کاربرد روشهای کمومتریکس در پایش آلاینده های زیست محیطی
محورهای موضوعی : مدل سازیلیلا عالی زاده 1 , محمدرضا باعزت 2 , سعید یوسفی نژاد 3 *
1 - گروه شیمی، دانشگاه پیام نور، تهران ، ایران
2 - گروه شیمی، دانشگاه پیام نور، تهران، ایران
3 - گروه مهندسی بهداشت حرفه ای و ایمنی کار، دانشکده بهداشت، دانشگاه علوم پزشکی شیراز، شیراز، ایران
کلید واژه: روش های چند متغیره, ترکیبات آلی, آلاینده های محیطی, پایش, آلودگی, شیمی سنجی,
چکیده مقاله :
با توجه به اهمیت اندازه گیری های زیست محیطی و پایش غلظت آلاینده ها، میزان مواجهه با آنها و ضرورت کاهش مخاطرات زیست محیطی برای جوامع انسانی و موجودات زنده، استفاده از کمومتریکس در مطالعات زیست محیطی در طول دو دهه گذشته افزایش یافته است. این کاربردها به آزمودن و اثبات قدرت روش های پردازش داده ها اختصاص داده شده در این زمینه و در دسترس بودن نرم افزارهای مناسب با تحقیقات فشرده در این زمینه منجر شده است. در این مطالعه مروری بر جنبه هایی از توانمندی روشهای کمومتریکس یا شیمی سنجی در پردارش داده های زیست محیطی و اندازه گیری های آلاینده های خطرناک پرداخته ایم. با توجه به مزایای روشهای چند متغیره و کمومتریکس انتظار می رود که در آینده این زمینه کاری بتواند در حل مسائل دشوار و استخراج اطلاعات مفید بیشتر از داده های آنالیز دستگاهی حوزه زیست محیطی موثر باشد که البته چالش های بسیاری نیز در این راه وجود دارد. از آنجایی که پایش های زیست محیطی همچنان با مخلوطهای آلاینده پیچیدهتر مواجه میشود، استفاده از رویکردهای کمومتریکس پیشرفته برای به دست آوردن بینش جامع در مورد سرنوشت و رفتار آلایندهها در سیستمهای زیستمحیطی یا زیستی دارای اهمیت خواهد بود. چشم اندازها و چالشهای آینده در کاربرد کمومتریکس، پتانسیل زیاد این روش ها برای پیشبرد پایش های زیستمحیطی و تجزیه آلایندهها را نشان می دهد. از ادغام دادههای بزرگ و یادگیری ماشین گرفته تا پیشرفتها در تصویربرداری فراطیفی، همجوشی حسگر و کمیسازی عدم قطعیت، اطلاعات موجود در متون علمی بر وسعت رویکردهای نوظهور و نوآورانه در کمومتریکس زیست محیطی تأکید میکند.
Due to the importance of measurement and monitoring of environmental pollutants, the amount of exposure and the need to reduce environmental risks for humans and living organisms, the use of chemometrics in environmental studies has increased over the past two decades. These applications are designed to test and prove the power of dedicated data processing techniques and the availability of suitable software with broad applications in this field. In this review study, we have discussed aspects of the ability of chemometrics methods in gathering environmental data and measuring hazardous pollutants. Considering the advantages of multivariate methods and chemometrics, it is expected that it can be more effective in solving difficult problems and extracting useful information. As environmental monitoring continues to monitor complex pollutant mixtures, the use of advanced chemometrics approaches will be important to gain comprehensive insight into the following of the pollutants in environmental or biological systems. Future prospects and challenges in the application of chemometrics show the great potential of these methods to enhance environmental monitoring and pollutant analysis. Integration of big data, machine learning, advance hyperspectral imaging, sensor fusion, and uncertainty quantification can be considered as emerging and innovative approaches in environmental chemometrics.
1. S. Yuan, Y. Li, F. Bao, H. Xu, Y. Yang, Q. Yan, S. Zhong, H. Yin, J. Xu, Z. Huang, and J. Lin, Sci. Total Environ. 858, 159741 (2023).
2. F. Dehghani, S. Yousefinejad, D. I. D. I. Walker, and F. Omidi, Metabolomics 18, 73 (2022).
3. M. A. Mallah, L. Changxing, M. A. Mallah, S. Noreen, Y. Liu, M. Saeed, H. Xi, B. Ahmed, F. Feng, A. A. Mirjat, W. Wang, A. Jabar, M. Naveed, J.-H. Li, and Q. Zhang, Chemosphere 296, 133948 (2022).
