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any DMU before a reclassification from efficient to inefficient status (or vice
versa) happens. In many real-world applications, the managers to estimate the
under supervision DMUs encounter stochastic data and require a way to deal
with the sensitivity analysis of DMUs with this special data. In DEA, efficient
DMUs are of primary importance as they define the efficient frontier. The
intent of this paper is to present the sensitivity analysis with stochastic data for
efficient DMUs when inputs and outputs are stochastic and variations in the
data are simultaneously considered for all DMUs. The models explained in this
paper for treating sensitivity analysis in DEA are expanded by according them
chance-constrained programming formulations. The ordinary route used in
chance-constrained programming is followed here by replacing these stochastic
models with their deterministic equivalents. The optimal solution of these
models leads to allowable input/ output variations.
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1. Introduction

Analyzing and managing the efficiency of entities is the main responsibility of the top-level management
team that can be carried out by different methods. Data envelopment analysis (DEA) introduced by Charnes et
al. [10] is identified as a successful tool in evaluating the relative performance of entities and organizations,
and based on various production process assumptions, several different models have been developed [39, 41,

, b5, 57, 60]. Since DEA is data-based, it is significant to assess possible input/output changes (data
perturbation) of a DMU such that its obtained efficiency classification stays fixed. In the context of DEA,
sensitivity analysis has been one of the remarkable issues which express to what extent perturbations in the
input/output data are tolerable before changing DEA efficiency. Numerous studies have addressed to this topic,
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see, for example, Ahn and Seiford [1], Smith [51], Sexton et al. [50], Charnes and Neralic [12], Seiford and
Zhu [48, 49], Charnes et al. [11, 13], Thompson et al. [53, 54], Jahanshahloo et al. [26], Nerali¢ and Wendell
[38], Hladik [23], Khalili-Damghani and Taghavifard [29] and He et al. [22] among others.

Charnes et al. [8] discussed analytical methods of DEA sensitivity analysis. They presented an algorithmic
approach by updating the inverse of the optimal basis matrix and obtained the stability radius in the direction of
one output for preserving the efficiency of efficient DMU. They also noted that standard methods of linear
programming sensitivity analysis are not being used in DEA. Nerali¢ [37] developed sufficient conditions for
the preservation of efficiency classification of all DMUs in the additive model of DEA using an approximate
inverse of the perturbed optimal basis matrix.

Lotfi and Jahanbakhsh [33] examined the efficiency and effectiveness simultaneously in a three-stage
process using a unified model. Zhou et al. [58] estimated environmental performance which is the basis for
analyzing environment policy and decision making. Kang et al. [28] evaluated the efficiency of the emergency
department. Tavakoli et al. [52] assessed organizational performance concerning human capital management
by fuzzy DEA. Mostafaee and Soleimani-Damaneh [35] studied the anchor points in DEA and the main results
of their paper led to a new relationship between DEA and sensitivity analysis in linear programming.
Hosseinzadeh et al. [24] reviewed ranking articles in DEA, which categorized ranking methods into seven
groups. Liu and Wang [23] studied the sensitivity analysis of profit based on system dynamics. Lotfi et al. [34]
estimated return-to-scale sensitivity analysis in supply chain management. Emrouznejad and Yang [20]
surveyed scientific studies during the first 40 years of DEA (1978-2018). Charnes and Nerali¢ [12] introduced
sensitivity analysis of the additive model for an efficient unit and provided sufficient conditions for
simultaneous variations of all inputs and all outputs such that its obtained efficiency classification does not
change.

Jahanshahloo et al. [26] considered DEA interval models to define the stability radius of each unit in the
presence of interval data in such a way that the efficiency classification remains unchanged. Thompson et al.
[53, 54] used the strong complementary slackness condition (SCSC) to analyze the stability of the CCR model
in a situation where the data for all efficient DMUs and all inefficient DMUs simultaneously changed in
opposite directions but to the same ratio. Charnes et al. [11] and Charnes et al. [13] used the super-efficiency
model for sensitivity analysis of each DMU. In this approach, they considered a deteriorating scenario for
efficient DMUs and an improving scenario for inefficient DMUs. Zhu [59] amended the work of Charnes et al.
[13] to identify permissible variations in every input and output for each DMU before an alteration occurs in
status for the DMU under evaluation. Jahanshahloo et al. [25] suggested a new approach to sensitivity analysis
of a DMU under test. They extend a stability region for DMU, by using the supporting hyperplanes which pass
through DMU, and the new frontier which is constructed by eliminating DMU, from the observations set.

