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ARTICLEINFO ABSTRACT
Article history: Data Envelopment Analysis (DEA) is a widely used technique for measuring
Received 11 November 2020 the relative efficiencies of Decision Making Units (DMUs) with multiple inputs
Revised 27 February 2021 and multiple outputs. However, Undesirable Outputs (UO) may be present in
Accepted 7 April 2021 the production process which needs to be minimized. In real-world problems,
Available online 15 April 2021 the observed values of the input and output data are often vague or random.
Indeed, Decision Makers (DMs) may encounter a hybrid uncertain environment
Keywords: where fuzziness and randomness coexist in a problem. This paper proposes
Data envelopment analysis fuzzy stochastic DEA model with undesirable outputs. The extensions to the
Undesirable output fuzzy-stochastic environment sometimes may be laid to disregard some of the
Fuzzy random variable properties in DEA models such as linearity and feasibility. In this way, we
Possibility-Probability apply a new version of DEA-UO model according to the probability-possibility

approach to propose a linear and feasible model in deterministic form. A
numerical example is presented to illustrate the features and the applicability of
the proposed models.

1. Introduction

Data Envelopment Analysis (DEA), initially introduced by Charnes et al. [7], is a well-known non-parametric
methodology for computing the relative efficiency of a set of homogeneous units, named as Decision Making Units
(DMU). DEA generalizes the intuitive single-input single-output ratio efficiency measurement into a multiple-input
multiple-output model by using a ratio of the weighted sum of outputs to the weighted sum of inputs. It computes
scalar efficiency scores with a range of zero to one that determine efficient level or position for each DMU under
evaluation among all DMUs. A DMU is said to be efficient if its efficiency score is equal to one, otherwise it is said
to be inefficient. The basic DEA models were initially formulated only for desirable inputs and outputs. However,
in real life problems, undesirable outputs may be present in the production process which also needs to be
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minimized. One of the direct approaches to deal with undesirable outputs is to treat all the desirable and undesirable
outputs as the weighted sum, but using negative weights for the undesirable outputs.

Hatami-Marbini et al. [12] classified the fuzzy DEA methods in the literature into five general groups, the
tolerance approach (Sengupta [36], Triantis and Girod [41]), the a-level based approach, the fuzzy ranking approach
(Guo and Tanaka [11], Hatami-Marbini et al. [13]), the possibility approach (Lertworasirikul et al. [21]), and the
fuzzy arithmetic approach (Wang et al. [44]). Among these approaches, the a-level based approach is probably the
most popular fuzzy DEA model in the literature. This approach generally tries to transform the FDEA model into a
pair of parametric programs for each a-level. Kao and Liu [15], one of the most cited studies in the a-level
approach’s category, used Chen and Klein [3] method for ranking fuzzy numbers to convert the FDEA model to a
pair of parametric mathematical programs for the given level of a. Saati et al. [34] proposed a fuzzy CCR model as
a possibilistic programming problem and changed it into an interval programming problem by means of the a-level
based approach. Puri and Yadav [32] applied the suggested methodology by Saati et al. [34] to solve fuzzy DEA
model with undesirable outputs. Khanjani et al. [16] proposed fuzzy free disposal hull models under possibility and
credibility measures. Momeni et al. [26] used fuzzy DEA models to address the impreciseness and ambiguity
associated with the input and output data in supply chain performance evaluation problems. Payan [31] evaluated
the performance of DMUs with fuzzy data by using the common set of weights based on a linear program.

In order to evaluate the efficiency of DMUs with the deterministic inputs and the random outputs, Land et al.
[20] extended the chance constrained DEA model. Olesen and Petersen [28] developed the chance constrained
programming (CCP) model for efficiency evaluation using a piecewise linear envelopment of confidence regions
for observed stochastic multiple-input multiple-output combinations in DEA. Huang and Li [14] developed
stochastic models in DEA by taking into account the possibility of random variations in input-output data. Cooper et
al. [5], Li [21], and Bruni et al. [1] utilized joint chance constraints to extend the concept of stochastic efficiency.
Cooper et al. [4] used chance-constrained programming for extending congestion DEA models. Tsionas and
Papadakis [40] developed Bayesian inference techniques in chance-constrained DEA models. Udhayakumar et al.
[43] used a genetic algorithm to solve the chance-constrained DEA models involving the concept of satisficing.
Also some of the banking applications in relation to satisficing DEA can be found in Udhayakumar et al. [43] and
Tsolas and Charles [42]. Farnoosh et al. [9] proposed chance-constrained FDH model with random input and
random output. Wu et al. [45] proposed a stochastic DEA model by considering undesirable outputs with weak
disposability. This model not only deals with the existence of random errors in the collected data, but also depicts
the production rules uncovered by weak disposability of the undesirable outputs. A review of stochastic DEA
models can be found in a recent work by Olesen and Petersen [29].

