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A R T I C L E  I N F O  A B S T R A C T 

Data envelopment analysis (DEA) is a mathematical technique based on linear 

programming applied to evaluate the efficiency of decision-making units 

dealing with multiple inputs and outputs. In classical DEA models, it is 

assumed that input and output data are accurate though real-world applications 

require considering inaccurate and ambiguous data. Moreover, linguistic forms 

may be intuitionistic in nature rather than fuzzy. We propose a novel approach 

to solve DEA models characterized by intuitionistic fuzzy data. The model is 

transformed into a linear programming problem with an intuitionistic fuzzy 

objective function, and an alphabetical technique is applied to solve it. The 

proposed approach is easy to implement, involving a lower number of 

calculations than more computationally demanding techniques introduced in the 

literature. It also provides a set of ranking results that are significantly 

correlated with those derived from the implementation of more complex 

techniques. Its applicability would allow to extend the analysis of intricate 

evaluation scenarios common to the standard DEA literature into intuitionistic 

fuzzy environments. 
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1. Introduction 

Data Envelopment Analysis (DEA) is a non-parametric mathematical technique based on linear 

programming applied to evaluate the performance of decision-making units (DMUs) dealing with multiple 

inputs and outputs. DEA focus on the DMUs, calculates the weights of the inputs and the corresponding outputs 

separately and obtains the efficiency of each unit using the weighted ratio of total inputs to outputs [3]. 

In classical DEA models, it is generally assumed that the inputs and outputs of the units are specified using 

exact numerical values. However, in actual DEA applications, accurate input and output values may not be 

available, especially when DMUs must deal with lost, estimated, and qualitative data. The incorporation of 

fuzzy numbers, applied to express inaccurate information and uncertain data, into traditional DEA models led to 
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the development of the fuzzy DEA literature (Peykani et al., [11]). This branch of the DEA literature has 

expanded considerably in the latter years, incorporating the main advances developed within the fuzzy 

mathematical domain (Ebrahimnejad and Amani [5], Hatami-Marbini et al., [8], Hosseinzadeh Lotfi et al., [9], 

Kao and Liu [10], Saati et al., [13], Wang and China [15], Wang et al., [16], and Van and Lee [17]).  

One of the main features of fuzzy set theory is that when operating with fuzzy sets or numbers, the sum of 

the membership and non-membership values of an element is equal to one. However, in real-life situations, 

researchers may have to operate with unreliable information. This means that the sum of the membership and 

non-membership values of an element is not necessarily equal to one. The use of fuzzy data in these situations is 

therefore not appropriate. As a result, some of the inputs and outputs analyzed through DEA may be 

intuitionistic in nature rather than fuzzy. This constraint motivates the framework analyzed in the current paper, 

which introduces an intuitive and easily applicable DEA model designed to evaluate the relative efficiency of 

DMUs characterized by intuitionistic fuzzy input and output data. 

Researchers have already proposed formal models to evaluate the efficiency of DMUs described via 

intuitionistic fuzzy variables. For instance, Puri and Yadavar [12] introduced different models to find the 

optimistic and pessimistic efficiencies of DMUs within an intuitionistic fuzzy environment. They developed an 

algorithmic technique that ranks units when optimistic and pessimistic evaluations are performed separately, 

using the hyperfunction technique. They also considered the case where optimistic and pessimistic evaluations 

are performed simultaneously as a combined approach, proposing different ranking methods based on the 

efficiency and inefficiency levels. The overall performance was evaluated using a hybrid intuitionistic fuzzy 

DEA model designed to incorporate optimistic and pessimistic conditions.  