Boljun¢i¢ [7] employed an iterative procedure. He achieved possible input/output changes by using the
optimal simplex tableau and applying parametric programming (input/output changes as parameters).
Mozaffari et al. [36] provided a method for sensitivity and stability analysis of all DMUs with interval data
using the MOLP approach. Jahanshahloo et al. [27] examined the sensitivity analysis of the inefficient DMUs,
their technique yielded an exact necessary change region in which the efficiency score of a specific inefficient
DMU changes to a defined efficiency score. Daneshvar et al. [16] and Ghazi et al. [21] developed the stability
region by supporting hyperplanes of the PPS. Dar et al. [17] studied the sensitivity of performance
classification and the returns to scale (CRS, IRS, and DRS) of DMUs based on input and output slacks. Of late,
Khoveyni and Eslami [31] investigated the internal structures of DMUs to detect their efficiency stability
regions. Their proposed method finds the stability regions of an extreme network-efficient two-stage
production process when its inputs increase, its intermediate products and final outputs decrease, and the data
of the other two-stage production processes remain fixed. Also, Arabjazi et al. [3] expanded the largest
performance stability region for an extreme efficient DMU whose data can be changed in all directions of



54 N. Arabjazi et al. / FOMJ 2(4) (2021) 5264

input/output space, including both directions of improving the situation and worsening the situation such that
under these changes the efficiency classification of all extreme DMUs will be preserved. Moreover, they found
the largest symmetric cell to the center of the extremely efficient DMU under evaluation, leading to an
efficiency stability radius.

In recent years, studies on performance sensitivity analysis have been implemented with the presence of
special data. Sanei et al. [46], Wen et al. [56], Khalili-Damghani and Taghavifard [29] investigated the
sensitivity analysis with fuzzy data. Banihashemi et al. [4] obtained the stability region of efficient and
inefficient units with integer data. Khodabakhshi et al. [30] extended sensitivity analysis of the super-efficiency
of DMUs based on input relaxation super-efficiency measure. He et al. [22] determined the stability radius with
bounded uncertainty.

The methodologies discussed above developed sensitivity analysis methods for the situation in which data
variations are applied to only the specific DMU that is being evaluated, and the data for the remaining DMUs
are assumed to be fixed. This assumption may not be appropriate because data variations may exist in each
input and output of all of the DMUs. Also in many real-world applications, the managers are faced with
stochastic data and they require evaluating input/output changes in the presence of this particular data. In DEA,
efficient DMUs are of primary importance as they define the efficient frontier. Therefore, in this paper, we
present the sensitivity analysis of efficiency for efficient DMUs when inputs and outputs are stochastic and
variations in the data are considered to not only all of the DMUs but also the input and output subsets of
interest.

The rest of this study is organized as follows. In Section 2, some basic concepts about DEA models and the
sensitivity analysis method proposed by Seiford and Zhu [49] will be introduced. In Section 3, we will present
sensitivity analysis with stochastic data. Finally, the conclusions and some suggestions for future research are
given in Section 4.

2. Preliminaries
Suppose that there are n homogenous decision-making units DMU; (j =1...,n) that convert m inputs

x; (i =1..,m)into s outputs Yy, (r =1..,s), and DMU, is the DMU under evaluation. The production possibility
set T, is defined by:

T, :{(X,Y)‘ X=X, YO AY,, DA, =1 &, 20,j=1., n}. (1)
j=1 j=1 j=1

The above definition implies that the BCC model of Banker et al. [5] is as follows:

" =min ©°

st > Xy <O, i=L..,m
j=1
DAYy >V,  F=L..s 2
j=1

S =1,
j=1

Moreover, the following linear programming problem is the additive model:
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Max  >'s;+>s;
i=1 r=1
n
St DA X S =X, i =1..,m
=
DAYy =S =Yy r=1..s ®)
=

Zn:xj =1
j=1

A, 20,8720,5720,j=L..,n,i=L..,m,r=1.,5s.

