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equation with multi-dimensional Wiener processes. The study of stability
shows the mean square stability of the method for 9e<[1/2,1]. Finally, we
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implementation of the split step § method to solve linear and nonlinear one
dimensional stochastic differential equations and the Lotka-Volterra stochastic
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1. Introduction

Modelling is one of the most interesting topics of interest to researchers. Stochastic differential equations
(SDEs) are one of the most important tools of this work, for example see [1, 2, 5, 9, 11, 12, 15]. Since most
SDEs do not have explicit solutions, so we need to introduce the efficient numerical methods. Split step method
is one of these methods presented in [7]. Basis this idea, many numerical methods presented for solving of
SDEs. For instance, in [3] introduced split step € (SS ) method to solve nonlinear non autonomous SDEs, and
proved that SS& method converges strongly with the order one-half to the exact solution. Also, shown that this
method is mean square stable if 8=1. In [6], constructed split step composite & method for numerically solving
SDEs of the Ito type. Recently, the authors of this paper present new method for solution of stiff SDEs by
Rosenbrock ODE solver [14].

In this paper, for solution of Ito stochastic differential equations

av (t) = A(t,V(t))dt+Zm:Bn tV{)Z,t), V(0)=V,eR?, (@))
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We suggest improving split step ¢ (1SS 3) method in following form

Vi =v, +JhA(t, +9h,v, +IhA(t, +9h,vi)), $e[0,1],

- m - 2
Ve =V + A +9h,vi) + DB (4 +9h,vi)AZ, . @)

n=1

where A, B, :[t,, T]xR > R*, h=(T,-t)/N,N=12,...and v, =V,. Note that in SDE (1), Z(t) is the one
dimensional Wiener process, whose increment AZ, . =Z (t,,,)—Z,(t,) is a Gaussian random variable N(0,h) . By
choosing 4 =0, method (2) leads to the Euler-Maruyama method. For 0<.9<1 the above scheme is an implicit
equation in v« that must be solved in order to obtain the intermediate approximation v« [3, 6]. So, for solving
nonlinear equations (2) we use classic Newton iterative method.

The rest of this paper is organized as follows. By using the fundamental Milstein theorem and some
inequalities, the convergence analysis of the scheme will be investigated in Section 2. In Section 3, we analyse
the mean square stability properties of the proposed method with respect to the linear test equation with multi-
dimensional Wiener processes. We give several numerical simulations to illustrate our theoretical results in
Section 4. Finally, in Section 5, some concluding remarks are given.

2. Mean-square convergence properties

According to [6, 10, 13, 14, 17], we obtain the strong convergence of the proposed method by following
proposition and lemma, in this section.

Proposition 1. The functions Aand B,,n=1,...,m in SDE (1) satisfy Lipschitz conditions

| Al 1) = A, L) P v I B (6, 1) =By (s, L) P < [l =1, I 3)

n=1

linear growth bounds

| A L) VI By (6 ) P <@ 1), (4)

n=1

and
I A(gl' |1)_ A(gz’ |1) |2 VZ| Bn (gl’ll)_ Bn (gzv |1) |2 < K3(1+| I1 |2) I G176 |21 (5)
n=1

where positive constants «,«,,x, are independent of variables 1,1, e R™and v is a maximal operator.

Lemma 1. ([15]) Assume that for a one step discrete time approximation , the local mean error and mean
square error for all N=12...gpg k=0L....N-1 satisfy, respectively, the estimates

and |EL0iea =V (t)) [vie =V (011 &0+ v, [)"2h", (6)
LED Vi =V (tea) PIVi =V (12 < 6@+ v, )20, (7)
where v>1/2 and v, >v, +1/2. Then
[EDV =V (©) Flve =V )12 < x(Lt v, )20 72,

holds for each i=0,1,...,N. Here, x is independent of h but dependent on the length of the time interval
T-t,.

Now, we can prove mean square convergence of ISS$ method (2) by above facts and following Euler-
Maruyama approximation step
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m
VkE+M1 :VkEM +hA(tk’VkEM)+ZBn(tlekEM )AZ, (8)
=1
with the local mean and mean square errors, respectively:

|Elvcn -V G v =V (t)11=0(h"), )
|E(vis -V () Flvie =V @) [?=0(h),

Theorem 1. Let v, be the numerical approximation of V(t,) at time t after n steps with step size

h=(T—-t,)/N, N=12,.... For h<min(1,1/(9,/2x,)), if applying the ISS9 method (2) to the SDE (1), for all
i=01...,N, one gets

| Ellv =V () Flve =V @G)1[*=0(h),
Proof. We first prove the local mean error by using (6) and first equation of (9),

