℎ𝑟(𝑥∗)𝑚

𝑟=1 + 𝛾𝑚+1
∗ 𝑓𝐿𝐴(𝑥∗) − 𝛾𝑚+2𝑓𝑈𝐴(𝑥∗)   

    ≤ (1 − 𝛾𝑚+1
∗ + 𝛾𝑚+2

∗ ) 𝑓𝑅(𝑥) + ∑ 𝛾𝑟
∗ℎ𝑟(𝑥)𝑚

𝑟=1 + 𝛾𝑚+1
∗ 𝑓𝐿𝐴(𝑥) − 𝛾𝑚+2

∗ 𝑓𝑈𝐴(𝑥). 

 Since, ∑ 𝛾𝑟
∗ℎ𝑟(𝑥∗)𝑚

𝑟=1 = 0. Then 

    (1 − 𝛾𝑚+1
∗ + 𝛾𝑚+2

∗ ) (𝑓𝑅(𝑥∗) − 𝑓𝑅(𝑥))
≤ ∑ 𝛾𝑟

∗ℎ𝑟(𝑥)

𝑚

𝑟=1

+ 𝛾𝑚+1
∗ (𝑓𝐿𝐴(𝑥) − 𝑓𝐿𝐴(𝑥∗)) + 𝛾𝑚+2

∗ (𝑓𝑈𝐴(𝑥) − 𝑓𝑈𝐴(𝑥∗)), 
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      𝑓𝑅(𝑥∗) − 𝑓𝑅(𝑥) ≤
∑ 𝛾𝑟

∗𝑚
𝑟=1

(1−𝛾𝑚+1
∗ +𝛾𝑚+2

∗ )
ℎ𝑟(𝑥) +

𝛾𝑚+1
∗

(1−𝛾𝑚+1
∗ +𝛾𝑚+2

∗ )
(𝑓𝐿𝐴(𝑥) − 𝑓𝐿𝐴(𝑥∗)) +

𝛾𝑚+2
∗

(1−𝛾𝑚+1
∗ +𝛾𝑚+2

∗ )
(𝑓𝑈𝐴(𝑥) −

                          𝑓𝑈𝐴(𝑥∗)).  

For 𝑥∗ ∈ 𝑆𝐿 ∩ 𝑆𝑈,  we have 𝑓𝐿𝐴(𝑥) ≤ 𝑓𝐿𝐴(𝑥∗) and 𝑓𝑈𝐴(𝑥) ≥ 𝑓𝑈𝐴(𝑥∗). Since ∑ 𝛾𝑟
𝑚+1
𝑟=1 = 1, and  𝛾𝑚+1

∗ = 𝛾1
∗ +

𝛾1
∗ + ⋯ + 𝛾𝑚

∗  , thus 1 − 𝛾𝑚+1
∗ + 𝛾𝑚+2

∗ ≤ 0 which implies to 𝑓𝑅(𝑥∗) ≤ 𝑓𝑅(𝑥),    𝑥 ∈ 𝑋. Hence, x∗ is a possible 

optimal solution of rough problem. For 𝑥∗ ∈ 𝑆𝐿, 𝑥∗ ∉ 𝑆𝑈 , we obtain 𝑓𝐿𝐴(𝑥∗) ≥ 𝑓𝐿𝐴(𝑥) and  

     𝑓𝑅(𝑥∗) − 𝑓𝑅(𝑥) ≤
𝛾𝑚+2

∗

(1−𝛾𝑚+1
∗ +𝛾𝑚+2

∗ )
(𝑓𝑈𝐴(𝑥) − 𝑓𝑈𝐴(𝑥∗)).  

Now, there are two cases: 

Case 1: 𝑓𝑈𝐴(𝑥∗)−𝑓𝑈𝐴(𝑥) ≤ 0; ;  ∀𝑥 ∈ 𝑋, this implies that x∗ is a nearly possibly optimal solution. 

Case 2: 𝑓𝑈𝐴(𝑥∗)−𝑓𝑈𝐴(𝑥) > 0.  