4. H. Kang, S. Sung, J. Hong, S. Jung, T. Hong, H. S. Park, and D.-E. Lee, J. Hazard. Mater. 402, 123483 (2021).
5. Z. Idrees and L. Zheng, J. Ind. Inf. Integr. 17, 100123 (2020).
6. M. Thakur and D. Pathania, in Abat. Environ. Pollut. (Elsevier, 2020), pp. 245–262.
7. R. Nigar, S. Zhao, X. Liu, H. Huang, L. Tian, Y. Xiao, A. Habib, and G. Zhang, Emerg. Contam. 10, 100356 (2024).
8. A. K. Sharma, M. Sharma, A. K. Sharma, M. Sharma, and M. Sharma, J. Geochemical Explor. 255, 107325 (2023).
9. A. Zappi, V. Marassi, S. Giordani, N. Kassouf, B. Roda, A. Zattoni, P. Reschiglian, and D. Melucci, Chemosensors 11, 45 (2023).
10. S. Yousefinejad and B. Hemmateenejad, Chemom. Intell. Lab. Syst. 149, (2015).
11. A. G. Usman, N. Usanase, S. I. Abba, I. Ozsahin, B. Uzun, M. A. Yassin, S. M. Rahman, and D. U. Ozsahin, Sustain. Chem. Environ. 2, 100011 (2023).
12. B. Lavine and J. Workman, Anal. Chem. 80, 4519 (2008).
13. M. M. R. Mostert, G. A. Ayoko, and S. Kokot, TrAC Trends Anal. Chem. 29, 430 (2010).
14. S. Mas, A. de Juan, R. Tauler, A. C. Olivieri, and G. M. Escandar, Talanta 80, 1052 (2010).
15. S. P. J. van Leeuwen and J. de Boer, J. Chromatogr. A 1186, 161 (2008).
16. M. Gros, M. Petrović, and D. Barceló, Talanta 70, 678 (2006).
17. H.-P. Wang, P. Chen, J.-W. Dai, D. Liu, J.-Y. Li, Y.-P. Xu, and X.-L. Chu, TrAC Trends Anal. Chem. 153, 116648 (2022).
18. D.L. Massart, B.G.M. Vandeginste, L.M.C. Buydens, S. de Jong, P.J. Lewi, J.S. Verbeke, Handbook of Chemometrics and Qualimetrics, Elsevier, Amsterdam, The Netherlands, 1997, Parts A and B. (1997).
19. J. A. Arancibia, P. C. Damiani, G. A. Ibañez, and A. C. Olivieri, J. AOAC Int. 97, 39 (2014).
20. K. S. Booksh and B. R. Kowalski, Anal. Chem. 66, 782A (1994).
21. G. M. Escandar, A. C. Olivieri, N. (Klaas) M. Faber, H. C. Goicoechea, A. Muñoz de la Peña, and R. J. Poppi, TrAC Trends Anal. Chem. 26, 752 (2007).
22. A. C. Olivieri, Anal. Chem. 80, 5713 (2008).
23. R. Tauler, A. Smilde, and B. Kowalski, J. Chemom. 9, 31 (1995).
24. R. Bro, Chemom. Intell. Lab. Syst. 38, 149 (1997).
25. G. N. Piccirilli and G. M. Escandar, Analyst 131, 1012 (2006).
26. D. B. Gil, A. M. de la Peña, J. A. Arancibia, G. M. Escandar, and A. C. Olivieri, Anal. Chem. 78, 8051 (2006).
27. R. C. Henry, C. W. Lewis, P. K. Hopke, and H. J. Williamson, Atmos. Environ. 18, 1507 (1984).
28. J. Einax, H. Zwanziger, S. Geiss (Eds.), Chemometrics in Environmental Analysis, VCH, Weinheim, Germany, 1997. (n.d.).
29. D. C. Aydin, J. Zamudio Pineres, F. Al-Manji, H. Rijnaarts, and T. Grotenhuis, Anal. Methods 13, 1635 (2021).
30. L. Liu, Q. Wu, X. Miao, T. Fan, Z. Meng, X. Chen, and W. Zhu, Chemosphere 286, 131815 (2022).
31. S. Veerasingam, M. Ranjani, R. Venkatachalapathy, A. Bagaev, V. Mukhanov, D. Litvinyuk, M. Mugilarasan, K. Gurumoorthi, L. Guganathan, V. M. Aboobacker, and P. Vethamony, Crit. Rev. Environ. Sci. Technol. 51, 2681 (2021).