In another study, Aria and Yadav [2] generalized the auxiliary variable (SBM) measurement model to an 

intuitionistic fuzzy environment and obtained intuitionistic fuzzy efficiencies based on the concept of alpha- and 

beta-shear. These authors adapted the SBM super-efficiency model to calculate the efficiency of efficient units 

per given values of alpha and beta. Their model allows both to rank DMUs and compare intuitionistic fuzzy 

functions. These authors developed a similar approach for DEA models with intuitionistic fuzzy input and 

output values [1], calculating both intuitionistic fuzzy performances per given alpha and beta values and targets 

for the intuitionistic fuzzy inputs and outputs.  

In the current paper, we propose a novel intuitionistic fuzzy arithmetic approach to solve intuitionistic fuzzy 

DEA problems. Our model is computationally simpler than the recent techniques described and, unlike the 

existing approaches, focuses on a DEA deficit model within an intuitionistic fuzzy environment. We consider 

DMUs characterized by intuitionistic fuzzy inputs and outputs and perform arithmetic operations on the 

objective function of the problem to derive a fractional model with definite constraints. Then, we apply Wang's 

alphabetical method to obtain the intuitionistic fuzzy efficiency of each DMU and, finally, use the accuracy 

function approach presented by Ebrahimnejad and Verdegai [7] to compute the resulting efficiencies and 

classify the DMUs.  

In addition to the novelty of the approach, its main contribution relies on its computational simplicity and 

applicability. That is, the solution technique defined allows for an easily computable structure that fosters its 

inclusion within more complex hybrid techniques requiring the use of fuzzy variables. This is the case, for 

instance, when considering the relationship existing between multi-objective optimization and DEA models (Di 

Caprio et al. [4], Tavana et al. [14]). The implementation of overly complex solution methods may undermine 

the design of hybrid techniques, which are essential to solve a wide variety of real-life problems, while the 

computational simplicity of the current model incentivizes their development. 

The paper proceeds as follows. The next section introduces the main definitions required to build the 

intuitionistic fuzzy DEA model presented in Section 3. Section 4 illustrates numerically its applicability. Section 

5 summarizes the main results obtained and suggests potential extensions.   
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2. Intuitionistic fuzzy sets 

We summarize below the basic concepts of intuitionistic fuzzy set theory, such as intuitionistic fuzzy 

numbers, intuitionistic fuzzy arithmetic, and the ranking of intuitionistic fuzzy numbers [7]. 

Definition 1. Suppose X  is a reference set. The intuitionistic fuzzy set 
IA  on X  is defined by an orderly set 

of  , ( ), ( ) ;I I

I

A A
A x x x x X   in which the functions : 0,1IA

X  and : 0,1IA
X  indicate 

the degree of membership and non-membership of the element x  in X , respectively, and for each x X , the 

condition 0 ( ) ( ) 1I IA A
x x  is satisfied. 

Definition 2. The intuitionistic fuzzy set 
IA  defined on the set of real numbers is called an intuitionistic 

triangular fuzzy number whenever the membership and non-membership functions are defined as follows: 
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where 
L L M U Ua a a a a . Intuitionistic triangular fuzzy numbers are represented via 

 , , , ,L L M U U
I
A a a a a a 

 . 

Definition 3. An intuitionistic triangular fuzzy number  , , , ,L L M U U
I
A a a a a a 

  is called an intuitionistic 

(positive) triangular fuzzy number whenever 0La ( 0La ). 

Definition 4. Assume that  , , , ,L L M U U
I
A a a a a a 

  and   
 , , , ,L L M U U

I
B b b b b b  are intuitionistic 

triangular fuzzy numbers. The main intuitionistic fuzzy arithmetic operations are defined as follows: 
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I I
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Definition 5. Let  , , , ,L L M U U
I
A a a a a a 

  be an intuitionistic triangular fuzzy number. Its accuracy function 

is defined as follows: 
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According to Definition 5, the comparison of two intuitionistic triangular fuzzy numbers 
I
A  and 

I
B  in 

terms of their accuracy function is performed as follows: 

 

   I I I I
A B H A H B   . 

