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A R T I C L E  I N F O  A B S T R A C T 

In this paper, we improved the split step   method to solve the stochastic 

differential equations. The strong convergence of this approximation for 

stochastic differential equations, whose drift and diffusion coefficients are 

globally Lipschitz continuous, are investigated. Furthermore, we analyse the 

stability in the mean square sense of our scheme by scalar stochastic differential 

equation with multi-dimensional Wiener processes. The study of stability 

shows the mean square stability of the method for [1/ 2,1]. Finally, we 

present some numerical examples to describe the methodology and 

implementation of the split step   method to solve linear and nonlinear one 

dimensional stochastic differential equations and the Lotka-Volterra stochastic 

system.  
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1. Introduction 

Modelling is one of the most interesting topics of interest to researchers. Stochastic differential equations 

(SDEs) are one of the most important tools of this work, for example see [1, 2, 5, 9, 11, 12, 15]. Since most 

SDEs do not have explicit solutions, so we need to introduce the efficient numerical methods. Split step method 

is one of these methods presented in [7]. Basis this idea, many numerical methods presented for solving of 

SDEs. For instance, in [3] introduced split step   (SS ) method to solve nonlinear non autonomous SDEs, and 

proved that SS  method converges strongly with the order one-half to the exact solution. Also, shown that this 

method is mean square stable if 1.   In [6], constructed split step composite   method for numerically solving 

SDEs of the Ito type. Recently, the authors of this paper present new method for solution of stiff SDEs by 

Rosenbrock ODE solver [14]. 

      In this paper, for solution of Ito stochastic differential equations 
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We suggest improving split step   (ISS ) method in following form 
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where 0 0, : [ , ] , ( ) / , 1, 2,d d

nA B t T h T t N N     and 
0 0 .V   Note that in SDE (1), ( )nZ t is the one 

dimensional Wiener process, whose increment , 1( ) ( )k n n k n kZ Z t Z t   is a Gaussian random variable ( , )N 0 h . By 

choosing 0,  method (2) leads to the Euler-Maruyama method. For 0 1   the above scheme is an implicit 

equation in k  that must be solved in order to obtain the intermediate approximation k [3, 6]. So, for solving 

nonlinear equations (2) we use classic Newton iterative method. 

The rest of this paper is organized as follows. By using the fundamental Milstein theorem and some 

inequalities, the convergence analysis of the scheme will be investigated in Section 2. In Section 3, we analyse 

the mean square stability properties of the proposed method with respect to the linear test equation with multi-

dimensional Wiener processes. We give several numerical simulations to illustrate our theoretical results in 

Section 4. Finally, in Section 5, some concluding remarks are given. 

2. Mean-square convergence properties 

  According to [6, 10, 13, 14, 17], we obtain the strong convergence of the proposed method by following 

proposition and lemma, in this section. 
 

Proposition 1. The functions A and , 1, ,nB n m  in SDE (1) satisfy Lipschitz conditions 
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linear growth bounds 
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where positive constants 
1 2 3, ,    are independent of variables 1 2, ml l  and   is a maximal operator. 

 
Lemma 1. ([15]) Assume that for a one step discrete time approximation , the local mean error and mean 

square error for all 1,2, ,N  and 0,1, , 1k N   satisfy, respectively, the estimates 
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where 1/ 2   and 1 2 1/ 2.    Then 
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holds for each 0,1, , .i N  Here, is independent of h but dependent on the length of the time interval 

0 .T t  
 

 Now, we can prove mean square convergence of ISS   method (2) by above facts and following Euler-

Maruyama approximation step 
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with the local mean and mean square errors, respectively: 
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Theorem 1. Let 
n be the numerical approximation of ( )nV t at time 

nt after n  steps with step size 

0( ) / , 1,2,h T t N N   . For 1min(1,1/ ( 2 )),h   if applying the ISS   method (2) to the SDE (1), for all

0,1, , ,i N  one gets  

2 1/2
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 Proof. We first prove the local mean error by using (6) and first equation of (9), 
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To obtain this inequality, we use the Lipschitz condition (3), inequality (5) and ,[ ] 0.k nE Z   By implicit 

equation (2) and proposition 1, we obtain  
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Hence, from inequalities (10)-(12), we obtain 1 3 / 2.   

Using standard arguments, we show that inequality (7) with 2 1   holds for the ISS  method [6, 10, 13, 14]. 

Also, we can write 
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     For computing H4, we can write    
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            In above inequality, we use Lipschitz condition (3), inequality (5) and 

𝐸[∆𝑍𝑘,𝑛1∆𝑍𝑘,𝑛2] = {
ℎ, 𝑛1 = 𝑛2,
0, 𝑛1 ≠ 𝑛2.

 

            Now, we estimate term 2| |k k  by implicit equation (2) and Proposition 1 as follows 
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            Thus, from inequalities (13)-(15), we obtain 
2 1.   According to the above calculations, the Theorem 1 

satisfies for 
1 3 / 2  and

2 1  . Thus, the proposed method strongly convergences to the exact solution with 

order 1/2. 

