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A R T I C L E  I N F O  A B S T R A C T 

Data envelopment analysis (DEA) is a method to estimate a relative efficiency 

of decision making units (DMUs) performing similar tasks in a production 

system that consumes multiple inputs to produce multiple outputs. The original 

DEA model does not include a decision maker’s (DM’s) preference structure 

while measuring relative efficiency. Regarding to relationship between DEA 

and multiple objective linear programming (MOLP) this paper propose a 

method based on fuzzy goal programming to incorporate DM’s wishes in 

evaluation of DMUs then it analyzes the situations that the input-output levels 

of the estimated benchmark will not or may worsen. A compromised method is 

suggested that not only considers DM’s wishes in target setting but also 

improve the efficiency of DMUs while none of input-output levels deteriorate. 

 

Article history:  

Received 29 September 2022 

Revised 14 November 2022 

Accepted 20 November 2022 

Available online 20 November 

2022 

Keywords: 

Data Envelopment Analysis  

Goal Programming 

Fuzzy Programming 

Target Setting 

 

1. Introduction 

Data envelopment analysis (DEA) is a mathematical programming method for evaluating the relative 

efficiency of decision making units (DMUs) with multiple outputs and multiple inputs that was proposed by 

Charnes et al. [4]. The usefulness of DEA extends to evaluation and benchmarking against efficient units, target 

setting and recourse allocation between inputs and outputs. This method provides benchmarking information 

which can be used to improve the efficiency of the DMU. 

The original DEA model does not include a decision maker’s (DM’s) preference structure or value 

judgments while measuring relative efficiency, with no or minimal input from the DM [3, 4, 9, 11, 16]. To 

incorporate DM’s preference information in DEA, various techniques have been proposed. Golany [7] 

suggested a so-called target setting model, which allows DMs to select the preferred set of output levels given 

the input levels of a DMU. Thanassoulis and Dyson [15] introduced models that can be used to estimate 

alternative input and output levels. Charnes et al. [3] proposed the cone ratio concept by adjusting the observed 

input and output level or weight to capture value judgments to belong to a give closed cone. Dyson and 

mailto:mog@shahroodut.ac.ir
https://doi.org/10.30495/fomj.2022.1971787.1080


M. Ghiyasi / FOMJ 3(3) (2022) 84–92                                                                                   85 

Thanassoulis [6] introduced weight restrictions and Thompson et al. [16] suggested assurance region. Zhu [21] 

proposed a model that calculates efficiency score incorporating the DM’s preference information. 

On the other hand, relationships between DEA and multiple criteria decision analysis (MCDA) have been 

studied from several viewpoints by many authors [5, 18, 20]. Stewart [14] showed the equivalence between the 

CCR model and some linear value function model for multiple outputs and multiple inputs. 

Joro et al. [8] proved structural correspondences between DEA models and multiple objective linear 

programming [2, 10, 13] and according to similarity of DEA and MOLP, Yang et al. [20] used interactive 

methods for assessment and target setting. Yang et al. [19] proposed a hybrid min-max reference point and DEA 

method to management planning. 

In this study, considering the DM’s view, first a method based on fuzzy goal programming is presented to 

find a target for DMUs which has the least deviation from the DM’s ideals. But based on the DM’s ideals, the 

determined benchmark may be unfeasible or some inputs or outputs worsen. To solve the problem, a two-stage 

model is stated that guaranties the obtained target will not worsen. This solution presents the closest benchmark 

to the DM’s ideals and it is close to the efficiency frontier to the extent possible. In short, the current article 

proposes a framework that considers and incorporates the desires of decision makers in the process of 

performance measurement.   

The paper proceeds as follows. Section 2 provides and reviews the basic models that are needed for the rest 

of paper. Section 3 proposes hybrid model for favored target setting using DEA and goal programming. Section 

4 provides a numerical example to illustrate the proposed approach.  Section 5 summarizes the main results 

obtained and suggests potential extensions.   

2. Preliminaries 

We summarize below the basic models of goal programming, fuzzy multi objective linear programming, 

relation between output-oriented CCR DEA model and MOLP. 

2.1. Goal Programming 

This method seeks to accomplish several purposes. For each objective function an aspiration level is 

considered and formulized. Then a response will be presented. It minimizes the total deviation of each objective 

function and its aspiration level. 

To do so, suppose that ( 1,2,..., )kg k p  was determined as goal or ideal level of P objective functions. 

