بررسی اثر روشهای مختلف خشک کردن بر مدت زمان خشک شدن و برخی خصوصیات فیتوشیمیایی .Solidago virgaurea L
محورهای موضوعی :
گیاهان دارویی
سپیده پارسافر
1
,
قاسم اقلیما
2
,
محمدحسین میرجلیلی
3
,
صمد نژادابراهیمی
4
,
جواد هادیان
5
1 - کارشناسیارشد، گروه کشاورزی، پژوهشکده گیاهان و مواد اولیه دارویی، دانشگاه شهیدبهشتی، تهران، ایران
2 - استادیار، گروه کشاورزی، پژوهشکده گیاهان و مواد اولیه دارویی، دانشگاه شهیدبهشتی، تهران، ایران
3 - دانشیار، گروه کشاورزی، پژوهشکده گیاهان و مواد اولیه دارویی، دانشگاه شهیدبهشتی، تهران، ایران
4 - دانشیار، گروه فیتوشیمی، پژوهشکده گیاهان و مواد اولیه دارویی، دانشگاه شهیدبهشتی، تهران، ایران
5 - دانشیار، گروه کشاورزی، پژوهشکده گیاهان و مواد اولیه دارویی، دانشگاه شهیدبهشتی، تهران، ایران
تاریخ دریافت : 1400/05/20
تاریخ پذیرش : 1400/10/26
تاریخ انتشار : 1401/03/01
کلید واژه:
ترکیبات فنلی,
روش و زمان خشک کردن,
علف طلایی,
لئوکارپوزاید,
چکیده مقاله :
به منظور بررسی تاثیر روشهای مختلف خشک کردن بر گیاه دارویی Solidago virgaurea L.، آزمایشی بر پایه طرح کاملاً تصادفی با شش تیمار و سه تکرار در سال 1397 در آزمایشگاه اکوفیزیولوژی پژوهشکده گیاهان و مواد اولیه دارویی دانشگاه شهیدبهشتی تهران اجرا شد. در این مطالعه از اندامهای هوایی گیاه S. virgaurea L. که از رویشگاه طبیعی سنگده واقع در استان مازندان که در مرحلهگلدهی کامل برداشت شده بود، استفاده گردید. تیمارهای مورد آزمایش شامل خشک کردن طبیعی (خشک کردن در سایه و آفتاب)، خشک کردن در آون (40 و 50 درجهسانتیگراد) و خشک کردن در مایکروویو (توان 550 و 1000 وات) بودند. در روشهای مختلف، خشک کردن تا رسیدن محتوای رطوبت به 10 درصد (بر پایه وزن تر گیاهی) ادامه یافت. از نمونههای خشک شده جهت استخراج عصاره متانولی بهمنظور اندازهگیری برخی متابولیتهای ثانویه شامل میزان فنل کل، فلانوئیدکل و لئوکارپوزاید استفاده گردید. محتوای فنل کل، فلاونوئید کل و مقدار لئوکارپوزاید[1] بهترتیب به روش فولین سیوکالتو، آلومینیوم کلراید و آنالیز کروماتوگرافی مایع با کارایی بالا اندازه گیری شدند. کمترین (7 دقیقه) و بیشترین (60 ساعت) مدت زمان خشک شدن به ترتیب مربوط به تیمارهای خشک کردن با توان 1000 وات مایکروویو و خشک کردن در سایه بود. بالاترین محتوای فنل کل (30 میلیگرم گالیک اسید در یک گرم ماده خشک) در تیمار خشک کردن در سایه و بیشترین محتوای فلاونوئید کل (95/7 میلیگرم روتین در یک گرم ماده خشک) و لئوکارپوزاید (07/3 میلیگرم بر یک گرم ماده خشک) در تیمار آون با دمای 40 درجه سانتیگراد مشاهده گردید. به علاوه با افزایش توان مایکروویو و دمای آون میزان متابولیت های فعال کاهش یافت. در مجموع گزینش صحیح روش خشک کردن به عوامل متعددی بستگی دارد و در این میان استفاده از روشی بر مبنای مصرف بهینۀ انرژی و صرفه جویی در هزینه نیز باید مورد توجه قرار گیرد.[1] Leiocarposide
چکیده انگلیسی:
To investigate the effect of different drying methods on the Solidago virgaurea L., an experiment based on a completely randomized design with six treatments and three replications was conducted in 2018 in the Ecophysiology Laboratory of Shahid Beheshti University of Tehran. In this study, aerial parts of S. virgaurea L. was harvested from Sangdeh natural habitat located in Mazandan province at full flowering stage. The drying methods were shade and sun-drying (natural drying), oven-drying (40 and 50 °C), and microwave-drying (550 and 1000 watt). In all methods, drying of the plant materials was continued until the moisture content reached 10% (based on plant fresh weight). Methanolic extract was obtained from the dried samples and some secondary metabolites including content of total phenol, total flavonoid and leiocarposide were measured by Folin-Ciocalteu method, aluminum chloride method, and high-performance liquid chromatography (HPLC), respectively. The minimum (7 minutes) and maximum (60 hours) drying times were related to 1000 watt microwave drying and shade drying methods, respectively. The highest content of total phenol (30 mg Gallic acid /g DW) in shading drying treatment and the highest content of total flavonoids (7.95 mg Rutin/g DW) and leiocarposide (3.07 mg/g DW) was observed in the oven at 40 °C. In addition, active metabolites content decreased with increasing microwave power and oven temperature. In general, the correct choice of drying method depends on several factors, and among them, the type of active ingredient, optimal energy consumption and cost savings should also be considered.