Let x∗ be not nearly possible optimal solution of rough problem, then there is 𝑥 ∈ 𝑋: 𝑓𝑅(𝑥) < 𝑓𝑅(𝑥∗). Since 

𝑥∗ ∈ 𝑆𝐿, 𝑥∗ ∉ 𝑆𝑈, so 𝑥∗ is not a solution for boundary problem (BP), i.e., there is  𝑥 ∈ 𝑋: 

      𝑓𝑈𝐴(𝑥) − 𝑓𝐿𝐴(𝑥) < 𝑓𝑈𝐴(𝑥∗ ) − 𝑓𝐿𝐴(𝑥∗ ), 𝑓𝐿𝐴(𝑥∗) − 𝑓𝐿𝐴(𝑥) < 𝑓𝑈𝐴(𝑥∗ ) − 𝑓𝑈𝐴(𝑥 ). 

(i) If  𝑓𝑈𝐴(𝑥∗ ) < 𝑓𝑈𝐴(𝑥 ), then 𝑓𝐿𝐴(𝑥∗ ) < 𝑓𝐿𝐴(𝑥). This contradicts that 𝑥∗ ∈ 𝑆𝐿, and hence 𝑥∗ must be 

a nearly possible optimal solution for the RP problem. 

(ii) If  𝑓𝑈𝐴(𝑥∗ ) > 𝑓𝑈𝐴(𝑥 ), then we may write 𝑓𝑈𝐴(𝑥∗ ) = 𝑓𝑈𝐴(𝑥 ) + 𝜃, 𝜃 > 0 . which implies to 

𝑓𝐿𝐴(𝑥∗ ) − 𝑓𝐿𝐴(𝑥) < 𝜃, 𝜃 > 0. Then, we have two cases: 

(a) 𝑓𝐿𝐴(𝑥∗ ) > 𝑓𝐿𝐴(𝑥) which is not considered, where x∗ ∈ S𝐿, 

(b)  𝑓𝐿𝐴(𝑥∗ ) < 𝑓𝐿𝐴(𝑥), which contradicts that 𝑥∗ ∈ 𝑆𝐿, and hence 𝑥∗ must be a nearly possible 

optimal solution for the RP problem. 

For 𝑥∗ ∈ 𝑆𝑈, 𝑥∗ ∉ 𝑆𝑈𝐿 , we obtain 𝑓𝑈𝐴(𝑥∗) ≤ 𝑓𝑈𝐴(𝑥) and  

𝑓𝑅(𝑥∗) − 𝑓𝑅(𝑥) ≤
𝛾𝑚+1

∗

(1 − 𝛾𝑚+1
∗ + 𝛾𝑚+2

∗ )
(𝑓𝐿𝐴(𝑥) − 𝑓𝐿𝐴(𝑥∗)). 

So, there are two cases: 

Case 3: 𝑓𝐿𝐴(𝑥∗)−𝑓𝐿𝐴(𝑥) ≤ 0; ; ∀𝑥 ∈ 𝑋, this implies that 𝑥∗ is a nearly possibly optimal solution. 

Case 4: 𝑓𝐿𝐴(𝑥∗)−𝑓𝐿𝐴(𝑥) > 0.  

Let 𝑥∗ be not nearly possible optimal solution of rough problem, then there is 𝑥 ∈ 𝑋: 𝑓𝑅(𝑥) < 𝑓𝑅(𝑥∗). Since 

𝑥∗ ∈ 𝑆𝑈, 𝑥∗ ∉ 𝑆𝐿 , so x∗ is not a solution for boundary problem (BP), i.e., there is  𝑥 ∈ 𝑋: 

         𝑓𝑈𝐴(𝑥) − 𝑓𝐿𝐴(𝑥) < 𝑓𝑈𝐴(𝑥∗ ) − 𝑓𝐿𝐴(𝑥∗ ), 𝑓𝑈𝐴(𝑥) − 𝑓𝑈𝐴(𝑥∗) < 𝑓𝐿𝐴(𝑥  ) − 𝑓𝑈𝐴(𝑥∗ ). 