Suppose nxxx ,...,, 21 are the decision variables and ( 1,2,..., , 1, 2,..., )kjC k p j n   are the coefficient of j-th variables in 

k-th objective function, put
1

n

k kj j k

j

d c x g


   . 

In order to reach positive sign for kd  can, we put 


 kkk ddd  and the percent of minimization of the 

deviation of objective function from goal level is specified. Consequently, the following model is attained: 
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2.2. Fuzzy Multi Objective Linear Programming 

Let there is a MOLP with p objective functions in generic form: 

1 2( ), ( ),..., ( )

.

,

0.

pMax z x z x z x

s t

Ax b

x

 
 





                                                                                                                       (2) 

If  pgggg ,...,2,1  is a fuzzy goal level for objective function, So we seek a solution that the objective 

function  will  be more than its goal level in fuzzy environment. Considering the stated issues the following 

model is gained: 

.

( ) ,

,

0.

k k

Find x

s t

z x g

Ax b

x


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                                                                                                                                                 (3) 

where  is fuzzy form of   that to be understood essentially less than. 

Now, consider the following membership function for the objective function: 
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                                                                                                    (4) 

 

In which  


kz  is the minimum acceptable value for the k-th objective function. 

According to Zadeh’s extension [1], assuming ~

iG

 is the membership function of i-th fuzzy goal then 

membership functions of fuzzy decision is as  ~ ~min
i

iD G

  . 

Considering 1)(0  x , goal 1 is supposed for each of the membership functions ([12, 17]): 

( )
1k k

k k

k k

z x z
d d

g z



 




  


                                                                                                                             (5) 

Based on the previous discussions, ignoring the values more than 1 for the membership functions, we 

prevent the values less than 1.so the following model is gained: 
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2.3. Output-oriented CCR Model as an MOLP 

Suppose we have n DMU that consume m input jx  to product s output jy , for nj ,...,2,1 .Let  

t

mjjjj xxxx ),...,,( 21  and
t

sjjjj yyyy ),...,,( 21  , input and output vector are positive. 

For assess
0j

DMU ,  nj ,...,2,10  , the under evaluation DMU, the CCR model have been proposed in 

output-oriented by Charnes et al. [4] as follows: 
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Consider the following MOLP in generic: 
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. .

.

kMax f f

s t

S

 

 

                                                                                                                                           (8) 

Considering an ideal level for t-th objective )( *

t
f  and weighting index w for t-th objective function the 

following model minimize the maximum weighted derivation of each objective function: 

*

1

{ ( ( ))}

. .

t t t
t k

Min Max w f f

s t

S







 





                                                                                                                                     (9) 

By use of an auxiliary variable model (9) can be rewritten as follow (Yang et al. [20]): 

*
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                                                                                                                          (10) 

Theorem1 [20]: Considering },...,2,1,0,{
0

njyYS jj   and s objective functions (k=s) in model 

(8), output-oriented CCR model (7) and model (9) are equivalent. 
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Therefore the model (7) can be rewritten as the following model:   
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3. Favored Target Setting 

In the classical performance measurement and target setting processes there is no possibility for considering 

decision maker’s opinions. On the other hand, we face different types of uncertainty when we deal with the 

human’s desires. Thus, in this section, a method based on the discussions of previous section is presented to 

apply the DM’s view in approximation of input-output target levels. The following model uses the procedure of 

subsection 2.2 for solving model (11): 

1

1

1

.

1, 1, 2,..., ,

, 1, 2,..., ,

. 0,

, 0, 1, 2,..., ,

0.

s

r r

r

n

j rj r

j

r r

rr

n

j ij io

j

r r

r r

Min d d

s t

y z

d d r s
y z

x x i m

d d

d d r s







 





  





 

 





   


 



 







                                                                                                     (12) 

Now considering ry as an ideal value of manager for r-th output in the evaluation of 
0j

DMU , model (12) 

seeks a nearest target to DM’s ideal. If it is desired, the objective function model (12) can be modified so that 

the sum of weighted deviations is minimized that determining the weights is depend on their importance for 

DM. Manager as a decision maker determines the ideals based on his/her circumstances and is not aware of their 

feasibility or unfeasibility. It means that the manager doesn't know the possibility of producing ideal output 

based on accessible inputs. So, the target levels determined by the above model which is based on DM’s ideal 

can be infeasible and DM’s ideal levels may be infeasible then determined target may be infeasible too. 

Moreover in order to improve one of the input or output levels may another input output levels deteriorate. 

These difficulties obviate with proposing a compromised approach in next issues. Next theorem proposes 

satiations that considering them, none of inputs and outputs of determined target may worsen. 

