بررسی اثر شوری و اسیدسالیسیلیک بر فعالیت آنزیم فنیلآلانین آمونیالیاز و ترکیبات فنیلپروپانوئیدی گیاه دارویی Cynara scolymus L. در شرایط درون شیشهای
محورهای موضوعی :
اکولوژی محیطی
سحر زمانی
1
*
,
عظیم قاسم نژاد
2
,
مهدی علیزاده
3
,
مهران اعلمی
4
1 - دانشجوی کارشناسی ارشد گیاهان دارویی/دانشگاه علوم کشاورزی و منابع طبیعی گرگان
2 - عضو هیئت علمی گروه علوم باغبانی/ دانشگاه علوم کشاورزی و منابع طبیعی گرگان
3 - عضو هیئت علمی گروه علوم باغبانی/ دانشگاه علوم کشاورزی و منابع طبیعی گرگان
4 - عضو هیئت علمی گروه صنایع غذایی/
دانشگاه علوم کشاورزی و منابع طبیعی گرگان
تاریخ دریافت : 1394/04/23
تاریخ پذیرش : 1394/06/28
تاریخ انتشار : 1394/12/01
کلید واژه:
شوری,
فنیلآلانین آمونیالیاز,
اسیدسالیسیلیک,
فنیلپروپانوئید,
کنگرفرنگی Cynara scolymus L,
چکیده مقاله :
در سالهای اخیر با توجه به اهمیت متابولیت های ثانویه در گیاهان دارویی، دست یابی به شرایطی که بتواند بیشترین اثرگذاری را در تولید اقتصادی این ترکیبات داشته باشد دارای اهمیت فراوان است. فنیل آلانین آمونیالیاز (PAL) به عنوان آنزیم کلیدی نقش اساسی در تشکیل ترکیبات فنیل پروپانوئیدی دارد. این تحقیق به منظور بررسی اثر شوری و اسید سالیسیلیک (بهعنوان الیسیتور) بر فعالیت آنزیم PAL و ترکیبات فنیل پروپانوئیدی در کالوس گیاه کنگر فرنگی (Cynara scolymus L.)، آزمایشی بهصورت فاکتوریل بر پایه کاملاً تصادفی با 5 غلظت شوری و 4 غلظت اسید سالیسیلیک در 4 تکرار در سال 1392در آزمایشگاه کشت بافت گروه علوم باغبانی دانشگاه علوم کشاورزی و منابع طبیعی گرگان انجام شد. در این آزمایش، فعالیت آنزیم PAL با روش ساندرز و مکلر اندازه گیری شد. همچنین میزان فنل و فلاونوئید کل به ترتیب با روش های فولین– سیوکالتیو و آلومینیوم کلراید اندازه گیری شدند. براساس نتایج بهدست آمده، شوری، اسید سالیسیلیک و اثر متقابل این دو الیسیتور اثر معنیداری بر فعالیت آنزیم PAL، ترکیبات فنلی و فلاونوئیدی داشتند و همچنین با افزایش غلظت شوری بر میزان فعالیت آنزیم PAL، ترکیبات فنلی و فلاونوئیدی افزوده شد بهطوری که در غلظت 200 میلی مولار شوری بیشترین میزان این ترکیبات بهترتیب به میزان 9564/7 نانومول بر گرم وزن تر در دقیقه، 4292/5 و 7375/2 میلی گرم بر گرم وزنتر مشاهده شد. کالوس های تیمار شده با 100 میکرو مولار اسید سالیسیلیک نیز بیشترین میزان ترکیبات مذکور را نسبت به شاهد داشتند. در کالوس های کشت شده در محیط حاوی200 میلی مولار شوری و 300 میکرو مولار اسید سالیسیلیک و 200 میلی مولار شوری و 100 میکرو مولار اسیدسالیسیلیک بیشترین میزان فعالیت آنزیم PAL و تجمع ترکیبات فنیل پروپانوئیدی مشاهده شد. با توجه به همبستگی مثبت آنزیم فنیل آلانین آمونیالیاز (PAL) و ترکیبات فنیل پروپانوئیدی و نقش کلیدی این آنزیم در بیوسنتز این ترکیبات و نیز اثر گذاری مثبت الیسیتور های مورد بررسی می توان با بهینه سازی نسبت شوری و اسید سالیسیلیک، تولید ترکیبات فنیل پروپانوئیدی کنگرفرنگی در شرایط درون شیشه ای را بهبود بخشید.