3. The intuitionistic fuzzy DEA model 

In this section, we incorporate intuitionistic fuzzy inputs and outputs within a standard DEA model and 

suggest a simple and direct solution technique. 

Denote by 
1

( , , , , )I I I I T
j j ij mj
X x x x  the intuitionistic fuzzy input of the thj  DMU and by 

1
( , , , , )I I I I T

j j rj sj
Y y y y  its intuitionistic fuzzy output, with 1, ,j n . The intuitionistic fuzzy efficiency 

of 
j

DMU  is defined as follows: 
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Let  , , , ,I L L M U U
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  and  , , , ,I L L M U U
rj rj rj rj rj rj
y y y y y y 

  be intuitionistic triangular fuzzy 

inputs and outputs, respectively. According to Definition 4, the intuitionistic fuzzy efficiency can be calculated 

as follows: 
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The intuitionistic fuzzy DEA model designed to measure the intuitionistic fuzzy performance of 

p
DMU  is defined as follows: 
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Incorporating the definition given in Equation (3) into Model (4) we obtain: 

1 1 1 1 1

1 1 1 1 1

1 1

1

max , , , ,

s.t.  ,

s s s s s
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                   (5) 

 

Note that the intuitionistic fuzzy constraint of Model (5) will be lower than or equal to one whenever its 

last component is lower than or equal to one. Therefore, Model (5) can be rewritten as follows: 
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                                                  (6) 

Clearly, the objective function of Model (6) is given by an intuitionistic fuzzy variable, but all fuzziness 

has been eliminated from its constraints. Therefore, Model (6) can be interpreted as a multi-objective linear 

programming problem and solved using an alphabetical approach. The subsequent procedure is described 

below. 

First, Model (7) is introduced to calculate the lower bound efficiency of the objective function of Model 

(6): 
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                                                                                      (7) 
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Model (8) is introduced in the next stage to calculate the optimal value of 
L

pE  while incorporating the 

optimal value obtained for the lower bound of the objective function, namely, 
*L

pE


: 
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                                                                                    (8) 

 

The remaining optimal values composing the resulting intuitionistic fuzzy performance are calculated as 

follows: 
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1
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The optimal weights obtained after solving Model (6) alphabetically are introduced in Equation (3) to 

obtain the intuitionistic fuzzy efficiency of the DMUs. In order to derive a complete ranking of the units, we 

must apply Definition 5 to compute the accuracy function of all the intuitionistic fuzzy efficiencies 

 

 
 
   


4

8

L L M U U

p p p p pI

p

E E E E E
H E  

 

The efficiencies must be subsequently compared and ranked, providing a final evaluation of the DMUs. We 

illustrate numerically the implementation of this technique in the next section. 

4. Numerical example 

In this section, an example is given to illustrate the intuitive applicability of the proposed method. Consider 

the performance evaluation of 12 DMUs defined by sets of two intuitionistic fuzzy inputs and outputs. The 

value of the inputs and outputs describing the corresponding DMUs are listed in Table 1. 
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Table 1. Intuitionistic fuzzy inputs and outputs describing the DMUs 

DMUs Input 1 Input 2 Output 1 Output 2 

1 (15,17,20,23,25) (145,148,151,153,154) (95,97,100,103,105) (84,86,90,95,97) 

2 (12,15,19,22,26) (127,29,131,134,136) (146,148,150,151,153) (45,48,50,53,55) 

3 (20,22,25,28,30) (154,158,160,163,165) (154,157,160,163,165) (50,53,55,57,59) 

4 (22,23,27,29,33) (163,165,167,170,172) (176,178,180,183,185) (67,70,72,74,75) 

5 (18,20,22,25,27) (153,155,158,161,163) (84,91,94,97,99) (60,62,66,68,71) 

6 (49,51,55,58,60) (250,252,255,258,260) (226,228,230,231,232) (85,87,90,93,95) 