32. S. Tajik, H. Beitollahi, F. G. Nejad, Z. Dourandish, M. A. Khalilzadeh, H. W. Jang, R. A. Venditti, R. S. Varma, and M. Shokouhimehr, Ind. Eng. Chem. Res. 60, 1112 (2021).
33. T. S. Bos, W. C. Knol, S. R. A. Molenaar, L. E. Niezen, P. J. Schoenmakers, G. W. Somsen, and B. W. J. Pirok, J. Sep. Sci. 43, 1678 (2020).
34. A. Gredilla, S. Fdez-Ortiz de Vallejuelo, N. Elejoste, A. de Diego, and J. M. Madariaga, TrAC Trends Anal. Chem. 76, 30 (2016).
35. M. Tarapoulouzi, V. Ortone, and S. Cinti, Talanta 244, 123410 (2022).
36. B. Igne and C. R. Hurburgh, J. Chemom. 24, 75 (2010).
37. P. Mishra, A. Biancolillo, J. M. Roger, F. Marini, and D. N. Rutledge, TrAC Trends Anal. Chem. 132, 116045 (2020).
38. L. Shao, X. Lin, and X. Shao, Appl. Spectrosc. Rev. 37, 429 (2002).
39. A. Craig, O. Cloarec, E. Holmes, J. K. Nicholson, and J. C. Lindon, Anal. Chem. 78, 2262 (2006).
40. R. A. van den Berg, H. C. Hoefsloot, J. A. Westerhuis, A. K. Smilde, and M. J. van der Werf, BMC Genomics 7, 142 (2006).
41. R. Bro and A. K. Smilde, J. Chemom. 17, 16 (2003).
42. P. A. Aguilera, A. G. Frenich, H. Castro, and J. L. M. Vidal, Environ. Monit. Assess. 62, 193 (2000).
43. S. Wold, P. Geladi, K. Esbensen, and J. Öhman, J. Chemom. 1, 41 (1987).
44. S. Wold, M. Sjöström, and L. Eriksson, Chemom. Intell. Lab. Syst. 58, 109 (2001).
45. R. G. Brereton, J. Jansen, J. Lopes, F. Marini, A. Pomerantsev, O. Rodionova, J. M. Roger, B. Walczak, and R. Tauler, Anal. Bioanal. Chem. 410, 6691 (2018).
46. S. Yousefinejad, F. Honarasa, F. Abbasitabar, and Z. Arianezhad, J. Solution Chem. 42, 1620 (2013).
47. Y. OUYANG, Water Res. 39, 2621 (2005).
48. N. Kumar, A. Bansal, G. S. Sarma, and R. K. Rawal, Talanta 123, 186 (2014).
49. M. D. Peris-Díaz and A. Krężel, TrAC Trends Anal. Chem. 135, 116157 (2021).
50. V. Yadav, A. K. Yadav, V. Singh, and T. Singh, Results Eng. 22, 102305 (2024).
51. W. Zheng, D. Tian, X. Wang, W. Tian, H. Zhang, S. Jiang, G. He, Y. Zheng, and W. Qu, Toxicology 313, 151 (2013).
52. J. F. Bobb, L. Valeri, B. Claus Henn, D. C. Christiani, R. O. Wright, M. Mazumdar, J. J. Godleski, and B. A. Coull, Biostatistics 16, 493 (2015).
53. A. de Juan and R. Tauler, Anal. Chim. Acta 1145, 59 (2021).
54. H. Parastar and R. Tauler, Anal. Chem. 86, 286 (2014).
55. M. Bayat, M. Marín-García, J. B. Ghasemi, and R. Tauler, Anal. Chim. Acta 1113, 52 (2020).
56. K. P. Singh, A. Malik, S. Sinha, and V. K. Singh, Water. Air. Soil Pollut. 185, 79 (2007).
57. R. D. JiJi, G. G. Andersson, and K. S. Booksh, J. Chemom. 14, 171 (2000).
58. K. Matta, T. Lefebvre, E. Vigneau, V. Cariou, P. Marchand, Y. Guitton, A.-L. Royer, S. Ploteau, B. Le Bizec, J.-P. Antignac, and G. Cano-Sancho, Environ. Int. 158, 106926 (2022).
59. A. T. Lebedev, D. M. Mazur, V. B. Artaev, and G. Y. Tikhonov, Environ. Chem. Lett. 18, 1753 (2020).
60. D. M. Mazur, E. A. Detenchuk, A. A. Sosnova, V. B. Artaev, and A. T. Lebedev, Sci. Total Environ. 761, 144506 (2021).