However, in the real-world problems decision makers may need to base decisions on information which are
both fuzzily imprecise and probabilistically uncertain. Kwakernaak [18, 19] introduced the concept of fuzzy random
variable, and then this idea enhanced by a number of researchers in the literature (Feng and Liu [10], Liu and Liu
[23], Liu [24], Qin and Liu [33]). Qin and Liu [33] developed a fuzzy random DEA (FRDEA) model where
randomness and fuzziness exist simultaneously. The authors characterized the fuzzy random data with known
possibility and probability distributions. Tavana et al. [38] also introduced three different FDEA models consisting
of probability-possibility, probability-necessity and probability-credibility constraints in which input and output
data entailed fuzziness and randomness at the same time. Also, Tavana et al. [37] provided a chance-constrained
DEA model with random fuzzy inputs and outputs with Poisson, uniform and normal distributions. After that,
Tavana et al. [39] proposed DEA models with birandom input-output. Khanjani et al. [17] proposed fuzzy rough
DEA models based on the expected value and possibility approaches. Paryab et al. [30] proposed DEA models
using a bi-fuzzy data based possibility approach. However, there has been no attempt to study randomness and
roughness simultaneously in DEA problems. To deal with the uncertain environments, especially hybrid
environments, the DEA model may disorder its structure when the uncertain parameter of input and output exist.
For example, the method proposed by Tavana et al. [39] does not compute the efficiency scores of DMUs in the
range of zero to one for input-oriented DEA models. This study tries to overcome the shortcomings of the existing
approach. Nasseri et al. [27] proposed a DEA model with undesirable output consisting of probability-possibility,
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probability-necessity and probability-credibility constraints. Ebrahimnejad et al. [7] formulated a deterministic
linear model according to the probability—possibility approach for solving input-oriented fuzzy stochastic DEA
model. Ebrahimnejad et al. [8] extended the concept of a normal distribution for fuzzy stochastic variables and
propose a DEA model for problems characterized by fuzzy stochastic variables. To sum up with all the above
aspects, the achievement of the present study is threefold: (1) to formulate a linear and feasible model with the
efficiency scores of DUMSs with the range of zero to one, (2) to propose a new version of the CCR-DEA model to
achieve a linear and feasible model, and (3) to use a probability possibility approach for solving the uncertainty
model.

The rest of this paper is organized as follows: In Section 2, the basic preliminaries with fuzzy sets and
possibility set are given. Section 3 formulates the conventional DEA model in the presence of undesirable outputs.
A probability- possibility approach is proposed for solving fuzzy stochastics DEA model in Section 4. A numerical
example is given to illustrate the proposed approach in Section 5. Finally, Section 6 concludes the paper.

2. Preliminaries
In this section, we review some necessary concepts related to the fuzzy set theory and probability theory, which
will be used in the rest of paper [6, 46, 47].

Definition 1: A fuzzy set A, defined on universal set X , is given by a set of ordered pairs
A ={(x, 1: (X)) | x €X} where 1,(x) gives the membership grade of the element X in the set Aand is called
membership function.

Definition 2 : A fuzzy set A, defined on universal set of real numbers R , is said to be a fuzzy number if its
membership function has the following characteristics:

1) A is convex, i.e. Vx,yeR,Vie [0,1], 25 (Ax + (1= 2)y) = min{e; (X), 125 (¥)} .

2) A isnormal, i.e. 3% e R; x, (X) =1.

3) u; is piecewise continuous.

Definition 3: A function L:[0,.0) -[0,1] (orR:[0,.0) —[0,1]) is said to be reference function of fuzzy number if
and only if L(0) =1(or R(0)=1) and L or R is non-increasing on [0, ) .

Definition 4 [6]: A fuzzy number A= (m,a, ), is said to be an LR fuzzy number, if its membership function is
given by:

L(m—x
o

), for x<m,a>0,
iy (x)=41, for x=m,

REZDY,  for x=n,B>0.

B

Remark 1: If L(x) = R(x) = max{0,1—x} then an LR fuzzy number A = (m,«, B, is said to be a triangular fuzzy
number and is denoted by A= (m,a, ) .