(iii) If  𝑓𝐿𝐴(𝑥  ) < 𝑓𝑈𝐴(𝑥∗ ), then 𝑓𝑈𝐴(𝑥 ) < 𝑓𝐿𝐴(𝑥∗). This contradicts that 𝑥∗ ∈ 𝑆𝑈, and hence 𝑥∗ must be 

a nearly possible optimal solution for the RP problem. 

(iv) If  𝑓𝐿𝐴(𝑥  ) > 𝑓𝑈𝐴(𝑥∗ ), then we may write 𝑓𝐿𝐴(𝑥∗ ) = 𝑓𝐿𝐴(𝑥 ) + 𝜃, 𝜃 > 0 . which implies to 

𝑓𝑈𝐴(𝑥 ) − 𝑓𝑈𝐴(𝑥) < 𝜃, 𝜃 > 0. Then, we have two cases: 

(c) 𝑓𝐿𝐴(𝑥∗ ) > 𝑓𝐿𝐴(𝑥∗) which is not considered, where 𝑥∗ ∈ 𝑆𝑈, 



54 S. A. Eldalatpanah et al. / FOMJ 3(3) (2022) 48–58 

(d)  𝑓𝑈𝐴(𝑥∗) < 𝑓𝑈𝐴(𝑥), which contradicts that 𝑥∗ ∈ 𝑆𝑈, and hence 𝑥∗ must be a nearly possible 

optimal solution for the RP problem. 

5. Rough function differentiability  

A rough function 𝑓𝑅(𝑥) is said to be differentiable if its boundary 𝐹(𝑥) = 𝑓𝑈𝐴(𝑥) − 𝑓𝐿𝐴(𝑥) is 

differentiable. Then 

       𝐹(𝑥) − 𝐹(𝑥∗) =
𝛿

𝛿𝑥
𝐹(𝑥∗)(𝑥 − 𝑥∗) + 𝜗(𝑥∗, 𝛾(𝑥 − 𝑥∗))‖𝑥 − 𝑥∗‖,  

or equivalently 

𝑓𝑅(𝑥) − 𝑓𝑅(𝑥∗) =
𝛿

𝛿𝑥
𝑓𝑅(𝑥∗)(𝑥 − 𝑥∗) + 𝜗(𝑥∗, 𝛾(𝑥 − 𝑥∗))‖𝑥 − 𝑥∗‖, 

where 

lim
𝜗→0

𝜗(x∗, 𝛿(𝑥 − x∗)) = 0. 

The rough Kuhn- Tucker conditions for the RP problem take the form 

  
𝛿

𝛿𝑥
𝑓𝑅(𝑥∗) + ∑ 𝛾𝑟

∗ℎ𝑟(𝑥∗) + 𝛾𝑚+1
∗ 𝛿

𝛿𝑥
(𝑓𝐿𝐴(𝑥∗ ) − 𝑓𝑅(𝑥∗)) + 𝛾𝑚+2

∗ 𝛿

𝛿𝑥
(𝑓𝑅(𝑥∗) − 𝑓𝑈𝐴(𝑥∗ )) ,

= 0

𝑚
𝑟=1   

and 

   𝛾𝑟 
∗ ℎ𝑟(𝑥∗) = 0, 𝑟 = 1, 𝑚; 

  𝛾𝑚+1
∗ (𝑓𝐿𝐴(𝑥∗ ) − 𝑓𝑅(𝑥∗)) = 0; 

  𝛾𝑚+2
∗ (𝑓𝑅(𝑥∗) − 𝑓𝑈𝐴(𝑥∗ )) = 0; 

  𝛾𝑟 
∗ ≥ 0, 𝑟 = 1, 𝑚 + 2. 