In linear programming problem (3), Max (Zsi+25:j:25i*+25:* =0 if and only if DMU, is Parato-
i=1 r=1

i=1 r=1 i =
Koopmans Efficient (for details see [15]).
We know that, in most models of DEA, the efficiency score of the best performers is one. To discriminate
between these efficient DMUs, many methods have been suggested. One of the most important models for
ranking extreme efficient units was proposed by Andersen and Petersen (AP) [2]. This model is:

AP: Min g,
st . D kX SO, i=1..,m
j=lj=0
2 AiYi2Ye r=1..s (4)
j=1j#0
Z Ay =1
j=1,j#0
;20 j=1..,n,j#o0.

Definition 1. (Reference Set). For a DMU,, we define its reference set E, to be: E, = {j | 4 > 0} in some
optimal solution to (2).

Definition 2. (Pareto—Koopmans Efficiency). A DMU is fully efficient, if and only if it is not possible to
improve any input or output without worsening some other input or output [15].

Definition 3. A DMU, is extreme efficient, if and only if it satisfies the following two conditions:
(i) Itis efficient (Pareto—Koopmans Efficient).
(i) | Eo |- 1.

Definition 4. A DMU, is non-extreme efficient, if and only if it satisfies the following two conditions:
(i) Itis efficient (Pareto—Koopmans Efficient).
(ii) | Eo |> 1 (that is the CCR envelopment model corresponding DMU, has alternate optimal).

Seiford and Zhu [49] provided a linear programming problem, a modified DEA model, to study the
sensitivity of efficiency classifications in the additive model for simultaneous data changes in all DMUs where
absolute changes in the data were of interest. The absolute data variation can be expressed as follows:



56 N. Arabjazi et al. / FOMJ 2(4) (2021) 5264

For efficient DMU,

Xio =X;o +0;, 0; 20,1 €l Vo =Y —Br» B, 20, Teo0
{ o O _ and {y Yo—B B )
Xio ::Xio’ I & I yro = yro' r¢o
For DMU; (j #0)
X, =X; -G, & 20,icl =Y+, B, 20 reo
AJ I] ) and Y\J yﬂ B B (6)
Xij =Xijj» el Yi =Yg reo

where (") represents adjusted data. Moreover the data changes defined above are not only applied to all
DMUs, but also different in various inputs and outputs. Based upon the above data variations, Seiford and Zhu
[49] provided the following model which studies the sensitivity of additive DEA models.

Min  >u +>u]
iel re0
n
st. DXy <X HU; iel
j=1,j=0
n
D kX <X, igl
j=1j#0
n
AYg =Y, U, reo ()
j=1j=o0
n
DAY =Y, reo
j=1j=o0
n
n =1
j=1,j=0
u U, (j#0)20 j=1..,n

Based upon model (7), we have:
Theorem 1.Suppose DMU, is a frontier point, if 0<a, +&, <u;” (i €l), 0<B, +B, <u/” (r €0), then DMU,
remains as a frontier point, where u, (i e 1)and u"(r €O) are optimal values in (7).
For the proof and details, see Seiford and Zhu [49].

3. Stochastic Sensitivity Analysis

Assume that %= (%,,...,%,) and ¥;=(y,,...,v,) are the stochastic input and output vectors. These

components have been considered to be normally distributed. Also, let X; = (X3, . . ., xmj)T and Y; = (Y - - -,
ys,-)T be the mean input and output vector, therefore the inputs and outputs have a normal distribution as
follows.