Definition 5: Let A =(m,a, ), be an LR fuzzy number and 4 be a real number in the interval [0,1]then the
crisp set, A, ={xeR: u; ()=} =[A", A" =[m-aL™*(1),m+ SR (A)]is said to be A -cut of A.

Definition 6: Let A =(m,a,5), andA =(m,,a,,f3,)be two LR fuzzy numbers andk be a non-zero real
number. Then the exact formula for the extended addition and the scalar multiplication are defined as follows:

i) (Mo, B +(My, 0, B,) i =(M+My o0+, B+ ) s
ii) k>0 k(m,a,B) . =km K, kB)q
|||) k<0, k(m,a, B)r =(km,—kB,—ka) ¢
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Definition 7: (Extension Principle) This principle allows the generalization of crisp mathematical concepts in
fuzzy frameworks. For any function f, mapping points in set X to points in set Y, and any fuzzy set A< P(X) where
A=, (X)+ 1, (X,)+...+ 1 (x ), this principle expresses:

FOA) = F(2,(x) + 2, (%) +.o 2,(%)) = F(2,00))+ F (2, (%)) +-o4 T (1,(%)) -
Definition 8: Let (®,P(®),Pos)be a possibility space where ® is a non-empty set involving all possible events,
and P(©)is the power set of ®. For every Ac P(@), there is a non-negative number Pos(A), so-called a possibility

measure, satisfying the following axioms:
(i) P@)=0, PO)=1,

(i) forevery ABeP(©), AcB implies Pos(A)< Pos(B),
(iii) for every subset{A,:weW}c P(®), Pos(U,A,)=Sup,Pos(A,).
The elements of P(®)are also called fuzzy events.
Definition 9 (Liu and Liu, [24]): Let ¢ be a fuzzy variable on a possibility space (@,P(@),Pos). The possibility,
necessity and credibility of the fuzzy event{& >r}, where r is any real number, is defined as follows:
Pos(&>r) = S:Epyg (t).

Nes{& >r} =1-Sup s.(t),
t<r

Cr(ézr) :%[Pos{g >r}+Nec{&>r}].
where s, :R—[0,1] is the membership function of & and r is a real number. Note here that
Cr(é=r)=1-Cr(&<r).
Definition 10 (Liu and Liu, [25]): Let (£2,4,Pr) be a probability space where 2 is a sample space, A is the s-

algebra of subsets of @ (i.e., the set of all possible potentially interesting events), and Pr is a probability measure
on2. A fuzzy random variable (FRV) is a function & from a probability space (£2,4,Pr)to the set of fuzzy
variables such that for every Borel set B of )2, Pos{&(w),w e B} is @ measurable function of « .

Definition 11 (Liu and Liu, [24]): A fuzzy random vector is a map from a sample space to a colleation of fuzzy
vectors, £ =(&,&,,...,&,):£2— F", such that for any closed subset Fe ", Pos{y| &(m,y) e F} is a measurable

fuction of m € Q, i.e., for anyt €[0,1], we have {a)eQ‘POS{y‘f(a),y) c F}gt} e A In the case of n=1, & is called

a fuzzy random variable.
Definition 12 (Fuzzy Random Arithmetic): Let & and &, be two FRVs with the probability spaces (<, A,,Pr,)

and (€2, A,,Pr,), respectively. Then&=¢&,+¢&, is defined asé(am,@,)=&(@)+&(@,) for any(@,@,)e xQ,,
where (€, xQ,, A, xA,,Pr,xPr,) is the corresponding probability space.

Definition 13: Let & =(&,&,,....&, ) be a fuzzy random vector, and f : %" — % be a continuous function. Then f (&)

will be a fuzzy random variable.
Definition 14: An LR fuzzy random variable will be denoted by &(w) , where « e €2 and described by the following

membership function:

L(MJ x<m(w),

(21

My (X) =11 x=m(w), (1)
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where m(w) is the normally distributed random variable.

3. Conventional DEA-UO model with crisp data

Consider the performance of a homogeneous set of nDMUs (DMU ;; j =1,...,n) with multiple inputs and
multiple outputs is to be evaluated. A production process with m inputs X (i =1,...,m)toyield S outputs in which

s, outputs are desirable y5 (r=1..,s,) and s, outputs are undesirable y;, (p=1..,s,) such thats =s, +s,.Several

approaches have been developed to deal with undesirable outputs in DEA model. Among these, we preferred Puri
and Yadav [32] approach to suggest a modified version such that the efficiency ratio for any DMU is guaranteed to
be positive. Their proposed model is as follows:

max ¢

¢<Zu Vi~ Z .