Let ∑ 𝛾𝑟 
∗ = 1𝑚+1

𝑟=1 . Then,   

    (1 − 𝛾𝑚+1
∗ + 𝛾𝑚+2

∗ )
𝛿

𝛿𝑥
𝑓𝑅(𝑥∗) + 𝛾𝑚+1

∗ 𝛿

𝛿𝑥
 𝑓𝐿𝐴(𝑥∗) − 𝛾𝑚+2

∗ 𝛿

𝛿𝑥
𝑓𝑈𝐴(𝑥∗ ) + ∑ 𝛾𝑟

∗ 𝛿

𝛿𝑥
ℎ𝑟(𝑥∗)𝑚

𝑟=1 = 0, or 

    
𝛿

𝛿𝑥
𝑓𝑅(𝑥∗) +

𝛾𝑚+1
∗

(1−𝛾𝑚+1
∗ +𝛾𝑚+2

∗ )

𝛿

𝛿𝑥
𝑓𝐿𝐴(𝑥∗) −

𝛾𝑚+2
∗

(1−𝛾𝑚+1
∗ +𝛾𝑚+2

∗ )
 

𝛿

𝛿𝑥
𝑓𝑈𝐴(𝑥∗) +

∑ 𝛾𝑟
∗𝑚

𝑟=1

(1−𝛾𝑚+1
∗ +𝛾𝑚+2

∗ )

𝛿

𝛿𝑥
ℎ𝑟(𝑥∗) = 0;  

  

      
∑ 𝛾𝑟

∗𝑚
𝑟=1

(1−𝛾𝑚+1
∗ +𝛾𝑚+2

∗ )

𝛿

𝛿𝑥
ℎ𝑟(𝑥∗) = 0, 𝑟 = 1, 𝑚; 

     
𝛾𝑚+1

∗

(1−𝛾𝑚+1
∗ +𝛾𝑚+2

∗ )
𝑓𝐿𝐴(𝑥∗) = 0; 

     
𝛾𝑚+2

∗

(1 − 𝛾𝑚+1
∗ + 𝛾𝑚+2

∗ )
𝑓𝑈𝐴(𝑥∗); 

𝛾𝑟 
∗ ≥ 0, 𝑟 = 1, 𝑚 + 2. 

Theorem 2. Let 𝑓𝑅(𝑥), 𝑓𝑈𝐴(𝑥) , and ℎ(𝑥) are convex and differentiable functions at 𝑥∗,  and let 𝑓𝐿𝐴(𝑥) be 
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concave and differentiable at 𝑥∗ ∈ 𝑋 . Suppose that 𝑓𝑈𝐴(𝑥∗)>0 and 𝑓𝐿𝐴(𝑥∗) > 0. If (𝑥∗, 𝛾𝑟
∗ ), where 𝛾𝑟

∗ ≥

0, 𝑟 = 1, 𝑚 + 2 is a solution of the Kuhn- Ticker conditions, then 𝑥∗ is a solution for the RP problem. 

 Proof. Let (𝑥∗, 𝛾𝑟
∗ )be a solution of the rough Kuhn- Tucker conditions. Since, 𝑓𝑅(𝑥) is a convex and 

differentiable at 𝑥∗, we get 𝑓𝑅(𝑥) − 𝑓𝑅(𝑥∗) ≥
𝛿

𝛿𝑥
𝑓𝑅(𝑥∗)(𝑥 − 𝑥∗). Since, 

δ

δx
f̃ R(x∗) =

γm+2
∗

(1−γm+1
∗ +γm+2

∗ )

δ

δx
f UA(x∗) −

γm+1
∗

(1−γm+1
∗ +γm+2

∗ )

δ

δx
f LA(x∗) −  

∑ γr
∗m

r=1

(1−γm+1
∗ +γm+2

∗ )
hr(x∗)   and 𝑓𝑈𝐴(𝑥),

𝑓𝐿𝐴(𝑥), and ℎ𝑟(𝑥), are differentiable, then  

𝑓𝑈𝐴(𝑥) − 𝑓𝑈𝐴(𝑥∗) =
𝛿

𝛿𝑥
𝑓𝑈𝐴(𝑥∗)(𝑥 − 𝑥∗) + 𝜗(𝑥∗, 𝛾(𝑥 − 𝑥∗))‖𝑥 − 𝑥∗‖, 

𝑓𝐿𝐴(𝑥) − 𝑓𝐿𝐴(𝑥∗) =
𝛿

𝛿𝑥
𝑓𝐿𝐴(𝑥∗)(𝑥 − 𝑥∗) + 𝜗(𝑥∗, 𝛾(𝑥 − 𝑥∗))‖𝑥 − 𝑥∗‖, 

ℎ𝑟(𝑥) − ℎ𝑟(𝑥∗) =
𝛿

𝛿𝑥
ℎ𝑟(𝑥∗)(𝑥 − 𝑥∗) + 𝜗(𝑥∗, 𝛾(𝑥 − 𝑥∗))‖𝑥 − 𝑥∗‖. 