منابع و مأخذ:
Abdullah, S., Ahmad, M.S., Shaari, A.R. and Johar, H.M. 2011. Drying characteristics and herbal metabolites composition of misai kucing (Orthosiphon staminiues ) leaves. In: Proceedings of International conference on food engineering and biotechnology, 7th-9th May, Bangkok, Thailand.
Abdullah, S., Shaari, A. R. and Azimi, 2012. Effect of drying methods on metabolites composition of Misai kucing (Orthosiphon stamineus) leaves. Sciverse science direct, 2: 178-182.
Arslan, D., Ozcan, M.M. and Okyay Menges, H. 2010. Evaluation of drying methods with respect to drying parameters, some nutritional and colour characteristics of peppermint (Mentha × piperita L.). Energy Conversion and Management, 51: 2769- 2775.
Asadi, M., Nejad Ebrahimi, S., Hatami, M. and Hadian, J. 2020. Changes in secondary metabolite contents of Arnica chamissonis in response to different harvest time, flower developmental stages and drying methods. Journal of Medicinal Plants, 19 (76): 69-88.
Azizi, M., Rahmati, M., Ebadi, T. and Hasanzadeh Khayyat, M. 2009. The effects of different drying methods on weight loss rate, essential oil and chamazolene contents of chamomile (Matricaria recutita) flowers. Iranian Journal of Medicinal and Aromatic Plants, 25(2): 182-192.
Chan, E.W.C., Lim, Y.Y., Wong, S.K., Lim, K.K., Tan, S.P., Lianto, S.F. and Yomg, M.Y. 2009. Effects of different drying methods on the antioxidant properties of leaves and tea of ginger species. Food Chemistry, 113: 166-172.
Chua, L.Y.W., Chong, C.H., Chua, B.L. and Figiel, A. 2019. Influence of drying methods on the antibacterial, antioxidant and essential oil volatile composition of herbs: a review. Food Bioprocess Technology, 12: 450–476.
Crozier, A., Clifford, M. and Ashihara, H. 2006. Plant secondary metabolites occurrence, structure and role in the human diet. Black well publishing. United Kingdom. 353 p.
Dehghani Mashkania, M.R., Larijani, K., Mehranfarian, A. and Naghdi Badi, H. 2018. Changes in the essential oil content and composition of Thymus daenensis Under different drying methods. Industrial Crops & Products, 112: 389-395.
Dewick, P. 2009. Medicinal natural products a biosynthetic approach. John Wiley and Sons, Ltd, Publication. United Kingdom. 509 p.
Hassanpouraghdam, M.B., Hassani, A., Vojodi, L. and Farsad-Akhtar, N. 2010. Drying method affects essential oil content and composition of basil (Ocimum basilicum ). Journal of Essential Oil Bearing Plants, 13(6): 759-766.
Hassanzadeh, K., Hemmati, Kh. and Mehdi Pour, M. 2018. The effect of different drying methods (natural and oven) on the drying time and some secondary metabolites of Melissa (Melissa officinalis ). Journal of Plant Production Research, 25(1): 143-137.
Hayat, Kh., Zhang, X., Farooq, U., Abbas, Sh., Xia, Sh, Jia, Ch., Zhong, F. and Jing, Zh. 2010. Effect of microwave treatment on phenolic content and antioxidant activity of Citrus mandarin Food Chemistry, 123(2): 423-429.