7 (29,31,33,36,39) (,230,233,235,236,238) (215,217,220,223,225) (81,83,88,92,95) 

8 (27,29,31,34,36) (200,202,206,208,210) (148,150,152,154,155) (76,78,80,83,84) 

9 (24,27,30,32,35) (238,241,244,246,248) (183,187,190,194,196) (94,97,100,102,104) 

10 (44,47,50,54,55) (260,262,268,271,273) (244,246,250,253,255) (95,97,100,104,105) 

11 (48,51,53,55,57) (300,302,306,308,309) (256,258,260,261,262) (140,142,147,149,152) 

12 (32,34,38,40,41) (280,281,284,286,287) (243,248,250,256,258) (117,119,120,123,125) 

 

Models (7) to (11) are applied to obtain the set of optimal weights, which, at the same time, are used to 

compute the corresponding intuitionistic fuzzy efficiencies through Equation (3). The weight and efficiency 

values obtained for each DMU are described in Table 2.  

 

Table 2. Optimal inputs and outputs weights and intuitionistic efficiencies per DMU 

I

pE 2u 1u 2v 1v DMUs 

(0.8133,0.8383,0.889,0.9574,1) 0.0102 0.0001 0.0069 0.0003 1 

(0.8944,0.9207,0.9549,0.9768,1) 0.0001 0.0064 0.0077 0.0001 2 

(0.7591,0.7905,0.8245,0.8543,0.8921) 0.0037 0.0041 0.0065 0.0001 3 

(0.8488,0.8851,0.9199,0.9557,0.98) 0.006 0.0029 0.006 0.0013 4 

(0.,5976,0.6381,0.6848,0.7204,0.7559) 0.0064 0.0031 0.0065 0.0007 5 

(0.733,0.7504,0.7752,0.799,0.8157) 0.0039 0.0019 0.0039 0.0004 6 

(0.7769,0.797,0.8287,8598,0.8888) 0.0042 0.0021 0.0042 0.0005 7 

(0.6855,0.707,0.7296,0.7642,0.7802) 0.0049 0.0024 0.0049 0.0009 8 

(0.7216,0.7485,0.7734,0.8006,0.8281) 0.0041 0.002 0.0041 0.0007 9 

(0.7542,0.7704,0.7974,0.836,0.85) 0.0037 0.0018 0.0038 0.0002 10 

(0.8272,0.8396,08642,0.8839,0.9016) 0.0032 0.0016 0.0033 0.0003 11 

(0.7962,0.8145,0.828,0.8594,0.874) 0.0035 0.0017 0.0035 0.0007 12 

 

The accuracy function is then applied to define the efficiency and corresponding rank position of each 

DMU, both of which are presented in Table 3. 

 

Table 3. Accuracy values and ranking positions for each DMU 

Rank  I
jH E DMUs 

2 0.8956 1 

12 0.6562 2 

6 0.8243 3 

1 0.9187 4 

11 0.6814 5 

8 0.7749 6 

5 0.8297 7 

10 0.7319 8 

9 0.7582 9 

7 0.8 10 

3 0.8636 11 

4 0.832 12 
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We provide now some basic comparisons with respect to the rankings obtained applying some of the 

main competing models develop in the literature to the same numerical example. In particular, we focus on the 

super-efficiency and geometric approaches introduced by Puri and Yadav [12]. Table 4 compares the rankings 

obtained applying the proposed accuracy function with those derived from their optimistic super-efficiency, 
OI

jSE , pessimistic super-efficiency, 
PI

jSE , and geometric, 
geometric

jE , models. The geometric model is defined 

as the square root of the product between their optimistic and pessimistic intuitionistic fuzzy DEA techniques 

([12]).  