ZV.X.k =1

Suey -3y 20,v] )
=l =i

iuf’yi—szzu ZvI %, <0, Vj

L:f’leVr,uplslz 0vp,v, 2 0Vi.

wherex yi ,and y*;k are the inputs, desirable outputs and undesirable outputs of target DMU, respectively.

Obviously, from model (2), it can be seen thatg<1. Hence, we add this constraint to model (2) to get a
equivalence model (3) as follows:

max ¢
$p<1
St Sz
p<y Uyl -Duty?
r=1 p=
VX, =1
2% ®)
S S
ZU?yj—ZU:yZ >0, Vj

u? >0vr, u >Ova > 0Vi

The main aim of construction model (3) is to enhance the ability of model (2) in uncertain environment to
preserve the DEA structure. The reason of this modification is to keep the efficiency values of original model (2) in
fuzzy stochastic environment in the range of zero and one when it is transformed into a deterministic one.

This is ignorable, in real life problems, which certain mathematics is not sufficient to model a complex system.
In DEA system, input and output parameters may be faced with fuzziness and randomness together. In the present
study, to deal with such situations, we extend the DEA-UO model to the fuzzy stochastic DEA (FSDEA) model
with undesirable fuzzy stochastic outputs (FSDEA-UFSO).
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4. Fuzzy Stochastic DEA-UO model: A probability- possibility approach

Considern DMUs, indexed by j=12,...,neach of which consumes m fuzzy random inputs, denoted by

X; =(%.% %) _,i=1..m to produce s,+s, fuzzy random outputs, denoted by g =(y§j,yg’“,yg'ﬂ)m,r =1,..,s,as desirable
~| - o . ~ ~b
outputs and ¥y = (9. vp ¥i) . p=1...5, as undesirable outputs. Let the random parametersX y? Yy, be
- - - b
normally distributed as N(Xij,Gij),N(yf,af), N (yt:j ,GZ), respectively, where xij ,yfj ,ypj and o a‘j ,az are the
mean value and the variance for Xj , ¥, yz_ , respectively.
i rj

The chance-constrained programming (CCP) developed by Cooper et al. [4] is a stochastic optimization
approach suitable for solving optimization problems with uncertain parameters. Building on CCP and possibility
theory as the principal techniques, the following probability-possibility CCR model is proposed:

i =1 (4)
5 0]

r=1 p=1
max ¢
Pr[Pos(uglzlg <y° Sugzg)25 2y, Vrj (i)
roa i} ren
b =b N b=b i
Pr[Pos(upym <y’ Supym)zé}z% vp.J, (iii)
Pr[Pos(vi:ij <% svi:ij)zéJz;/, vi, j, (iv)
b

where & and y €[0,1] in constraint (ii), (iii) and (iv) are the predetermined thresholds defined by the DM.
Pos[-] and Pr[-] in Model (4) denote the possibility and the probability of [-] event.

In addition, we presume that the fuzzy stochastic input x; and the fuzzy stochastic output ?g and ?Z_ are
characterized, respectively, by the following two membership functions:
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ﬂﬁlj ®= (5)

and

(6)

In order to solve the probability-possibility constrained programming Model (4), we convert the constraints in
this model into their respective crisp equivalents. Thereby, Theorem 1 and Lemma 1 proposed, respectively, by Liu
and Liu [25] and Sakawa [35] play a pivotal role in solving the fuzziness of proposed Model (4).

Theorem 1: Let & be a fuzzy random vector g; :®R" — % are real-valued continuous functionsr =1,...,p . Then the
possibility Pos {g; (¢W))<0, j =1,..,n} is arandom variable.

Lemma 1: Let 4 and 4, be two independent fuzzy numbers with continuous membership functions. For a given
confidence level a<[01], Pos{4 >4} >« if and only if AR, > 15, , where Ar,, A%, and 43,, 45, are the left
and the right side extreme points of the a-level sets 4 and A, , respectively, and Pos{4, > 4,} present the degree of
possibility.

In what follows we show that the probability-possibility CCR model (4) can be equivalently transformed into a
linear programing model.