)N(ij = N(Xij 16ﬁ )v yrj = N(yrj 1831')

Suppose all input and output components to be jointly normally distributed in the following chance-
constrained version of a stochastic DEA model:
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Max dosi >/

s.t. P[ZNXU +s; —XID}Zl-OL i =1..,m
j=1
P[’ 1xjyrj —sr*:ym}zl-u r=1,..,s, (8)
J:
=1
j=1
XJZO,S.izoanZOaJ:L 9n9|217 1m1r:11 ,S

In this model, P means “‘probability’’ and « is a level of error between 0 and 1, which is a predetermined
number. Now, we apply this model to define stochastic efficiency as follows.

Definition 5. (Stochastic Efficiency). DMU, is stochastic efficient if and only if the following condition is
satisfied:

Max (isi +is:] = isi’* +is:* =0
i=1 r=1 i=1 r=1

The %; =%, ¥, =9, values for DMU, emerge on the left as well as on the right inside the braces of (8).
Therefore, we can always get a solution with 4, =1and 4, =0(j =0 ) and all slacks zero. Now, we apply

chance-constrained problem and, propose the following stochastic model of the model (7) in which DMU, is a
stochastic efficient:

Min  >u;+>u/

iel re0

st. P{ DA% <K +u;}21-a iel
J

P{i }\’jyrjzyro_u:}z-l'a re0O (9)

M- £
=

Il

[N

i=Lj=o

us,u A (j£0)20 j=1..,n

To analyse the sensitivity and determine the stability region of a stochastic DMU,, model (9) can be
converted into the deterministic model through the following procedures and using the notation conventions in
Cooper et al. [14]. For this purpose, consider the first chance-constraint of the model (9). The input constraints
can be transformed into equality form by adding ¢, >0:

P{ DX s><~m+u;}=1-a+si iel (10)
i
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Remark 1. Let T be a random variable and a, b and ¢ constant numbers, if P (T <a) = ¢ and b < a then there
exists d <c such that P (T <b) =d.

By bringing the above remark into use; there exist s; >0 such that:

P{ > xjxijsxio+ui—si}=1-a iel (11)

i=Lj=o

Using the above remark and defining new slack variables for the other three unequal constraints, we also
convert them to equality. Applying these changes, we have the following model:

Min dui+>u)
iel reO
sit. P{ > xjxij—xio—uiS—si}zl-a iel
j=1j=0
P{ > xjxij—xiOS—si}zl-a igl
j=1j=0
P{— > xjy,j+ym—u:3—s:}:1-a reO
j=1,j=0 (12)
P{— kjy,j+ym£—sr*}:1-a reo
j=lj=0

s >0i=1...m,
0

Now we convert the stochastic sensitivity analysis model (12) with chance-constraints into a deterministic
form. First, we obtain the deterministic form of the first constraint of the model (12) which is as follows:

P{ Z x].f(ij—iio—uiS—si}zl-a iel (13)
We define:

= %y = K, iel (14)

Since each linear combination of normal random variables has a normal distribution, we have:

h, ~ (h,,(c; (W))?), iel,
hi :E(ﬁi):E(iijij_xio):iijij ~Xios iel (15)
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n

(o, (V)* =Var(h) =Var( Y. &% —%;), iel
j=1,j=#0
=Var( Y &%) +Var(x,)—-2cov( D A%, %)
i=Lizo j=Ljzo (16)

n

n n
= > > Ak cov(Rg, K ) HVar(X,) -2 > A cov(Xy, X,
j=1j=#o0 k=Lk =0 i=Lj=o

Taking into account the random variable h,, Relation (13) is rewritten as follows:

P(h,-u; <-s;)=1-a iel,

pizhiUizs —hy g e,
c; () o; (V)
On the other hand, by placing Z:M and knowing that Z, has a standard normal distribution, we

have:

Pz, <ULy o e

o, (1)
-u; +s; +h,
c; (A)
—ui’+si’+hi): -

c; (A)

Pz, < )=a iel

@ (

In the above relation, @ is a function of the standard normal cumulative distribution. Hence:
S AN i) icl
c; (1)
U +s +h —o, () @) =0 i€l
where @ is the inverse of ® and, is the so-called ‘‘fractile function’’. Therefore, the deterministic form

of the chance-constraint will be as follows:

n

Ay =X —Uy 48] —D ™ (a)o; (M) =0 iel (17)

j=1,j=0
In Relation (12), other chance-constraints, like the first constraint, become deterministic. But the objective