   Then, 

    

𝑓𝑅(𝑥) − 𝑓𝑅(𝑥∗) ≥

𝛾𝑚+2
∗

(1−𝛾𝑚+1
∗ +𝛾𝑚+2

∗ )
(𝑓𝑈𝐴(𝑥) − 𝑓𝑈𝐴(𝑥∗) − 𝜗(𝑥∗, 𝛾(𝑥 − 𝑥∗))‖𝑥 − 𝑥∗‖) −      

𝛾𝑚+1
∗

(1−𝛾𝑚+1
∗ +𝛾𝑚+2

∗ )
(𝑓𝐿𝐴(𝑥) − 𝑓𝐿𝐴(𝑥∗) −

𝜗(𝑥∗, 𝛾(𝑥 − 𝑥∗))‖𝑥 − 𝑥∗‖) −
∑ 𝛾𝑟

∗𝑚
𝑟=1

(1−𝛾𝑚+1
∗ +𝛾𝑚+2

∗ )
(ℎ𝑟(𝑥) − ℎ𝑟(𝑥∗) −       𝜗(𝑥∗, 𝛾(𝑥 − 𝑥∗))‖𝑥 − 𝑥∗‖). 

  

Since lim𝜗→0 𝜗(x∗, 𝛿(𝑥 − x∗)) = 0. Then 

    𝑓𝑅(𝑥) − 𝑓𝑅(𝑥∗) ≥
𝛾𝑚+2

∗

(1−𝛾𝑚+1
∗ +𝛾𝑚+2

∗ )
(𝑓𝑈𝐴(𝑥) − 𝑓𝑈𝐴(𝑥∗)) −

𝛾𝑚+1
∗

(1−𝛾𝑚+1
∗ +𝛾𝑚+2

∗ )
(𝑓𝐿𝐴(𝑥) − 𝑓𝐿𝐴(𝑥∗)) −

       −
∑ 𝛾𝑟

∗𝑚
𝑟=1

(1−𝛾𝑚+1
∗ +𝛾𝑚+2

∗ )
(ℎ𝑟(𝑥) − ℎ𝑟(𝑥∗)). 

From the Kuhn- Tucker conditions  

∑ 𝛾𝑟
∗𝑚

𝑟=1

(1−𝛾𝑚+1
∗ +𝛾𝑚+2

∗ )
ℎ𝑟(𝑥∗) = 0, 𝑟 = 1, 𝑚; 

𝛾𝑚+1
∗

(1 − 𝛾𝑚+1
∗ + 𝛾𝑚+2

∗ )
𝑓𝐿𝐴(𝑥∗) = 0; 

𝛾𝑚+2
∗

(1 − 𝛾𝑚+1
∗ + 𝛾𝑚+2

∗ )
𝑓𝑈𝐴(𝑥∗) = 0; 

Then, the inequality 

𝑓𝑅(𝑥) − 𝑓𝑅(𝑥∗) ≥
𝛾𝑚+2

∗

(1−𝛾𝑚+1
∗ +𝛾𝑚+2

∗ )
𝑓𝑈𝐴(𝑥) −

𝛾𝑚+1
∗

(1−𝛾𝑚+1
∗ +𝛾𝑚+2

∗ )
𝑓𝐿𝐴(𝑥) −

∑ 𝛾𝑟
∗𝑚

𝑟=1

(1−𝛾𝑚+1
∗ +𝛾𝑚+2

∗ )
ℎ𝑟(𝑥)  is valid for 

each 𝛾𝑟 
∗ ≥ 0, 𝑟 = 1, 𝑚 + 2, and for 𝛾𝑟 

∗ = 0, we have 

𝑓𝑅(𝑥) − 𝑓𝑅(𝑥∗) ≥
𝛾𝑚+2

∗

(1 − 𝛾𝑚+1
∗ + 𝛾𝑚+2

∗ )
𝑓𝑈𝐴(𝑥) −

𝛾𝑚+1
∗

(1 − 𝛾𝑚+1
∗ + 𝛾𝑚+2

∗ )
𝑓𝐿𝐴(𝑥). 