The constraint (i) in Model (4), Pr[Pos(ujrj <Yy <UY4)2o ]z 7, can be transformed into the following two
constraints:
Pr[Pos(u,?,j < Vi ) >3 Jz 7,

PI’|:POS(9,—]' Suryrj)Zé‘ :|27/'

These constraints can be rewritten as the following constraints based on Lemma 1:

P{Pos(ﬁﬂ- z”J>6:|2y© Pr[(yrj) <Z—]>y©Pr{y” L (5)y”<%j>;/
r r

r

Pr{POS[ﬁS):/rJJZb‘}ZJ/@ |3{ﬁ<(yrJ J ( Rl(5)yrﬁle27
u, Ue
SViX

In a similar way, constraint (iii) in Model (4), Pr[Pos( P <Ry <V )28 }>7/, can be rewritten as the

following constraints:
e NS K

P{Pos(x < "J25}22/<:> PI’[(YH') SJJZVQPr(?ij_L_l(ﬁ)XffSlJZJ/
v, 5y, v

)2 : )’Z“ - \R i - 1 B
Pri Pos| —<X; |26 |2y < Pr —é(xij)\ 2y < Prl —=<%+RT6O)X] |27
v, V; 6 :

Therefore, Model (4) can be reformulated as follows:
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max ¢
st
$<1
St . Sy b (7)
< Z yi - ypk
r=1 p=1

§° o
Pr| 93 - L (0)y59 < u” <§/%+R1(6)y€'g]>y, vrj (i)

9
r
b

NS S _ S
Pr| 5 - L (0)yg" < - <yp+R 1(5)yé’j’bJ2y, vp.j (i)
p
Pr iij—Ll(a)xf;gV‘_jsxij+R1(5)xijﬂJ2y, i, j (iii)
I

ud,ub,v, >0.
r r

By the help of standardized normal distribution, (see, e.g., Cooper et al. [4]), Model (7) can be transformed into
a deterministic linear programming model. Consequently, let us consider the first inequality in constraint (i) of

9

- - y® . -
Model (7) as Pr(hZO)Zy whereh=yg—L’1(5)y;}'9—u—;. Due to the normal distribution of yi?, halso has

r

normal distribution with the following mean and variance:

; J, g
B = E| 95+ R@)Y° — 5| =] +RI@YES — 5

r r
9

_ y:
Var(h) =Var£yf} + R’l(ES)yﬁ'g —u—g’] =Var(y§} ) = cfj

By standardizing the normal distribution, Pr(h>0)> y is converted to

Pr| z Zﬂ >y
var(ﬁ)

h—E(h)

wherez=——=is the standard normal random variable with zero mean and unit variance.
,var h

corresponding cumulative distribution function is

—~E(h)
O ——— |<1-
[,/\_/ar(ﬁ)J !

The
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y
and it is equal tou—;—yﬁ} ROy <oy®;’,, where @', is the inverse of ®at the level of 1—y . Finally, the

r

deterministic version of constraint (i) in Model (7) will be as follows:
§o <ud(y® +RHO)YAY +0,@:%), VI, ]
I} r i}
A similar procedure adopted for constraints (ii), (iii) and (iv) in Model (7) results in the following constraints:

(): 99 <u®(y® +RUO)Y? + oyt ), vr, ]

uP (y3 L @)yg® — oy @, ) < 99, v, |

(i) : ug(yz_ —LNO)yeR —oy@it,) < y'; P, |
Up(y) —LH(O)yg —op®,) <9, VP, |

(ii)): % <v;(; +R(O)N +0y®i), Vi, ]

Vi (% — L71(5)Xi? 0y @1 y) < %, Vi,

As a consequence, the deterministic equivalent for Model (4) can be set as follows:

E(6,7) =max ¢
St.

:l

uf (v L)y — @it ) < 92 <ud(y? + RGOV +oy®@L,), V]

-
Il
i
h=]

ur(y,j —LYo)yg” —op,-ﬂblfy)Sypj éup(ypj+R YO)YR +ou®i,), v,
g b
u’,u’,v 0. (8)

The above model is obviously a linear program. It should be noted that the deterministic model obtained by
Tavana et al. [38] is a non-linear program.
The following theorem shows that the objective function of Model (8), E, (5,y), is monotonously decreasing

related to the each of sand y level.
Theorem 2: If E.(d,y)is the optimum objective function value of Model (8) then
E(S1,7) 2 E( (8, )and E (6, 71) = E (3, 7,) where s, <6, andy; < z,.
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Proof. Denote the feasible space of Model (8) by Ss, - We need to prove that S; S, , .To this, consider the
following constraint of Model (8)

