تحلیل نظریه بازی تکاملی ایران و عربستان در چارچوب الگوریتم ژنتیک
محورهای موضوعی : اقتصاد کار و جمعیتسمانه خاتمی 1 , علیرضا شکیبایی 2
1 - دانشگاه شهید باهنر کرمان
2 - عضو هیات علمی دانشگاه شهیدباهنر کرمان
کلید واژه: C73, طبقهبندی JEL: C63 C70, . واژگان کلیدی: بازی, محاسبات تکاملی, الگوریتم ژنتیک, معمای زندانی تکراری, اوپک,
چکیده مقاله :
هدف این مقاله ارائه مدلی جدید از جستجوی استراتژی های بهینه در بازی معمای زندانی تکراری با استفاده از الگوریتم ژنتیک است. بدین منظور با شبیه سازی رقابت بین ایران و عربستان در ائتلاف اوپک نفتی، از 12 نوع استراتژی مطرح در بازی معمای زندانی تکراری طی 20 اجرای الگوریتم ژنتیک بهمنظور حداکثرسازی امتیازات فردی بازیکن و نیز حداقل سازی امتیاز برازندگی رقیب استفاده شده است. نتایج نشان داد استراتژی "عمل متقابل" حائز بالاترین بازدهی متوسط در هر دو رقابت بوده و در رتبه های بعدی استراتژیهای "اکثریت موافق"، "ماشه" و "عمل متقابل پس از دو بار نقض همکاری رقیب" جای گرفته اند. استراتژی "همواره عدم همکاری" نیز در رقابت ها با کمترین بازدهی به عنوان ناکاراترین استراتژی شناخته شده است.
Evolutionary game theory has been known as the most suitable tool for modeling the dynamics of strategic interactions. In this regard, evolutionary algorithms present the new approach for learning and decision modeling of bounded rationality factors. The objective of this study is providing the new model of searching for optimal strategies in iterated prisoner's dilemma (IPD) using genetic algorithm. For this purpose, by simulating competition between Iran and Saudi Arabia in OPEC oil Coalition, we used 12 strategy types over 20 runs of genetic algorithm for maximizing individual’s scores and also minimizing competitor fitness scores. Results show that “Tit for Tat” with the highest average fitness in both competitions known as the optimal strategy. The other strategis like; Soft Majority, Trigger & TF2T are next in ranking. The strategy “All D” is known as inefficient strategy in competition with the lowest productivity.
منابع
- جمشیدی رودباری، مستانه (1387). بررسی علل تطابق نیافتن مدلهای اقتصادی رفتار اوپک در بلندمدت از دیدگاه تحولات بازار نفت و ویژگیهای این سازمان. فصلنامهپژوهشهاوسیاستهایاقتصادی، 47: 63-25.
- سامتی، مرتضی، فتحآبادی، مهدی، کسرایی، کامران (1390). تعادل استراتژی مختلط نش و بازیکنان فوتبال: مطالعه موردی ضربات پنالتی. فصلنامه مدلسازی اقتصادی، 5(15): 66-47.
- عبدلی، قهرمان، ماجد، وحید (1391). بررسی رفتار اوپک در قالب یک بازی همکارانه. تحقیقات مدلسازی اقتصادی، 2(7): 50-27.
- عبدلی، قهرمان، ناخدا، محمد جواد (1388). کاربرد نظریه فیرون در بررسی پایداری اوپک: با رویکرد نظریه بازیهای تکراری. فصلنامه مطالعات اقتصاد انرژی، 6 (20): 56-33.
- ناجی میدانی، علی اکبر، رحیمی، غلامعلی (1395). مدل قیمتگذاری صادرات گاز طبیعی از طریق خط لوله بر اساس نظریه بازیها. فصلنامه مدلسازی اقتصادی، 2(34): 49-29.
- Alhajji, A. F., & Huettner, D. (2000). OPEC and world crude oil markets from 1973 to 1994: Cartel, Oligopoly, or Competitive? The Energy Journal, 21(3): 31-60.
- Alkemade, F. (2004). Evolutionary agent-based economics. Eindhoven: Technische Universiteit Eindhoven.
- Alt, J. E., Calvert, L., & Humes, B. D. (1988). Reputation and Hegemonic Stability: A Game-Theoretic Analysis. American Political Science Review, 82(2): 445-66.
- Axelrod, R., & Hamilton, W. (1981). The evolution of cooperation. Science, 211(4489): 1390–96.
- Back, T., Fogel, D., & Michalewicz, Z. (1997). Handbook of evolutionary computation. Oxford University Press.
- Brown, J. S. (1987). A theory for the evolutionary game. Theoretical Population Biology, 31(1): 140-166.
- Dawid, H. (1999). Adaptive learning by genetic algorithms: analytical results and applications to economic models. Springer Verlag, Berlin. 2nd Edition.
- Duboz, R., Versmisse, D., Travers M., Ramat, E., & Shin, Y. J. (2010). Application of an evolutionary algorithm to the inverse parameter estimation of an individual-based model. Ecological Modelling, 221(5): 840–849.
- Dutta, P. K. (1999). Strategies and Games: Theory and Practice. The MIT Press.
- Friedman, D. (1998). On economic applications of evolutionary game theory. Journal of Evolutionary Economics, 8(1): 15-43.
- Gintis, H. (2009). Game theory evolving: a problem-centered introduction to modeling strategic interaction. Princeton, NJ: Princeton University Press.
- Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading, MA.
- Griffin, J., & Vielhaber, L. (1994). OPEC production: the missing link. The Energy Journal, 15:32- 115.
- Griffin, J. M., & Xiong, W. (1997). The Incentive to Cheat: An Empirical Analysis of OPEC. Journal of Law and Economics, 40(2): 289-316.
- Karandikar, R. Mookherjee, D., Ray, D., & Vega- Redondo, F. (1998). Evolving aspirations and cooperation. Journal of Ecoomic Theory, 80(2): 292-331.
- Marks, R. E. (1992). Breeding hybrid strategies: Optimal behaviour for oligopolists. Journal of Evolutionary Economics, 2, 17- 38.
- Mitchell, M. (1996). An introduction to genetic algorithms. London MIT Press, Cambridge, MA.
- Pindyck, R. S. (1978). Gains to producers from the cartelization ofexhaustible resources. The Review of Economics and Statistics, 60(2): 238–251.
- Polasky, S. (1992). Do oil producers act as 'Oil'igopolists? Journal of Environmental Economics and Management, 23(3): 216-247.
- Riechmann, T. (2001). Genetic algorithm learning and evolutionary games. Journal of Economic Dynamics and Control, 25(6): 1019-1037.
- Rubenstein, M., & Osborne, M. (1994). A course in game theory. Cambridge, MA: MIT Press.
- Smith, J. M. (1982). Evolution and the theory of games. Cambridge, UK: Cambridge University Press.
- Tuson, P., & Ross, P. (1998). Adapting operator settings in genetic algorithms. Evolutionary computation, 6(2): 161-184.
- Tuyls, K., & Parsons, S. (2007). What evolutionary game theory tells us about multiagent learning. Artificial Intelligence, 171(7): 406–416.
- Von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behavior. Princeton University Press.
- Weibull, J. W. (1995). Evolutionary game theory. London: MIT Press, Cambridge, MA.
- Wiegand, R. P., Liles, C. L., & De Jong, K. A. (2002). Analyzing Cooperative Coevolution with Evolutionary Game Theory. In Proceedings of Congress on Evolutionary Computation (CEC-02), edited by D. Fogel. IEEE Press.
_||_