Kamtekar, S., Keer, V. and Patil, V. 2014. Estimation of phenolic content, flavonoid content, antioxidant and alpha amylase inhibitory activity of marketed polyherbal formulation.Journal of Applied Pharmaceutical Science, 4(09): 61-65.
Martinov, M., Oztekin, S. and Muller, J. 2007. Drying: 85-97. In: Oztekin, S., and Martinov, M.,(Eds.). Medicinal and aromatic crops. CRC Press,United States of America, pp.320.
Moosavian, M.T. and Mohammadpoor, V. 2006. Investigation of effective parameters in drying process of food materials by microwave. In: Proceedings of 6th National student congress f Chemistry Engineering & 5th National Student Congress of Oil Engineering, 29-30 th August, Isfahan, Iran.
Mozafarian, V. 2012. Identification of medicinal and aromatic plants of Iran. Tehran, Iran: Farhang Moaser Press.1444p.
Mumivand, H., Rezaei Nejad, H., Taghipour, Sh., Sepahvand, K. and Moradi, B. 2020. Effect of different drying methods on drying time and some phytochemical characteristic of Pelargonium (Pelargonium graveolens). Journal of Horticultural Science, 33(4): 655-668.
Ng, Z.X., Yong, P.H. and Lim, S.Y. 2020. Customized drying treatments increased the extraction of phytochemicals and antioxidant activity from economically viable medicinal plants. Industrial Crops & Products, 155: 112815.
Nguyen, K.Q., Vuong, Q.V., Nguyen, M.H. and Roach, P.D. 2018. The effects of drying conditions on bioactive compounds and antioxidant activity of the Australian maroon bush, Scaevola spinescens. Journal of Food Processing and Preservation, 42 (10): 323-338.
Omidbaigi, R. 2010. Approaches to production and processing of medicinal plants. Beh nashr Press, 347p.
Papoutsis, K., Pristijono, P., Golding, J.B., Stathopoulos, C.E., Bowyer, M.C., Scarlett, C.J. and Vuong, Q.V. 2017. Effect of vacuum-drying, hot air-drying and freeze-drying on polyphenols and antioxidant capacity of lemon (Citrus limon) pomace aqueous extracts. International Journal of Food Scenic and Technology, 52: 880–887.
Qin, R.L., Lv, C.N., Zhao, Y.D., Yu, Y. and Lu, J.C. 2017. Assessment of phenolics contents and antioxidant properties in Cimicifuga dahurica (Turcz.) Maxim during drying process. Industrial Crops & Products, 107: 288-296.
Rozdar, F., Azizi, M., Ghani, A. and Davari Nejad, CH. 2014. Effect of different drying methods on drying time and some phytochemical properties of Mentha (Mentha piperita ). Journal of Horticultural Science, 28(3): 407-415.
Saifullah, M.D, Mc-Cullum, R., Mc-Cluskey, A. and Vuong, Q. 2019. Effects of different drying methods on extractable phenolic compounds and antioxidant properties from lemon myrtle dried leaves. Heliyon, 5 (12): e03044.
Salehi, P., Asghari, B., Esmaeili, M. A., Dehghan, H., and Ghazi, I., 2013. α-Glucosidase and α-amylase inhibitory effect and antioxidant activity of ten plant extracts traditionally used in Iran for diabetes.Journal of Medicinal Plants Research, 7(6): 257-266.
Shahdadi, F., Mirzaie, H.A., Maghsadllo, Y., Ghorbani, and Daraie garme khani, A. 2011. Effect of drying process on the phenolic-compounds content and antioxidant activity of two varieties of date-palm fruit Kaluteh and Mazafati. (Phoenix ductylifera), Journal of Nutrition Sciences and food industry Iran, 6(3): 67-74.
Soysal, Y. (2004). Microwave drying characteristics of parsley. Biosystems Engineering, 89(2), 167-173.
Soysal, Y., Oztekin, S. and Eren, O. 2006. Microwave drying of parsley: modelling, kinetics, and energy aspects. Biosystems Engineering, 93(4): 403- 413.
Tabrizi, L., Dezhban, F., Mostofi, Y. and Moridi Farimani, M. 2015. Variability of physical and phytochemical criteria of pot marigold (Calendula offıcinalis) flowers under different drying methods and plant nutrient source. Iranian Journal of Horticultural Science, 46(2): 243-258.