56 S. A. Eldalatpanah et al. / FOMJ 3(3) (2022) 48–58 

If 𝛾𝑚+1
∗ ; 𝛾𝑚+2

∗  > 0, then from the Kuhn- Tucker conditions we obtain 𝑓𝑅(𝑥∗) = 𝑓𝐿𝐴(𝑥∗) and  𝑓𝑅(𝑥∗) =

𝑓𝑈𝐴(𝑥∗). Then x∗ is surely optimal solution of the RP problem. 

 If 𝑥∗ ∈ 𝑆𝐿 ∩ 𝑆𝑈, then 𝑓𝑈𝐴(𝑥∗) ≤ 𝑓𝑈𝐴(𝑥); ∀ 𝑥 ∈ 𝑋 anf LA(x∗) ≥ f LA(x); ∀x ∈ Xd, and then we get 

𝑓𝑅(𝑥) − 𝑓𝑅(𝑥∗) ≥
𝛾𝑚+2

∗

(1−𝛾𝑚+1
∗ +𝛾𝑚+2

∗ )
𝑓𝑈𝐴(𝑥∗) −

𝛾𝑚+1
∗

(1−𝛾𝑚+1
∗ +𝛾𝑚+2

∗ )
𝑓𝐿𝐴(𝑥∗). 

In addition, from the Kuhn- Tucker condition𝑓𝑅(𝑥) − 𝑓𝑅(𝑥∗) ≥ 0s , this leads to 𝑓𝑅(𝑥∗) ≤ 𝑓𝑅(𝑥), i. e., 𝑥∗ is 

possibly optimal solution.  

If 𝑥∗ ∈ 𝑆𝐿 , 𝑥∗ ∉ 𝑆𝑈, then 𝑓𝐿𝐴(𝑥∗) ≥ 𝑓𝐿𝐴(𝑥); ∀𝑥 ∈ 𝑋, and we have  

𝑓𝑅(𝑥) − 𝑓𝑅(𝑥∗) ≥
𝛾𝑚+2

∗

(1−𝛾𝑚+1
∗ +𝛾𝑚+2

∗ )
𝑓𝑈𝐴(𝑥∗) −

𝛾𝑚+1
∗

(1−𝛾𝑚+1
∗ +𝛾𝑚+2

∗ )
𝑓𝐿𝐴(𝑥∗), and  

𝑓𝑅(𝑥) − 𝑓𝑅(𝑥∗) ≥
𝛾𝑚+2

∗

(1−𝛾𝑚+1
∗ +𝛾𝑚+2

∗ )
𝑓𝑈𝐴(𝑥). 

From the assumption that 𝑓𝑈𝐴(𝑥∗) > 0, and 𝑥∗ is not solution for the BP problem, 
𝛾𝑚+2

∗

(1−𝛾𝑚+1
∗ +𝛾𝑚+2

∗ )
= 0.  

Hence, f̃ R(x) − f̃ R(x∗) ≥ 0 leads to 𝑓𝑅(𝑥∗) ≤ 𝑓𝑅(𝑥); ∀𝑥 ∈ 𝑋. Then 𝑥∗is nearly possibly optimal   solution for 

the RP problem. 