 
Table 4. Ranking comparisons relative to the models introduced by Puri and Yadav [12] 

geometric

jE 
PI

jSE 
OI

jSE  I

jH E DMUs 

2 3 1 2 1 

5 5 2 12 2 

8 10 8 6 3 

1 1 4 1 4 

12 11 12 11 5 

10 12 10 8 6 

7 6 7 5 7 

11 9 11 10 8 

6 8 5 9 9 

9 7 9 7 10 

4 2 6 3 11 

3 4 3 4 12 

 
In order to provide additional intuition, Figure 1 illustrates the corresponding rankings. The DMUs are 

represented in the horizontal axis, while the subsequent ranking position are described in the vertical axis. It can 

already be observed that there are noticeable differences between the current approach and the super-efficiency 

ones. Though the patterns described by the rankings bear some resemblance, the actual rankings delivered by 

both types of techniques differ considerably. On the other hand, the geometric model, which requires a more 

convoluted evaluation procedure, seems to be significantly correlated with the current method. 

 

 

Figure 1. An illustration of the current ranking and those of Puri and Yadav [12] 
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The intuition derived from Figure 1 is validated in Table 5, which presents the Spearman correlations 

between the different rankings. The similar trends exhibited by the current accuracy function method and the 

geometric model are further highlighted through the scatter plot presented in Figure 2. Clearly, a perfectly 

correlated scenario would require both ranking techniques to define an identity function. Even though this is not 

the case, we observe a very similar evaluation pattern derived from both methods. That is, the method proposed, 

which is computationally simple and intuitive, provides a set of ranking results that are significantly correlated 

with those derived from the implementation of a substantially complex technique such as the geometric one. 

 

Table 5. Ranking correlations with the models developed by Puri and Yadav [12] 

Spearman's rho Correlations Current SEOptimistic SEPessimistic Geometric 

Current Correlation Coefficient 1.000 0.462 0.699
*
 0.727

**
 

Sig. (2-tailed) . 0.131 0.011 0.007 

N 12 12 12 12 

SEOptimistic Correlation Coefficient 0.462 1.000 0.769
**

 0.916
**

 

Sig. (2-tailed) 0.131 . 0.003 0.000 

N 12 12 12 12 

SEPessimistic Correlation Coefficient 0.699
*
 0.769

**
 1.000 0.902

**
 

Sig. (2-tailed) 0.011 0.003 . 0.000 

N 12 12 12 12 

Geometric Correlation Coefficient 0.727
**

 0.916
**

 0.902
**

 1.000 

Sig. (2-tailed) 0.007 0.000 0.000 . 

N 12 12 12 12 

*. Correlation is significant at the 0.05 level (2-tailed). 

**. Correlation is significant at the 0.01 level (2-tailed). 

 
We conclude by noting that differences with respect to the optimistic and pessimistic super-efficiency 

approaches are however obtained, a consistent result given the fact that none of the main features defining these 

models are incorporated into the current setting, allowing for potential developments and comparisons to be 

performed through future research. 

 

 

Figure 2. Scatter plot of the rankings generated by the current and geometric models 
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5. Conclusion 

We have introduced an intuitive and easily applicable DEA model designed to account for intuitionistic 

fuzzy inputs and outputs. The model has been transformed into a linear programming problem with an 

intuitionistic fuzzy objective function, and an alphabetical technique has been applied to solve it. The proposed 

approach is easy to implement, involving a lower number of calculations than the standard alpha- and beta-

cutting approaches. It also provides a set of ranking results that are significantly correlated with those derived 

from the application of more complex techniques. In this regard, future research could incorporate the effects of 

optimism and pessimism or multiple decision stages, allowing for a simplified analysis of scenarios common to 

the standard DEA literature within an intuitionistic fuzzy environment.   

We conclude by highlighting the capacity of our model to simplify the incorporation of intuitionistic fuzzy 

variables within complex hybrid multi-objective optimization problems. The same reasoning applies to group 

decision making environments dealing with intuitionistic fuzzy variables (Ebrahimnejad el al., [6]), defining a 

substantial set of potential extensions within both lines of research. 
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