Vega-Galvez, A., Scala, K.D., KLemus-Mondaca, R., Miranda, M., Lopez, J. and Perez-Won, M. 2009. Effect of airdrying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum var. Hungarian). Food Chemistry, 117(4): 647- 53.
Yaneva, Z.L., Simeonov, E.B. and Ivanova, D.G. 2020. In vitro Ultraviolet-B radiation mediated antioxidant response of Bulgarian Goldenrod (Solidago virgaurea) extract. Bulgarian Chemical Communications, 52: 33-40.
_||_
Abdullah, S., Ahmad, M.S., Shaari, A.R. and Johar, H.M. 2011. Drying characteristics and herbal metabolites composition of misai kucing (Orthosiphon staminiues ) leaves. In: Proceedings of International conference on food engineering and biotechnology, 7th-9th May, Bangkok, Thailand.
Abdullah, S., Shaari, A. R. and Azimi, 2012. Effect of drying methods on metabolites composition of Misai kucing (Orthosiphon stamineus) leaves. Sciverse science direct, 2: 178-182.
Arslan, D., Ozcan, M.M. and Okyay Menges, H. 2010. Evaluation of drying methods with respect to drying parameters, some nutritional and colour characteristics of peppermint (Mentha × piperita L.). Energy Conversion and Management, 51: 2769- 2775.
Asadi, M., Nejad Ebrahimi, S., Hatami, M. and Hadian, J. 2020. Changes in secondary metabolite contents of Arnica chamissonis in response to different harvest time, flower developmental stages and drying methods. Journal of Medicinal Plants, 19 (76): 69-88.
Azizi, M., Rahmati, M., Ebadi, T. and Hasanzadeh Khayyat, M. 2009. The effects of different drying methods on weight loss rate, essential oil and chamazolene contents of chamomile (Matricaria recutita) flowers. Iranian Journal of Medicinal and Aromatic Plants, 25(2): 182-192.
Chan, E.W.C., Lim, Y.Y., Wong, S.K., Lim, K.K., Tan, S.P., Lianto, S.F. and Yomg, M.Y. 2009. Effects of different drying methods on the antioxidant properties of leaves and tea of ginger species. Food Chemistry, 113: 166-172.
Chua, L.Y.W., Chong, C.H., Chua, B.L. and Figiel, A. 2019. Influence of drying methods on the antibacterial, antioxidant and essential oil volatile composition of herbs: a review. Food Bioprocess Technology, 12: 450–476.
Crozier, A., Clifford, M. and Ashihara, H. 2006. Plant secondary metabolites occurrence, structure and role in the human diet. Black well publishing. United Kingdom. 353 p.
Dehghani Mashkania, M.R., Larijani, K., Mehranfarian, A. and Naghdi Badi, H. 2018. Changes in the essential oil content and composition of Thymus daenensis Under different drying methods. Industrial Crops & Products, 112: 389-395.
Dewick, P. 2009. Medicinal natural products a biosynthetic approach. John Wiley and Sons, Ltd, Publication. United Kingdom. 509 p.
Hassanpouraghdam, M.B., Hassani, A., Vojodi, L. and Farsad-Akhtar, N. 2010. Drying method affects essential oil content and composition of basil (Ocimum basilicum ). Journal of Essential Oil Bearing Plants, 13(6): 759-766.
Hassanzadeh, K., Hemmati, Kh. and Mehdi Pour, M. 2018. The effect of different drying methods (natural and oven) on the drying time and some secondary metabolites of Melissa (Melissa officinalis ). Journal of Plant Production Research, 25(1): 143-137.
Hayat, Kh., Zhang, X., Farooq, U., Abbas, Sh., Xia, Sh, Jia, Ch., Zhong, F. and Jing, Zh. 2010. Effect of microwave treatment on phenolic content and antioxidant activity of Citrus mandarin Food Chemistry, 123(2): 423-429.
Kamtekar, S., Keer, V. and Patil, V. 2014. Estimation of phenolic content, flavonoid content, antioxidant and alpha amylase inhibitory activity of marketed polyherbal formulation.Journal of Applied Pharmaceutical Science, 4(09): 61-65.
Martinov, M., Oztekin, S. and Muller, J. 2007. Drying: 85-97. In: Oztekin, S., and Martinov, M.,(Eds.). Medicinal and aromatic crops. CRC Press,United States of America, pp.320.