 If 𝑥∗ ∈ S𝑈, 𝑥∗ ∉ S𝐿, then 𝑓𝑈𝐴(𝑥∗) ≤ 𝑓𝑈𝐴(𝑥); ∀𝑥 ∈ 𝑋 and we have  

𝑓𝑅(𝑥) − 𝑓𝑅(𝑥∗) ≥
𝛾𝑚+2

∗

(1−𝛾𝑚+1
∗ +𝛾𝑚+2

∗ )
𝑓𝑈𝐴(𝑥∗) −

𝛾𝑚+1
∗

(1−𝛾𝑚+1
∗ +𝛾𝑚+2

∗ )
𝑓𝐿𝐴(𝑥∗), 

From Kuhn-Tucker conditions, we have 

𝑓𝑅(𝑥) − 𝑓𝑅(𝑥∗) ≥
𝛾𝑚+1

∗

(1−𝛾𝑚+1
∗ +𝛾𝑚+2

∗ )
𝑓𝐿𝐴(𝑥). 

From the assumption that 𝑓𝐿𝐴(𝑥∗) > 0, and 𝑥∗ is not solution for the BP problem, 
𝛾𝑚+1

∗

(1−𝛾𝑚+1
∗ +𝛾𝑚+2

∗ )
= 0.  

Thus, 𝑓𝑅(𝑥) − 𝑓𝑅(𝑥∗) ≥ 0, which implies to 𝑓𝑅(𝑥∗) ≤ 𝑓𝑅(𝑥); ∀𝑥 ∈ 𝑋. Then x∗ is nearly possibly optimal 

solution for the RP problem. 

6.  Numerical example 

Consider the following rough function 

f̃ R(𝑥): 𝑋 → ℝ  with f LA(𝑥) = 𝑥1 + 𝑥2  f UA(𝑥) =
1

3
𝑥1

3 − 2𝑥1
2 − 10𝑥2 + 100, and consider the following RP 

problem as 

(RP)           𝑚𝑖𝑛 𝑓𝑅(𝑥) 

                 

                    Subject to 

    

            𝑋 = {(𝑥1, 𝑥2) ∈ ℝ2: 𝑥1 + 𝑥2 ≤ 10, 3.5 ≤ 𝑥1 ≤ 6,  𝑥2 ≤ 6, 𝑥1 + 𝑥2 ≥ 1}. 

 

The lower and upper approximation problems are 

  
(LA)             𝑚𝑖𝑛 𝑓𝐿𝐴(𝑥) = 𝑥1 + 𝑥2 
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                         Subject to 

    

                       𝑥 ∈ 𝑋, and  

 

(UA)            𝑚𝑖𝑛 𝑓𝑈𝐴(𝑥) =
1

3
𝑥1

3 − 2𝑥1
2 − 10𝑥2 + 100 

                 

                      Subject to 

    

                       𝑥 ∈ 𝑋. 
 
 
Then, the RP problem is 
 

(BP)      𝑚𝑖𝑛 𝐹(𝑥) = 𝑓𝑈𝐴(𝑥) − 𝑓𝐿𝐴(𝑥) 
                 

                    Subject to 
                                    𝑥 ∈ 𝑋. 
 
The solution of the LA  problem is  S𝐿 = {(5, 5)}, and the solution of the UA  problem is  S𝑈 = {(1 − 𝜆)(6, 4) +
𝜆(4, 6), 0 ≤ 𝜆 ≤ 1}. Then 
 

1. There is no surely optimal; solution (Definition 3). 

2. The possible optimal solution is (5, 5), where (5, 5) ∈ S𝐿 ∩ S𝑈 and F(5,5) ≠ 0 (Definition 4), 

3. The nearly possibly solution is {(1 − 𝜆)(6, 4) + 𝜆(4, 6), 0 ≤ 𝜆 ≤ 1}⋃{(5, 5)} (Definition 5). 

 

7. Concluding Remarks 
 

  In this paper, we have introduced the concept of rough function and its convexity and differentiability based on 

its boundary region. Also, a new kind of rough programming problem and its solutions have discussed 

according to the notion of boundary region. The result shows the proposed method has its advantage in flexible 

decision-making corresponding to favorite priorities of alternatives. This study may be extended to additional 

fuzzy-like structures, such as Interval-valued fuzzy set, Pythagorean fuzzy set, Spherical fuzzy set, Intuitionistic 

fuzzy set, Picture fuzzy set, Neutrosophic set, etc., in future work. 
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