منابع و مأخذ:
Agarwal, S. and Pandy, V. 2004. Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Journal of Biological Plant, 48: 555-560.
Bailly, C. 2004. Active oxygen species and antioxidants in seed biology. Journal ofSeedScience Research, 14: 93–107.
Boudet, A.M. 2007. Evolution and current status of research in phenolic compounds. Journal of Phytochemistry, 68: 2722-2735.
Bourgou, S., Kchouk, M., Bellila, A. and Marzouk, B. 2010. Effect of salinity on phenolic composition and biological activity of Nigella sativa. Journal of Acta Horticulture, 853:57-60.
Chang, C., Yang, M., Wen, H. and Chern, J. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food Drug Anal, 10: 178-182.
Dehghani, A. and Mostajeran, A. 2010. The effect of salinity on growth and activity of antioxidant and defense enzymes in ginger (Zingiber officinale Roscoe). Journal of Herbal Medicines, 1:1-8.
Delavari Parizi, M. 2010. The effects of Salicylic acid and salinity stress on the some physiological and biochemical changes in Ocimum basilicum Master thesis, Department of Biology, Payame Noor University.
Garratt, L.C., Janagoudr, B.S., Lowe, K.C., Anthony, P., Power, J.B. and. Davey, M.R. 2002. Salinity tolerance and antioxidant status in cotton cultures. Journal of Free Radical Biology and Medicine, 33(4): 502-511.
He, Y. and Zhu, Z.Y. 2008. Exogenous salicylic acid alleviates NaCl toxicity and increases antioxidative enzyme activity in Lycopersicum esculentum. Journal of Biological Plantarum, 52: 792-795.
Kabiri, R., Nasibi, F. and Farahbakhsh, H. 2014. Effect of exogenous salicylic acid on some physiological parameters and alleviation of drought stress in nigellasativa under hydroponic culture. Journal of Plant Protection Science, 50(1): 43–51.
Ksouri, R., Megdiche, W., Debez, A., Falleh, M., Grignon, C. and Abdelly, C. 2007. Salinity effect on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritime. Journal of Plant Physiology and Biochemistry, 45: 244-248.
Momeni, N., Arvin, M.J., Khagoei nejad, G., Daneshmand, F. and Keramat, B. 2012. The effect of sodium chloride and salicylic acid on antioxidant defense system in maize (Zea mays). Journal of Plant Biology, 4(14): 23-34.
Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Journal of Physiology of Plant, 15: 473-497.
Neelam, M., Rahul, M., Ajiboye, M., Kafayat, Y. and Lateefat, Y., 2014. Salicylic acid alters antioxidant and phenolics metabolism in catharanthus roseus grown under salinity stress. Journal of African Journal of Traditional, Complementary and Alternative Medicines, 11(5): 118-125.
Oksman-Caldentey, KM. and Inzé, D., 2004. Plant cellfactories in the post-genomic era: new ways toproduce designer secondary metabolites. Journal of Trends Plant Science, 9(9): 433-440.
Pacheco, A.C., Cabral, C., Fermino, E.S. and Aleman, C.C. 2013. Salicylic acid-induced changes to growth, flowering and flavonoids production in marigold plants. Global Journal of Medicinal Plant Reserch, 1(1):95-100.
Parida, A.K. and Das, A.B. 2005. Salt Tolerance and salinity effects on plants: a review. Journal of Ecotoxicology Environmental Safety, 60: 324-349.
Ramakrishna, A. and Ravishankar, G.A. 2011. Influence of abiotic stress signals on secondary metabolites in plants. Journal of Plant Signaling and Behavior, 6: 1720-1731.
Rezazadeh, A., Ghasem nezhad, A. and Barani, M. 2012. Effect of salinity on phenolic composition and antioxidant activity of Artichoke (cynara scolymus) Leaves. Journal of Medicinal Plant, 63: 242-252.
Samadi, S., Ghasemnezhad, A. and Alizadeh, M. 2014. Investigation on phenylalanine ammonia-lyase activity of artichoke (Cynara scolymus) affected by methyl jasmonate and salicylic acid in in-vitro conditions. Journal of Plant Production Research, 21 (4): 135-148.