Vi (X — L’l(d)xl‘l" — oy ®,) < K <V (% + R’l(é)xf +0yPr) 9)

Let cD*l(y)=cD;1. As o Y(1-y), L})andR™(5) are decreasing function, the functions-@*(1-y),-L*(s) and
—R7(5) will be increasing. It is concluded that

[Xij -L(6, )X;.Z _o-ijgp‘l(l 72 )\ %j + R(5, )Xﬁ +o; @ H1-7, )]

[y~ L8 oy @7 (1 )y + RG] + 0307 (1-) |
This completes the proof.Od

We present the following defiition to define the efficiecy of each DMU.
Definition 16. For the given level Sand y , we define Ej (5,7) =E, (5 ) as efficiency score of DMUy in fuzzy

random DEA model (8).
The corresponding model with EJ (5, ) is as follows:

E¢ (6,7) = max ¢
st.

uf (y? - (5)yr,-' -0y jy)swSug<y9+R*(5)yﬁg+a o v
_ 1j r T
ur (y) - L O)Y° - oy @ )<y <u (¥ +RO)YE +oy® l) vp, j

Vi (X L_1(5)XIJ -0 @ ) <%y <%+ R_1(5)Xij +Gij®l}1): Vi, j
- 2

(10)
ud ,ul: Vi > 0.

Theorem 3: Consider EkT((’)’, y) as the optimum objective function value of Model (10) for DMU,, then
(@).E(6,7) 2 E (6,,7)andE] (6,71) = E] (5,7,) Where 5, <5, and 3 < 7.

(b). 0< EJT (6.7 <1 (j=12,...,n). Also, theres exists at lease onek {1,2,...,n} suhc that E; (5,) =1.

(c). Model (10) is feasible for any sand y .
Proof: (a). It is straightforward using Theorem 2 and Definition 16.
(b). Obviously, it is followed immediately from the first, second and third constraints of Model (9) that EJT (0,7)<1.

In what follows, we introduce such DMUy with EkT(5,7)=1. According to part (a), EkT(é, y)is decreasing with
respect  to  both sand y threshold, ~ and  SOE'(5,7)>El(LD) . Lets=1and =1,  then
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LY(1)=R}(1)=0and®™(05)=0. Hence, we have >”<ij=vixij,§/”=uryrj in Model (10). Therefore, The

coorespondig model with E kT (4,2) will be as follows:

T
ET (LY =¢
st.
$<1

S Sz b b

9,9

¢S ur yrk _zupypk

r=1 p=1
m
Zvixik =1 (11
i=1

S S2

9,9 _ b,b -
Zur yrj Zupypi 20, VJ
r=1 p=1

S Sy m
9SS <0
u ->u - > Vvixy <0,V
. yrk p ypk ik ]
r=1 p=1 i=1

u’ ZOVr,uk; >0Vp,V;, >0Vi

As seen the above model is same with DEA-UO model, and this model corresponds to a standard DEA model when
the feasible solution u*; =0,Vp are considered. So, EkT(l,l) would be positve as the objective function value of a

traditional DEA-UO model and then E(5,7) = E|(11)>0. On the other hand, for such DMU,, E(1,1) would be
equal to 1. Hence, the relation 1> E (5,7) > E (1,1)="1completes the proof of part (b).
(c). Denote the feasible space of Model (10) by S;’y . According to the proof of Theorem 2, S/, S;y . Therefore, it

is sufficient to show that the feasible space S]; is nonempty. According to the proof of part (b), EkT(l,l) is given by
Model (11) and this model is alwasy feasible. This complets the proof of part (c).(1

5. Numerical Example

In this section, a numerical example is considered to get a deep insight of the proposed methodology in (10).
Table 1 shows an assessment problem with 20 DMUs in terms of two inputs, two desirable outputs and one
undesirable output in fuzzy random environment. The entire input and output data are in terms of symmetric
triangular fuzzy random numbers. Each input and output data is denoted by (N(m,s),«), where m is the mean of the
random center value in normal distribution and « is the left and also the right tail.

Table 2 shows the evaluating results by Model (10) when we set the predetermined minimum probability level
o and the predetermined acceptable level of possibility y in five different threshold levels of (& = 0.25,7 = 0.25),
(6=05, y =0.25), (6=0.75, ¥ =0.25), (6=0.5, ¥ =0.5), and (&= 0.25, ¥ =0.75). With the variation in the
satisfaction levels ¢ and y the efficient DMUs are almost DMU1, DMU6, DMU9, DMU10, DMU15, DMU16,
and DMU18. Generally from Table 2, we can see the applicability of theorem 3 when the efficiency scores of the
DMUs decrease by increasing the level 6 from(d =0.25,y=0.25) to (6 =0.75, y=0.25)and increase by decreasing of
the level ¥ from(s =0.25, y=0.75) to(6 =0.25, y=0.25).