H, = E[(vis =V () Vi =V (]I
S Evan -V ) v =V +ELVi —via) v = v 1 (10)
<0O(h?) + H,.

where, we have

H, = Bl —vied) v = v 1

N

:I E[Vk _VI:EM + h(A(tk + lgh!‘_/k) - A(tk!VkEM )) +ZAZk,n (Bn (tk + ‘ghl;k) - Bn (tkinEM )) | 1/kEM :V(tk )] | (ll)
n=1
<hJk, [vi—v, |+h| At +9h,v,)— At v,) |

<hyx;, [vi —v, [ +hJIrh @+ | v, )72,

To obtain this inequality, we use the Lipschitz condition (3), inequality (5) and E[AZ,,]=0. By implicit
equation (2) and proposition 1, we obtain

[vic —v, |< 9h(| At, +h, v, +9hA(t, +9h,vi))— At +9h,v,) |+ Alt, +9h,v,) )
< In(h\x, | At + 90, vi) | +1 A + 90, 1,) = A, v ) | +] At vi) )
< In(hfig |vic v [ +(L+ i )(| Al +9h,v,) = At vi) |+ At vi) D) (12)
< Lgh\/E“L— \'9’(3h(1+ v, P)V2.
N

Hence, from inequalities (10)-(12), we obtain v, =3/2.

Using standard arguments, we show that inequality (7) with v, =1 holds for the ISS $ method [6,
Also, we can write

, 13, 14].

Hy = Ell v, =V (4.1) |2| v, =V ()] |l/2
< Ellvias -V ey Flve™ =V I +1El v, —vili Plvi =v 112 (13)

<O(h)+4/H,.

For computing H4, we can write
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H, = Ellvy., _VkEﬂ N Ve = VkEM 11

= E[lv, —vE" +h(A(t, +9h,vi)— A(t, , v ))+Z:AZk’n(Bn(tk +9hvi) =B, (t, . ve") v, =vM]|
n=1

14
=h? | Alt, +9h,vi) - At v,) [ +hi| B, (t, +9h,vi)—B, (t,,v™™) 4o
< 2h(@+h)(x, | v v, [* +3,h(1+ ]| : ).
In above inequality, we use Lipschitz condition (3), inequality (5) and
B[0Z10,071,] = {02 S0
Now, we estimate term |v« —v, by implicit equation (2) and Proposition 1 as follows
[vi —v, [P< 2(3h)2 (| A(t, + 9h,v, + 9hA(t, +9h,vi)) — At +9h,v ) +] At +9h,v,) )
< 2(9h)*((Fh)*x, | A(t, +9h, k) [ +2] At +9h,v,)— A, v.) > +2| At v) 7))
<4(8h)*(($hx,)? Il_/k —v, P +@+2(8n)%x)(| At +8h,v) = A, v ) P+ AR, v ) ) (15)
< 4(9h)? %m v, ).

Thus, from inequalities (13)-(15), we obtain v, =1. According to the above calculations, the Theorem 1

satisfies for v, =3/2andv, =1. Thus, the proposed method strongly convergences to the exact solution with
order 1/2.

3. Linear Mean square stability properties

In this section, we analyzed MS-stability of linear SDE with multi-dimensional Wiener processes
V(t) =aVv (t)dt+ > bV (t)dZ, (1), (16)
n=1

where the parameters a,b, € C,V, = 0. The equilibrium position of test equation (16) is asymptotically MS-stable
ifand only if 3" |b, [ +2%(a) <0, see [3, 6, 9, 13, 14, 16].
Definition 1. ([16]) The numerical scheme is said to be MS-stable if

M (a,{o,}7,.h) = EIM*(a,{b, 3, . h{& )l <l &, ~N(.D),

where M (a,{b,}",.h) is called MS-stability function and the D, ={(a.{b,}",) e CxC:M(a,{b,}",.h) <1} set
is called the MS-stability domain of the numerical method.

We apply the scheme (2) to solve the test equation (16) with step size h>0. Since A(t,Z(t))=azZ(t) and
B, (t,Z(t)) =b,Z(t), we obtain

Vo =M@ G v

where
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1+(@-Pah++vhd b&,
n=1

M (@b i & h{s ) = 1-ah

Following the above definition, we can write

E[IM (a{b,}7.y, 9. h{& . Jo) 1= EIM (a.{b, Y & & Jl) x M (2o 3 8. h{é )]
1+ (1—3)ah+\/ﬁibn§k,n 1+(1—L9)z?1h+\/ﬁi6n§k,n

=E[ X —
1-9ah 1-9ah

]

1+2(1- 9)R@h+@1-9)° [af h* +h>|b, [
— n=1

- 1-29R(a)h+ 9 |a h?