Moosavian, M.T. and Mohammadpoor, V. 2006. Investigation of effective parameters in drying process of food materials by microwave. In: Proceedings of 6th National student congress f Chemistry Engineering & 5th National Student Congress of Oil Engineering, 29-30 th August, Isfahan, Iran.
Mozafarian, V. 2012. Identification of medicinal and aromatic plants of Iran. Tehran, Iran: Farhang Moaser Press.1444p.
Mumivand, H., Rezaei Nejad, H., Taghipour, Sh., Sepahvand, K. and Moradi, B. 2020. Effect of different drying methods on drying time and some phytochemical characteristic of Pelargonium (Pelargonium graveolens). Journal of Horticultural Science, 33(4): 655-668.
Ng, Z.X., Yong, P.H. and Lim, S.Y. 2020. Customized drying treatments increased the extraction of phytochemicals and antioxidant activity from economically viable medicinal plants. Industrial Crops & Products, 155: 112815.
Nguyen, K.Q., Vuong, Q.V., Nguyen, M.H. and Roach, P.D. 2018. The effects of drying conditions on bioactive compounds and antioxidant activity of the Australian maroon bush, Scaevola spinescens. Journal of Food Processing and Preservation, 42 (10): 323-338.
Omidbaigi, R. 2010. Approaches to production and processing of medicinal plants. Beh nashr Press, 347p.
Papoutsis, K., Pristijono, P., Golding, J.B., Stathopoulos, C.E., Bowyer, M.C., Scarlett, C.J. and Vuong, Q.V. 2017. Effect of vacuum-drying, hot air-drying and freeze-drying on polyphenols and antioxidant capacity of lemon (Citrus limon) pomace aqueous extracts. International Journal of Food Scenic and Technology, 52: 880–887.
Qin, R.L., Lv, C.N., Zhao, Y.D., Yu, Y. and Lu, J.C. 2017. Assessment of phenolics contents and antioxidant properties in Cimicifuga dahurica (Turcz.) Maxim during drying process. Industrial Crops & Products, 107: 288-296.
Rozdar, F., Azizi, M., Ghani, A. and Davari Nejad, CH. 2014. Effect of different drying methods on drying time and some phytochemical properties of Mentha (Mentha piperita ). Journal of Horticultural Science, 28(3): 407-415.
Saifullah, M.D, Mc-Cullum, R., Mc-Cluskey, A. and Vuong, Q. 2019. Effects of different drying methods on extractable phenolic compounds and antioxidant properties from lemon myrtle dried leaves. Heliyon, 5 (12): e03044.
Salehi, P., Asghari, B., Esmaeili, M. A., Dehghan, H., and Ghazi, I., 2013. α-Glucosidase and α-amylase inhibitory effect and antioxidant activity of ten plant extracts traditionally used in Iran for diabetes.Journal of Medicinal Plants Research, 7(6): 257-266.
Shahdadi, F., Mirzaie, H.A., Maghsadllo, Y., Ghorbani, and Daraie garme khani, A. 2011. Effect of drying process on the phenolic-compounds content and antioxidant activity of two varieties of date-palm fruit Kaluteh and Mazafati. (Phoenix ductylifera), Journal of Nutrition Sciences and food industry Iran, 6(3): 67-74.
Soysal, Y. (2004). Microwave drying characteristics of parsley. Biosystems Engineering, 89(2), 167-173.
Soysal, Y., Oztekin, S. and Eren, O. 2006. Microwave drying of parsley: modelling, kinetics, and energy aspects. Biosystems Engineering, 93(4): 403- 413.
Tabrizi, L., Dezhban, F., Mostofi, Y. and Moridi Farimani, M. 2015. Variability of physical and phytochemical criteria of pot marigold (Calendula offıcinalis) flowers under different drying methods and plant nutrient source. Iranian Journal of Horticultural Science, 46(2): 243-258.
Vega-Galvez, A., Scala, K.D., KLemus-Mondaca, R., Miranda, M., Lopez, J. and Perez-Won, M. 2009. Effect of airdrying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum var. Hungarian). Food Chemistry, 117(4): 647- 53.
Yaneva, Z.L., Simeonov, E.B. and Ivanova, D.G. 2020. In vitro Ultraviolet-B radiation mediated antioxidant response of Bulgarian Goldenrod (Solidago virgaurea) extract. Bulgarian Chemical Communications, 52: 33-40.