61. P. Plaza-Bolaños, N. M. Valera-Tarifa, and A. G. Frenich, in (2013), pp. 431–454.
62. X. Liu, D. Lu, A. Zhang, Q. Liu, and G. Jiang, Environ. Sci. Technol. 56, 2124 (2022).
63. N. Taoufik, W. Boumya, M. Achak, H. Chennouk, R. Dewil, and N. Barka, Sci. Total Environ. 807, 150554 (2022).
64. Y. Lyu, Q. Ju, F. Lv, J. Feng, X. Pang, and X. Li, Environ. Pollut. 306, 119420 (2022).
65. T. Portolés, E. Pitarch, F. J. López, J. V. Sancho, and F. Hernández, J. Mass Spectrom. 42, 1175 (2007).
66. F. Hernández, M. I. Cervera, T. Portolés, J. Beltrán, and E. Pitarch, Anal. Methods 5, 5875 (2013).
67. A. Guiberteau, T. Galeano, N. Mora, F. Salinas, J. M. Ortı́z, and J. C. Viré, Comput. Chem. 25, 459 (2001).
68. Y. Ni, D. Cao, and S. Kokot, Anal. Chim. Acta 588, 131 (2007).
69. D. Brunet, T. Woignier, M. Lesueur-Jannoyer, R. Achard, L. Rangon, and B. G. Barthès, Environ. Pollut. 157, 3120 (2009).
70. Y. Ni, W. Xiao, and S. Kokot, J. Hazard. Mater. 168, 1239 (2009).
71. E. Comas, R. A. Gimeno, J. Ferré, R. M. Marcé, F. Borrull, and F. X. Rius, J. Chromatogr. A 1035, 195 (2004).
72. E. Peré-Trepat, A. Hildebrandt, D. Barceló, S. Lacorte, and R. Tauler, Chemom. Intell. Lab. Syst. 74, 293 (2004).
73. E. Peré-Trepat, S. Lacorte, and R. Tauler, J. Chromatogr. A 1096, 111 (2005).
74. E. Peré-Trepat and R. Tauler, J. Chromatogr. A 1131, 85 (2006).
75. E. Peré-Trepat, S. Lacorte, and R. Tauler, Anal. Chim. Acta 595, 228 (2007).
76. T. Khayamian, G. H. Tan, A. Sirhan, Y. F. Siew, and S. M. Sajjadi, Chemom. Intell. Lab. Syst. 96, 149 (2009).
77. E. Bezemer and S. Rutan, Anal. Chim. Acta 459, 277 (2002).
78. J. Saurina, C. Leal, R. Compañó, M. Granados, R. Tauler, and M. D. Prat, Anal. Chim. Acta 409, 237 (2000).
79. R. Loos, G. Hanke, and S. J. Eisenreich, J. Environ. Monit. 5, 384 (2003).
80. I. S. Pérez, M. J. Culzoni, G. G. Siano, M. D. G. García, H. C. Goicoechea, and M. M. Galera, Anal. Chem. 81, 8335 (2009).
81. A. Inobeme, V. Nayak, T. J. Mathew, S. Okonkwo, L. Ekwoba, A. I. Ajai, E. Bernard, J. Inobeme, M. Mariam Agbugui, and K. R. Singh, J. Environ. Manage. 309, 114653 (2022).
82. É. F. Batista, A. dos S. Augusto, and E. R. Pereira-Filho, Talanta 150, 206 (2016).
83. M. Cocchi, G. Franchini, D. Manzini, M. Manfredini, A. Marchetti, and A. Ulrici, J. Agric. Food Chem. 52, 4047 (2004).
84. M. S. Shackley, in X-Ray Fluoresc. Spectrom. Geoarchaeology (Springer New York, New York, NY, 2011), pp. 7–44.
85. M. A. Stapanian, J. Chemom. 5, 121 (1991).
86. S. Aidene, M. Khaydukova, G. Pashkova, V. Chubarov, S. Savinov, V. Semenov, D. Kirsanov, and V. Panchuk, Spectrochim. Acta Part B At. Spectrosc. 185, 106310 (2021).