According to Definition 1, the stability domain of the ISS 9 scheme (2) applied with step size h is denoted
by

E[M(a b}, 9. h{5 ) F1<le2R@h+(1-29)|al’ h* + hil b, [°<0.

Since Z::J b, |2+25R(a)<0, we conclude that 1SS 9 method MS-stable, when 1/2<9<1. We take

x=hR(a),y2 =h|b, >and drew the MS-stable regions of the method for $<[0,1] in Figures 1 and 2. Also, we
can see that this figures supports of the obtained theoretical results.
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Figure 1: Gridded area: linear MS-stability of the test SDE (16). Gray area: linear MS-stability of ISS$ method (2).
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4. Numerical results

In this section several numerical examples are given to illustrate our theoretical results in the previous
sections. The numerical results obtained by applying MATLAB7.14.0.739 (R 2012a) on a PC with CPU
Intel(R) Pentium(R) CPU G620 at 2.60 GHz, 2.00 GB of RAM, and the Windows 7 operating system.

d=0 ¢=0.25 ¢=0.5

0=0.75 o=1

Y2 s Y2

Figure 2: Gridded area: linear MS-stability of the test SDE (16). Gray area: linear MS-stability of 1SS . method (2).

Example 1. We consider the following one dimensional nonlinear SDE

dv (t) = (%sin(zv ) +%sin(4v (t))dt +%sin(2V ®)dz @), v, =1 (17)
with exact solution V (t) = arctan(tan(V, ) exp(t + Z (t))).

Figure 3 shows a log-log plot of the MSEs (mean square errors), based on the 2000 sample paths with step
sizes h=2",r=6,...,12 for ISS$ method with $=0.1, at the terminal time T = Nh=1. A reference line of slope
1/2. We see that the results are consistent with the strong errors close to order 1/2.

Example 2. We consider the following one dimensional linear SDE

dV (t) =aV (t)dt +bV (t)dZ, (t) +bV (t)dZ, (1), (18)

with the initial data vV, =1. For parameters a=-10,b, =~/9,b, =10 and T =20, we illustrate the MS-
stability of the our method for different step sizes in Figure 4. We take h=2",27,2% 2 and generate 50000
samples for each numerical scheme. We observe from Figure 4 that the equation (18) is MS-stable for any step
size when 9 e[1/2,1]. Therefore, the theoretical results obtained in the previous section are confirmed.
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Figure 3: The convergence rate of the 1SS . method (2) for nonlinear stochastic equation (17).
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Figure 4: Simulation of E[V ?(t)] by 1SS 9 method (2) with different step sizes applied to SDE (18).
Examples 3. Consider a Lotka-Volterra stochastic system [4, 8]
dVy (1) = Vi (D)(a, —a,V, ()dt + oV, (D) dZ, (1), (19)
dV, (t) =V, (1)(BV, (1) —b,)dt + o,V, (1)dZ, (1).

For parameter values a =2, a,=0.25,b, =0.2,b, =3, 0, =0.35, 0, =0.25 and initial data V,(0)=2,V,(0)=1 we
compare MSEs of ISS ¢ method (2) with $=0.1 and EM method in Figure 4. To obtain the results of Figure 4,

we compute 5000 sample paths to simulate the MSEs between the analytic solution with step size h=2" and
numerical approximation with different step sizes h=2"",r =5,...,11.



8 L.Torkzadeha and H. Ranjbar / FOMJ 2(4) (2021) 1-9

5. Concluding Remarks and future work

In the last two decades, various methods for solving stochastic differential equations have been proposed.
Some of these numerical schemes have been developed using split step technique. By this strategy, improving
split step < method (2) was presented in this paper. We proved that the scheme with the strong convergence
order 1/2 converges to the exact solution. Also, the mean square stability function of the method was obtained
for linear test equation with multi-dimensional Wiener processes. In addition, it is proved that our method for
any time step " is mean square stable if 1/2< <1, Finally, numerical examples were reported to verify the
theoretical results and show efficiency of the constructed scheme. There are a number of potential directions in
which the results achieved here can be extended. Future work will involve the development of a method (2) for
other type of stochastic problems such as stochastic delay differential equations, stochastic difference equations
and stochastic functional differential equation.

Conflict of interest: The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.
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