Saunders, J.A. and Mcclure, J.W. 1974. The suitability of a quantitive spectrophotometric assay for phenylalanine ammonia lyase activity inbarely, buckwheat and pea seedlings. Journal of Plant Physiology, 54: 412-413.
Setayesh Mehr, Z., khajeh, H., Esmaeilzadeh Bahabadi, S. and Sabbagh, S.Z. 2012. Changes on proline, phenolic compounds and activity of antioxidant enzymes in Anethum graveolens under salt stress. International journal of Agronomy and Plant Production, 3 (S): 710-715.
Shabani, L. and Ehsanpour, A.A. 2009. Induction of antioxidant enzymes, phenolic and flavonoid compounds in in vitro culture of licorice (Glycyrrhiza glabra) using methyl jasmonate and salicylic acid. Journal of Biology of iran, 22(4): 691- 703.
Shabrangi, A. and Mehrabi, L. 2014. Evaluation of Antioxidant Activity and Secondary Metabolites of Mentha piperita Under Effect of Acetylsalicylic Acid And Methyl Jasmonate. International Research Journal of Applied and Basic Sciences, 8(3): 337-340.
Slinkard, K. and Singleton, V.L. 1977. Total phenol analysis:automation and comparison with manual methods. Amrican Journal of Enology and Viticulture, 28: 49-55.
Solecka, D. 1997. Role of phenyl propanoid compounds in plant responses to different stress factor. Journal of Acta Physiologia Plantarum, 19(3): 257-268.
Taiz, L. and Zeiger, E. 2006. Plant Physiology. Sinauer Associates Inc. Sunderland, Massachusetts.USA,690 pp.
Vogt, T. 2010. Phenylpropanoid biosyntesis. Journal of Molecular Plant, 3: 2-20.
Zhao, J., Davis, L.C. and Verpoorte, R. 2005. Elicitor signal transduction leading to production of plant secondary metabolites. Journal of Biotechnology Advances, 23: 283-333.
Ziaie, S.A., DastPak, A., NaghdBadi, S., PoorHoseini, L., Hemmati Moghadam, A. and Ghorori Naeini, M. 2005. Review on Cynara scolymus, Journal of Medicinal Plants, 13: 10-13.
_||_
Agarwal, S. and Pandy, V. 2004. Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Journal of Biological Plant, 48: 555-560.
Bailly, C. 2004. Active oxygen species and antioxidants in seed biology. Journal ofSeedScience Research, 14: 93–107.
Boudet, A.M. 2007. Evolution and current status of research in phenolic compounds. Journal of Phytochemistry, 68: 2722-2735.
Bourgou, S., Kchouk, M., Bellila, A. and Marzouk, B. 2010. Effect of salinity on phenolic composition and biological activity of Nigella sativa. Journal of Acta Horticulture, 853:57-60.
Chang, C., Yang, M., Wen, H. and Chern, J. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food Drug Anal, 10: 178-182.
Dehghani, A. and Mostajeran, A. 2010. The effect of salinity on growth and activity of antioxidant and defense enzymes in ginger (Zingiber officinale Roscoe). Journal of Herbal Medicines, 1:1-8.
Delavari Parizi, M. 2010. The effects of Salicylic acid and salinity stress on the some physiological and biochemical changes in Ocimum basilicum Master thesis, Department of Biology, Payame Noor University.
Garratt, L.C., Janagoudr, B.S., Lowe, K.C., Anthony, P., Power, J.B. and. Davey, M.R. 2002. Salinity tolerance and antioxidant status in cotton cultures. Journal of Free Radical Biology and Medicine, 33(4): 502-511.
He, Y. and Zhu, Z.Y. 2008. Exogenous salicylic acid alleviates NaCl toxicity and increases antioxidative enzyme activity in Lycopersicum esculentum. Journal of Biological Plantarum, 52: 792-795.
Kabiri, R., Nasibi, F. and Farahbakhsh, H. 2014. Effect of exogenous salicylic acid on some physiological parameters and alleviation of drought stress in nigellasativa under hydroponic culture. Journal of Plant Protection Science, 50(1): 43–51.
Ksouri, R., Megdiche, W., Debez, A., Falleh, M., Grignon, C. and Abdelly, C. 2007. Salinity effect on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritime. Journal of Plant Physiology and Biochemistry, 45: 244-248.