Table 3 presents the ACE, i.e. E:(é, y) for each efficient DMU at levels stated above. Also, these ACE scores

are used to obtain a complete ranking of DMUs which is shown in Table 4.
As seen, the complete ranking of DMUs is similar except for some relocation in surrounding DMUs. Another
point obtained from Table 2 is the influence of the variations of stochastic level ¢ that is more than fuzzy level y on

E, (8,7)in this example. Indeed, with the same increasing in each of levels 6 and y the objective value decreases
further by increasing the fuzzy level y , and so the number of efficient DMUs is fall down in this case.
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Table 1. The fuzzy random input and output data
DMU Input 1 Input 2 Desirable Output 1 Desirable Output 2 Undesirable Output
1 (N(363.4,1),28.3,28.3) | (N(39.6,1),2.4,2.4) (N(81,1),7,7) (N(230,1),23.5,23.5) (N(58.3,1),5.3,5.3)
2 | (N(586.5,1),53.2,53.2) (N(99,1), 9, 9) (N(45,1),3,3) (N(345,1),36.5,36.5) (N(53,1),4.6,4.6)
3 (N(540.5,1),48,48) (N(59.4,1),4.6,4.6) (N(49,1),3,3) (N(368,1),38.8,38.8) (N(79.5,1),7.9,7.9)
4 (N(473.8,1),40,40) (N(55.8,1),5.2,5.2) (N(64,1),5,5) (N(414,1),44,44) (N(68.9,1),6.6,6.6)
5 | (N(561.2,1),50.3,50.3) (N(54,1),4,4) (N(59,1),4,4) (N(216.2,1),22,22) (N(48.4,1),4,4)
6 | (N(616.4,1) ,56.4,56.4) (N(90,1) 8,8) (N(81,1),7,7) (N(529,1),56.7,56.7) (N(31.7,1),1.9,1.9)
7 (N(402,1) ,38.7,38.7) | (N(42.3,1),3.6,3.6) (N(41,1),3,3) (N(295,1),31.6,31.6) (N(72.4,1),6.8,6.8)
8 | (N(653.2,1) ,60.5,60.5) | (N(68.4,1),5.6,5.6) (N(72.4,1),6,6) (N(349.6,1) ,36.8,36.8) (N(90.1,1),9.2,9.2)
9 | (N(347.3,1) ,26.6,26.6) | (N(36,1) ,2.3,2.3) (N(90,1),8,8) (N(437,1) ,46.5,46.5) (N(200.7,1),10.5,10.5)
10 [ (N(301.3,1) 21.421.4) | (N(34.2,1),1.8,1.8) (N(99,1),9,9) (N(549.7,1) ,59,59) (N(74.2,1),7.2,7.2)
11 [ (N(523.2,1) 48.9,48.9) [ (N(87.5,1) ,55) (N(67,5,5) (N(421,1) ,32.3,32.3) (N(87,1),8.8,8.8)
12 (N(386.4,1) 31,31) [ (N(48.6,1) ,3.4,3.4) [ (N(108,1)),10,10) (N(575,1), 61.8,61.8) (N(76.2,1),7.5,7.5)
13 | (N(785.7,1) 75.2,75.2) | (N(50.6,1) ,1.4,1.4) (N(87,1),8,8) (N(512.9,1) 54.9,54.9) (N(111.3,1),11.9,11.9)
14 | (N(694.6,1) ,65.1,65.1) | (N(108,1),11,11) (N(78,1),7.7) (N(471.5,1),50.3,50.3) (N(95.4,1),9.7,9.7)
15 | (N(598,1) ,54.554.5) | (N(27,1),1.7,1.7) (N(67,1),6,6) (N(391,1),41.4,41.4) (N(42.4,1),3.3,3.3)
16 | (N(713,1) 67.2,67.2) (N(126,1) ,9,9) (N(112,1),10,10) (N(529,1),56.7,56.7) (N(58.3,1),5.2,5.2)
17 (N(611.8,1),56,56) (N(97.2,1) ,8.8,8.8) (N(73,1),6,6) (N(402.5,1),42.7,42.7) (N(68.9,1),6.4,6.4)
18 | (N(660.1,1),61.3,61.3) (N(81,1)7,7) (N(93,1),8,8) (N(588.8,1),63.4,63.4) (N(63.6,1),5.9,5.9)
19 | (N(529,1)46.7,46.7) | (N(50.4,1),3.6,3.6) (N(48,1), 3,3) (N(276,1),28.6,28.6) (N(105.4,1),11.1,11.1)
20 (N(621,1),57,57) (N(57.6,1),4.4,4.4) (N(77.1),7,7) (N(400.2,1),42.4,42.4) (N(90.1,1),9.2,9.2)
Table 2. The stochastic fuzzy efficiency scores
DMU | (6=0.257=0.25) (5=05,y=0.25) (§=0.75,7=0.25) (5=057=05) (5=0.25,=0.75)