Z A, =1are not stochastic, so they remain unchanged. Therefore, the
j=1j=0

deterministic form of the model (12) which has derived from model (9) is as follows:

function and the constraint
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Min duy
iel re0
st. D RXy =X —U; +s; @ (a) o, (M) =0 iel

j=lj=o0

12 AiX =X, +8; —@ 7 (a) o, (1) =0 igl
j=lj=o0

—_Z MYy +Ye—Ul 45 —d (o) o, () =0 reo
j=lj=#0 (18)

—_Z MYy +Ye+s, -0 (a) o, (1) =0 reo

j=Lj=o
n

A=1

J

M

j=1,j=0

up (ifel) ui (re0 ) a;(j#0)20 j=1.,n,
s;201i=1..m,

s/ >0r=1..,s.

An optimal choice of the variables in Relation (18) will also be optimal for Relation (12) and, vice versa,
an optimal solution of Relation (12) will also be optimal for Relation (18). See the chapter on chance-
constrained programming in Ben Israel [6] which also develops a duality theory for these relations. Model (18)
is a nonlinear programming problem because of the functional forms of o, (1) and o, (2). Let v, and o, are

non-negative variables. Replace o, (A) by v, and o, (L) by o, in the model (18), and add two quadratic equality
constraints, v’ = (o, ())* and o’ =(o, (A))*, to (18), then (18) is transformed to easily solvable quadratic
programming problems.

Min duy+duf

iel reO
st. D hXy =X —U; +s; —@ 7 (a) v, =0 iel
j=1,j=0
Z AjXy =X +s; 0 (@) v; =0 gl
j=1,j=0
= > A Yty U +s —0 (@) », =0 reo
j=1,j=0
- 2 MY tyets mP@) o, =0 reo (19)
A =1
j=1,j#0
=0 (W)= DL D Ak cov(Ry, & ) HVar(X,) -2 D A cov(X,K,), i =1..,m
j=1,j#0 k=1k =0 j=1,j=0
o =(0,(M)’= D D A Cov(T,, V) Var (7,)-2 D A cov(¥y.9,,), T =1.s
j=1j#0 k=Lk =0 j=1,j#0
u (iel) u (re0)x;(j=0)=0 j=1..,n,
s;20i=1...m, s 20r=1..s.

Model (19) is a quadratic programming model whose optimal solution results in permissible input / output
changes of DMU,. The formulated model detects the stability radius for all DMUs within which absolute data
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perturbations will not change the efficiency classification of test DMU. The approach considers not only the
coinstantaneous absolute data perturbations of the inputs and outputs for all DMUs but also diverse input and
output subsets.

4. Conclusions

Uncertainties always exist in practical management and engineering problems. In many applications, a
model with deterministic inputs and outputs cannot reasonably encompass all the important features of the
problem. To obtain reliable results, the uncertainties should be taken into account, and corresponding DEA
methods that handle uncertainties should be developed. Stochastic DEA models may fit well in such
applications. This study extends sensitivity analysis to find the largest region that preserves the classification of
the DMU with stochastic data. This sensitivity analysis approach simultaneously considers data perturbation in
all DMUs, that is, the change of the evaluating DMU, and the changes of the remaining DMUs. The data
perturbation in the evaluating DMU and the data perturbation in the remaining DMUs can be different when all
remaining DMUs work in the direction of improving their efficiencies against the worsening of the efficiency
of the evaluating efficient DMU,,.

One of the shortcomings of this study is the nonlinearity of the proposed model and also we are unable to
discuss absolute changes directly through the modified CCR, because when absolute changes of data are
considered, convexity condition is a necessary condition for performance sensitivity analysis. Future research
will focus on improving the DEA models, theories, and applications for CCR models and the DEA models of
fuzzy optimization and robust optimization to handle data uncertainty, for more details, see [18, 19, 40, 42-44,

1.
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