3. Linear Mean square stability properties 

   In this section, we analyzed MS-stability of linear SDE with multi-dimensional Wiener processes 
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where the parameters 
0, , 0.na b V   The equilibrium position of test equation (16) is asymptotically MS-stable 

if and only if 
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    see [3, 6, 9, 13, 14, 16]. 

Definition 1. ([16]) The numerical scheme is said to be MS-stable if 
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     We apply the scheme (2) to solve the test equation (16) with step size 0h  . Since ( , ( )) ( )A t Z t aZ t  and 
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         According to Definition 1, the stability domain of the ISS  scheme (2) applied with step size h  is denoted 

by 
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   we conclude that ISS   method MS-stable, when 1/ 2 1.   We take 

2 2

2( ), | |nx h a y h b   and drew the MS-stable regions of the method for [0,1]  in Figures 1 and 2. Also, we 

can see that this figures supports of the obtained theoretical results. 

 

 

Figure 1: Gridded area: linear MS-stability of the test SDE (16).  Gray area: linear MS-stability of ISS  method (2). 
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4. Numerical results 

  In this section several numerical examples are given to illustrate our theoretical results in the previous 

sections. The numerical results obtained by applying MATLAB7.14.0.739 (R 2012a) on a PC with CPU 

Intel(R) Pentium(R) CPU G620 at 2.60 GHz, 2.00 GB of RAM, and the Windows 7 operating system. 

 

 

 

Figure 2: Gridded area: linear MS-stability of the test SDE (16). Gray area: linear MS-stability of ISS  method (2). 

Example 1. We consider the following one dimensional nonlinear SDE 

0

1 1 1
( ) ( sin(2 ( )) sin(4 ( ))) sin(2 ( )) ( ), 1,

2 8 2
dV t V t V t dt V t dZ t V                                         (17) 

with exact solution 
0( ) arctan(tan( )exp( ( ))).V t V t Z t   

 

Figure 3 shows a log-log plot of the MSEs (mean square errors), based on the 2000 sample paths with step 

sizes 2 , 6, ,12rh r   for ISS  method with 0.1,   at the terminal time 1.T Nh   A reference line of slope 

1/2. We see that the results are consistent with the strong errors close to order 1/2. 

Example 2. We consider the following one dimensional linear SDE 

 

 1 1 2 2( ) ( ) ( ) ( ) ( ) ( ),dV t aV t dt bV t dZ t b V t dZ t                                                          (18) 

with the initial data 0 1.V   For parameters 
1 210, 9, 10a b b     and 20,T   we illustrate the MS-

stability of the our method for different step sizes in Figure 4. We take 1 2 3 42 ,2 ,2 ,2h      and generate 50000 

samples for each numerical scheme. We observe from Figure 4 that the equation (18) is MS-stable for any step 

size when [1/ 2,1] . Therefore, the theoretical results obtained in the previous section are confirmed. 
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Figure 3: The convergence rate of the ISS  method (2) for nonlinear stochastic equation (17). 

 

 

Figure 4: Simulation of 
2[ ( )]E V t by ISS  method (2) with different step sizes applied to SDE (18). 

Examples 3. Consider a Lotka-Volterra stochastic system [4, 8] 

1 1 1 2 2 1 1 1

2 2 1 1 2 2 2 2

( ) ( )( ( )) ( ) ( ),

( ) ( )( ( ) ) ( ) ( ).

dV t V t a a V t dt V t dZ t

dV t V t bV t b dt V t dZ t





  

  
                                                   (19) 

For parameter values 1 2 1 2 1 22, 0.25, 0.2, 3, 0.35, 0.25a a b b         and initial data 1 2(0) 2, (0) 1,V V   we 

compare MSEs of ISS  method (2) with 0.1   and EM method in Figure 4. To obtain the results of Figure 4, 

we compute 5000 sample paths to simulate the MSEs between the analytic solution with step size 142h   and 

numerical approximation with different step sizes 2 , 5, ,11.rh r   
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5. Concluding Remarks and future work 

 In the last two decades, various methods for solving stochastic differential equations have been proposed. 

Some of these numerical schemes have been developed using split step technique. By this strategy, improving 

split step   method (2) was presented in this paper. We proved that the scheme with the strong convergence 

order 1/2 converges to the exact solution. Also, the mean square stability function of the method was obtained 

for linear test equation with multi-dimensional Wiener processes. In addition, it is proved that our method for 

any time step h  is mean square stable if 1/ 2 1  . Finally, numerical examples were reported to verify the 

theoretical results and show efficiency of the constructed scheme. There are a number of potential directions in 

which the results achieved here can be extended. Future work will involve the development of a method (2) for 

other type of stochastic problems such as stochastic delay differential equations, stochastic difference equations 

and stochastic functional differential equation. 
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