1 1.0000 1.0000 1.0000 1.0000 1.0000

2 0.5636 0.5469 0.5505 0.4455 0.3536

3 0.8174 0.8138 0.8075 0.7288 0.6586

4 0.7995 0.7593 0.7291 0.5748 0.5271

5 0.7669 0.7008 0.6111 0.5296 0.4513

6 1.0000 1.0000 1.0000 1.0000 1.0000

7 0.5820 0.5617 0.5404 0.5130 0.4873

8 0.4691 0.4517 0.4323 0.4160 0.4007

9 1.0000 1.0000 1.0000 0.9919 0.9683

10 1.0000 1.0000 1.0000 1.0000 1.0000

11 0.5730 0.5708 0.5669 0.5214 0.4800

12 1.0000 1.0000 1.0000 1.0000 1.0000

13 0.7860 0.7616 0.7360 0.7052 0.6761

14 0.4936 0.4920 0.4888 0.4461 0.4075

15 1.0000 1.0000 1.0000 1.0000 1.0000

16 1.0000 1.0000 1.0000 1.0000 1.0000

17 0.5593 0.5334 0.5201 0.4339 0.4006

18 1.0000 1.0000 1.0000 1.0000 0.9058

19 0.4443 0.4302 0.4147 0.3941 0.3746

20 0.5981 0.5752 0.5495 0.5302 0.5116
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Table 3. Average Cross Efficiency of efficient DMUs.

DMUs [ (5=0.25,v=0.25) | (§=0.5, y=0.25) | (5=0.75, y=0.25) | (5=0.5, y=0.5) | (5=0.25, y=0.75)
DMU 1 0.9352 0.9216 0.9586 0.8038 0.8702
DMU 6 0.6959 0.6865 0.7763 0.7637 0.7691
DMU 9 0.8398 0.8242 09035 | |
DMU 10 1.1361 1.0773 1.3782 1.0435 0.8345
DMU 12 1.3141 1.1669 1.3379 1.2663 1.1546
DMU 15 1.2838 1.2491 1.1606 1.2346 1.0753
DMU 16 0.4981 0.5636 0.6031 0.6155 0.6664
DMU 18 0.7290 0.7019 0.6908 06579 | -

Table 4. Complete ranking of the DMUs in different § and y

S v Complete ranking of the DMUs

0.25 0.25 12>15>10>1>9>18>6>16>3>4>13>5>20>7>11>2>17>14>8>19
0.50 0.25 15>12>10>1>9>18>6>16>3>13>4>5>20>11>7>2>17>14>8>19
0.75 0.25 12>10>15>1>9>18>6>16>3>13>4>5>11>2>20>7>17>14>8>19
0.50 0.50 15>12>10>1>6>18>16>9>3>13>4>20>5>11>7>14>2>17>8>19
0.25 0.75 12>15>1>10>6>16>9>18>13>3>4>20>7>11>5>14>8>17>19>2

6. Conclusions

In this paper, we have developed a DEA model with undesirable output which is extended to fuzzy random

environment. We have firstly modified the deterministic DEA-UO model proposed by Puri et al [32]. Further, the
proposed DEA-UO model is extended to fuzzy random environment. A methodology in chance constraint
programming adopted to solve such DEA model. Unlike the proposed model by Tavana et al. [37], our proposed
approach not only leads to a linear program, but also it gives efficiency scores with the range of zero to one for
DMUs similar to traditional input-oriented DEA models. Also, the proposed model is feasible. For future study, a
new measure in fuzzy stochastic programming can also be planned in chance constraint programming.

Conflict of interest: The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.
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