Momeni, N., Arvin, M.J., Khagoei nejad, G., Daneshmand, F. and Keramat, B. 2012. The effect of sodium chloride and salicylic acid on antioxidant defense system in maize (Zea mays). Journal of Plant Biology, 4(14): 23-34.
Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Journal of Physiology of Plant, 15: 473-497.
Neelam, M., Rahul, M., Ajiboye, M., Kafayat, Y. and Lateefat, Y., 2014. Salicylic acid alters antioxidant and phenolics metabolism in catharanthus roseus grown under salinity stress. Journal of African Journal of Traditional, Complementary and Alternative Medicines, 11(5): 118-125.
Oksman-Caldentey, KM. and Inzé, D., 2004. Plant cellfactories in the post-genomic era: new ways toproduce designer secondary metabolites. Journal of Trends Plant Science, 9(9): 433-440.
Pacheco, A.C., Cabral, C., Fermino, E.S. and Aleman, C.C. 2013. Salicylic acid-induced changes to growth, flowering and flavonoids production in marigold plants. Global Journal of Medicinal Plant Reserch, 1(1):95-100.
Parida, A.K. and Das, A.B. 2005. Salt Tolerance and salinity effects on plants: a review. Journal of Ecotoxicology Environmental Safety, 60: 324-349.
Ramakrishna, A. and Ravishankar, G.A. 2011. Influence of abiotic stress signals on secondary metabolites in plants. Journal of Plant Signaling and Behavior, 6: 1720-1731.
Rezazadeh, A., Ghasem nezhad, A. and Barani, M. 2012. Effect of salinity on phenolic composition and antioxidant activity of Artichoke (cynara scolymus) Leaves. Journal of Medicinal Plant, 63: 242-252.
Samadi, S., Ghasemnezhad, A. and Alizadeh, M. 2014. Investigation on phenylalanine ammonia-lyase activity of artichoke (Cynara scolymus) affected by methyl jasmonate and salicylic acid in in-vitro conditions. Journal of Plant Production Research, 21 (4): 135-148.
Saunders, J.A. and Mcclure, J.W. 1974. The suitability of a quantitive spectrophotometric assay for phenylalanine ammonia lyase activity inbarely, buckwheat and pea seedlings. Journal of Plant Physiology, 54: 412-413.
Setayesh Mehr, Z., khajeh, H., Esmaeilzadeh Bahabadi, S. and Sabbagh, S.Z. 2012. Changes on proline, phenolic compounds and activity of antioxidant enzymes in Anethum graveolens under salt stress. International journal of Agronomy and Plant Production, 3 (S): 710-715.
Shabani, L. and Ehsanpour, A.A. 2009. Induction of antioxidant enzymes, phenolic and flavonoid compounds in in vitro culture of licorice (Glycyrrhiza glabra) using methyl jasmonate and salicylic acid. Journal of Biology of iran, 22(4): 691- 703.
Shabrangi, A. and Mehrabi, L. 2014. Evaluation of Antioxidant Activity and Secondary Metabolites of Mentha piperita Under Effect of Acetylsalicylic Acid And Methyl Jasmonate. International Research Journal of Applied and Basic Sciences, 8(3): 337-340.
Slinkard, K. and Singleton, V.L. 1977. Total phenol analysis:automation and comparison with manual methods. Amrican Journal of Enology and Viticulture, 28: 49-55.
Solecka, D. 1997. Role of phenyl propanoid compounds in plant responses to different stress factor. Journal of Acta Physiologia Plantarum, 19(3): 257-268.
Taiz, L. and Zeiger, E. 2006. Plant Physiology. Sinauer Associates Inc. Sunderland, Massachusetts.USA,690 pp.
Vogt, T. 2010. Phenylpropanoid biosyntesis. Journal of Molecular Plant, 3: 2-20.
Zhao, J., Davis, L.C. and Verpoorte, R. 2005. Elicitor signal transduction leading to production of plant secondary metabolites. Journal of Biotechnology Advances, 23: 283-333.
Ziaie, S.A., DastPak, A., NaghdBadi, S., PoorHoseini, L., Hemmati Moghadam, A. and Ghorori Naeini, M. 2005. Review on Cynara scolymus, Journal of Medicinal Plants, 13: 10-13.