Theorem 2. If the goal values of model (12) be feasible on (7), none of the inputs and outputs worsen in the 

benchmark proposed by this model. 

Proof. Let 0( , )x y be a feasible solution thus there exists a   that 
1 1
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Thus, ( ,0, )rd


is a feasible solution of (12). Therefore, if * * *( , , )r rd d   be optimal solution of (12) then 
* 0rd  

(for all r).  

Let * * *( , , )r rd d   is optimal solution of (12) that shows direction of benchmarking so 
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This shows that the determined target has a higher output level, namely, the output levels are not worsen. With 

the same logic and considering the input oriented model, we see that *

1

n

ij ij

j

x x


 that is the input value of targets 

are not worsen. □ 
Theorem 2 shows that if goal level of output be feasible then none of the input and output of target may 

worsen. Next theorem searches for new goal feasible level which is close to DM’s goal and efficiency frontier 

as far as possible.  

Theorem 3. Regardless to feasibility and considering 
ry as a goal value of manager for r-th output in the 

evaluation of
0j

DMU , the following model determine the nearest goal feasible to 
ry on efficiency frontier. 
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Proof. Consider the following model for assess the activity
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Firstly *( ,1) is a feasible solution of above model. So, if ˆ ˆ( , )  is an optimal solution of model (14) then ˆ 1  . 

Let negate let ˆ 1  so 
0 0

*

1

ˆ ˆ ( ( ))
n

j rj rj r rj

j

y y y y  


   and 
0

1

ˆ
n

j j j

j

x x


 . Put ˆ  and *ˆ   thus ( , )  is a 

feasible solution of model (12) in the other hand *   that is contradiction with optimality of * *( , )   hence  

ˆ 1   so 
0 0 0

*( , ( ))j j jx y y y   is the nearest goal feasible to 
ry on the efficiency frontier. □ 

Now the following two stage model offers a target levels for a unit according to DM’s view. On the first 

stage model (13) determines a feasible ideal levels for DM’s ideal and considering the new feasible ideal level 

the second stage determines the nearest target level to DM’s ideal that none of new target input-output level may 

worsen. The proposed models incorporate the desires of decision makers in the process of efficiency 

measurement and target setting. However, we face some sort of uncertainty when we deal with the desires that 

could be different from of decision maker to another. Fuzzy programming helped us in this situation. Therefore, 

in any target setting process of real world applications that is an important step in the performance 

improvement. Beside the advantageous of the proposed model, we may face some bias effect due to 

incorporating decision maker’s preferences in the efficiency measurement and target setting. This could be 

tackled using some multi criteria decision making approach to have more realistic analysis.     

4. Numerical Example 

In order to illustrate the use of the methodology developed here, five DMUs are considered with one input 

and two outputs. Units A, B and D are efficient and C and E are inefficient (Table 1). 

Table 1. Inputs and output data 

DMU I O1 O2 

A 1 5 2 

B 1 3 5 

C 1 3 2 

D 1 4 4 

E 1 1 3 

The CCR dual model (7) offers 1.67 and 5 as the first and second target levels for unit E (Figure 1). In order 

to considering DM’s view on target setting, suppose (1.5, 4) and (2, 6) are as ideal output levels which the first 

one is feasible and second one is infeasible. While solving (12) for incorporating DM’s ideal level on target 

setting, current output level of unit E is supposed as minimum acceptable level for target level of unit E. This is 

a coherent minimum acceptable because in DEA literature we are searching for a target with more than or equal 

output level for DMUs (equality is for a case that DMU is efficient). 
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Figure 1. An illustration of target setting 

Considering DM’s ideal levels, (1.5, 4) and (2, 4.66) are suggested as a target levels that second output of 

second target is worse. 

In order to find a feasible ideal level, model (13) finds (1.67,5) as a new ideal level and regarding to second 

step of proposed method (1.8, 5) is an efficient target level (segment curve Figure1) which is determined 

according to DM’s ideal level. 

5. Conclusion 

Efficiency measurement and target setting are very important task in managerial issues which can be done 

with DEA models but DM’s view is neglected in traditional DEA models. This study proposed a two-step DEA 

and FGP model to incorporate DM’s view in process of evaluation and target setting. Considering DM’s ideal 

level this method finds a compromised target levels for inefficient units lying on efficiency frontier and the 

situations that no level of inputs and outputs of the estimated target may worsen is analyzed. For the future 

direction research, one may consider solving techniques of multi-objective programming for crisp or uncertain 

data in the target setting process.      
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