87. M. I. Kaniu, K. H. Angeyo, M. J. Mangala, A. K. Mwala, and S. K. Bartilol, X-Ray Spectrom. 40, 432 (2011).
88. H. Gramowska, I. Krzyzaniak, D. Baralkiewicz, and R. Goldyn, Environ. Monit. Assess. 160, 479 (2010).
89. E. G. Nasr, E. N. Epova, A. de Diego, R. Souissi, M. Hammami, H. Abderrazak, and O. F. X. Donard, Foods 11, 82 (2021).
90. E. Varhan Oral, Ö. Tokul-Ölmez, İ. Yener, M. Firat, Z. Tunay, P. Terzioğlu, F. Aydin, M. Öztürk, and A. Ertaş, Anal. Lett. 52, 320 (2019).
91. I. Komorowicz, H. Gramowska, and D. Barałkiewicz, J. Environ. Sci. Heal. Part A 45, 348 (2010).
92. J. L. Zajicek, D. E. Tillitt, T. R. Schwartz, C. J. Schmitt, and R. O. Harrison, Chemosphere 40, 539 (2000).
93. J. K. Lee, K. C. Ahn, O. S. Park, S. Y. Kang, and B. D. Hammock, J. Agric. Food Chem. 49, 2159 (2001).
94. G. S. Nunes, I. A. Toscano, and D. Barceló, TrAC Trends Anal. Chem. 17, 79 (1998).
95. B. M. Brena, L. Arellano, C. Rufo, M. S. Last, J. Montaño, E. E. Cerni, G. Gonzalez-Sapienza, and J. A. Last, Environ. Sci. Technol. 39, 3896 (2005).
96. K. Anagnostopoulpou, C. Nannou, V. G. Aschonitis, and D. A. Lambropoulou, Sci. Total Environ. 849, 157887 (2022).
97. E. L. Jamin, N. Bonvallot, M. Tremblay-Franco, J.-P. Cravedi, C. Chevrier, S. Cordier, and L. Debrauwer, Anal. Bioanal. Chem. 406, 1149 (2014).
98. W.-L. Chen, S.-Y. Yu, S.-Y. Liu, S.-C. Lin, and T.-H. Lee, Sci. Total Environ. 862, 160830 (2023).
99. L. L. Hohrenk, M. Vosough, and T. C. Schmidt, Anal. Chem. 91, 9213 (2019).
100. M. Pourchet, L. Debrauwer, J. Klanova, E. J. Price, A. Covaci, N. Caballero-Casero, H. Oberacher, M. Lamoree, A. Damont, F. Fenaille, J. Vlaanderen, J. Meijer, M. Krauss, D. Sarigiannis, R. Barouki, B. Le Bizec, and J.-P. Antignac, Environ. Int. 139, 105545 (2020).
101. S. Liesenfeld, P. Steliopoulos, and G. Hamscher, J. Agric. Food Chem. 68, 12493 (2020).
102. N. Pouyanfar, S. Z. Harofte, M. Soltani, S. Siavashy, E. Asadian, F. Ghorbani-Bidkorbeh, R. Keçili, and C. M. Hussain, Trends Environ. Anal. Chem. 34, e00160 (2022).
103. A. E. D. Mahmoud and M. Fawzy, in (2021), pp. 229–246.
104. R. Pol, F. Céspedes, D. Gabriel, and M. Baeza, TrAC Trends Anal. Chem. 95, 62 (2017).
105. J. P. Lafleur, S. Senkbeil, T. G. Jensen, and J. P. Kutter, Lab Chip 12, 4651 (2012).
106. F. Zhang, W. Liu, S. Zhou, L. Jiang, K. Wang, Y. Wei, A. Liu, W. Wei, and S. Liu, Anal. Chem. 92, 7200 (2020).
107. R. Houhou and T. Bocklitz, Anal. Sci. Adv. 2, 128 (2021).
108. H. Parastar and R. Tauler, Angew. Chemie 134, (2022).
109. J. shan, J. Zhao, L. Liu, Y. Zhang, X. Wang, and F. Wu, Environ. Pollut. 238, 121 (2018).
110. V. Olmos, M. Marro, P. Loza‐Alvarez, D. Raldúa, E. Prats, F. Padrós, B. Piña, R. Tauler, and A. de Juan, J. Biophotonics 11, (2018).
111. H. D. T. Jones, D. M. Haaland, M. B. Sinclair, D. K. Melgaard, M. H. Van Benthem, and M. C. Pedroso, J. Chemom. 22, 482 (2008).
112. A. M. Lines, G. B. Hall, S. Asmussen, J. Allred, S. Sinkov, F. Heller, N. Gallagher, G. J. Lumetta, and S. A. Bryan, ACS Sensors 5, 2467 (2020).