مدلسازی چگالی حاملهای بار در سلول خورشیدی نانوساختاری حالت جامد حساس شده با رنگدانه
محورهای موضوعی : مدل سازیتهمینه جلالی 1 * , مرتضی صادقی 2 , شهریار عصفوری 3
1 - گروه فیزیک دانشگاه خلیج فارس، بوشهر
2 - گروه فیزیک دانشگاه خلیج فارس، بوشهر
3 - گروه مهندسی شیمی، دانشکده نفت، گاز و پتروشیمی، دانشگاه خلیج فارس، بوشهر، ایران
کلید واژه: چگالی حامل بار, نانوساختار, سلول خورشیدی حساس شده با رنگدانه, سلول خورشیدی حالت جامد حساس شده با رنگدانه,
چکیده مقاله :
سلولهای خورشیدی حساس شده با رنگدانه نسل جدیدتری از سلولهای خورشیدی هستند که اگرچه بازده پایینتری نسبت به سلولهای سیلیکونی دارند، اما پتانسیل بالایی برای بازده بیشتر دارند و چون از نظر اقتصادی صرفه بهتری دارند، اگر بازده و پایداری آنها افزایش یابد میتوانند جایگزین سلولهای خورشیدی سیلیکونی در بازار شوند. طراحی و توسعه روزافزون سلولهای خورشیدی تنها محدود به کارهای تجربی و آزمایشگاهی نبوده، بلکه مدلسازیهای عددی نیز در این امر دخیل بوده است. هدف از انجام این تحقیق طراحی و مدلسازی عددی سلول¬های خورشیدی حالت جامد حساس شده با رنگدانه بر پایه لایه نانوساختار نیمرسانا با گاف نواری عریض (دی-اکسیدتیتانیوم) و همچنین اکسید روی به عنوان انتقال دهنده الکترون و رنگدانه N719 به عنوان لایه جاذب و همچنین PEDOT:PSS و P3HT به عنوان ماده انتقال دهنده حفره است. در این پژوهش از نرم افزار کامسول برای طراحی سلول خورشیدی استفاده و مشخصههای جریان-ولتاژ و همچنین جذب اپتیکی سلول محاسبه شده است که با دادههای تجربی مطابقت خوبی دارد.
Dye-sensitized solar cells (DSSCs) are a newer generation of solar cells that, although they have lower efficiency compared to silicon-based solar cells, have a high potential for improved efficiency. Due to their better cost-effectiveness, they can replace silicon-based solar cells in the market if their efficiency and stability increase. The design and development of DSSCs have involved not only experimental and laboratory work but also numerical modeling. The aim of this work is to design and numerically model dye-sensitized solar cells based on a nanostructured semiconductor layer with a wide bandgap (titanium dioxide) and zinc oxide as the electron transporter, N719 dye as the absorber layer, and PEDOT:PSS and P3HT as hole transport materials. In this research, the advanced software CAMSOL with extensive capabilities is used for the design of dye-sensitized solar cells, and the current-voltage characteristics and optical absorption of the cell are calculated, which are in agreement with experimental data.
[1] Conti, John, Paul Holtberg, Jim Diefenderfer, Angelina LaRose, James T. Turnure, and Lynn Westfall. International energy outlook 2016 with projections to 2040. No. DOE/EIA-0484 (2016). USDOE Energy Information Administration (EIA), Washington, DC (United States). Office of Energy Analysis, 2016.
[2] Li, Bin, Liduo Wang, Bonan Kang, Peng Wang, and Yong Qiu. "Review of recent progress in solid-state dye-sensitized solar cells." Solar energy materials and solar cells 90, no. 5 (2006): 549-573.
[3] Kamat, Prashant V. "Meeting the clean energy demand: nanostructure architectures for solar energy conversion." The Journal of Physical Chemistry C 111, no. 7 (2007): 2834-2860.
[4] Correa-Baena, Juan-Pablo, Antonio Abate, Michael Saliba, Wolfgang Tress, T. Jesper Jacobsson, Michael Grätzel, and Anders Hagfeldt. "The rapid evolution of highly efficient perovskite solar cells." Energy & Environmental Science 10, no. 3 (2017): 710-727.
[5] Li, Chen, Miaoyin Liu, Neil G. Pschirer, Martin Baumgarten, and Klaus Mullen. "Polyphenylene-based materials for organic photovoltaics." Chemical reviews 110, no. 11 (2010): 6817-6855.
[6] Golshan, Malihe, Shahriar Osfouri, Reza Azin, and Tahmineh Jalali. "Fabrication of optimized eco-friendly dye-sensitized solar cells by extracting pigments from low-cost native wild plants." Journal of Photochemistry and Photobiology A: Chemistry 388 (2020): 112191.
[7] Saga, Tatsuo. "Advances in crystalline silicon solar cell technology for industrial mass production." npg asia materials 2, no. 3 (2010): 96-102.
[8] Wongcharee, K., V. Meeyoo, and S. Chavadej, Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers. Solar Energy Materials and Solar Cells, 2007. 91(7): p. 566-571.
[9] Gregg, Brian A. "The photoconversion mechanism of excitonic solar cells." MRS bulletin 30, no. 1 (2005): 20-22.
[10] Procel, Paul, Haiyuan Xu, Aurora Saez, Carlos Ruiz‐Tobon, Luana Mazzarella, Yifeng Zhao, Can Han, Guangtao Yang, Miro Zeman, and Olindo Isabella. "The role of heterointerfaces and subgap energy states on transport mechanisms in silicon heterojunction solar cells." Progress in Photovoltaics: research and applications 28, no. 9 (2020): 935-945.
[11] Rosencwaig, Allan, and Allen Gersho. "Theory of the photoacoustic effect with solids." Journal of Applied Physics 47, no. 1 (1976): 64-69.
[12] Becquerel, M. E. "Mémoire sur les effets électriques produits sous l'influence des rayons solaires." Comptes rendus hebdomadaires des séances de l'Académie des sciences 9 (1839): 561-567.
[14] Chapin, Daryl M., Calvin S. Fuller, and Gerald L. Pearson. "A new silicon p‐n junction photocell for converting solar radiation into electrical power." Journal of applied physics 25, no. 5 (1954): 676-677.
[15] Fritts, Charles E. "On a new form of selenium cell, and some electrical discoveries made by its use." American Journal of Science 3, no. 156 (1883): 465-472.
[16] Kallmann, H., and M. Pope. "Photovoltaic effect in organic crystals." The Journal of Chemical Physics 30, no. 2 (1959): 585-586.
[17] EPIA-European Photovoltaic Industry Association. "Global market outlook for photovoltaics 2013-2017." EPIA report. Disponível em: http://www. epia. org/home (2013).
[18] Jahantigh, Farhad, and Mohammad Javad Safikhani. "The effect of HTM on the performance of solid-state dye-sanitized solar cells (SDSSCs): a SCAPS-1D simulation study." Applied Physics A 125, no. 4 (2019): 1-7.
[19] Kojima, Akihiro, Kenjiro Teshima, Yasuo Shirai, and Tsutomu Miyasaka. "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells." Journal of the american chemical society 131, no. 17 (2009): 6050-6051.
[20] Jalali, Tahmineh, et al. "Performance evaluation of natural native dyes as photosensitizer in dye-sensitized solar cells." Optical Materials 110 (2020): 110441.
[21] Aberle, Armin G. "Thin-film solar cells." Thin solid films 517, no. 17 (2009): 4706-4710.
[22] Tributsch, Helmut. "Dye sensitization solar cells: a critical assessment of the learning curve." Coordination Chemistry Reviews 248, no. 13-14 (2004): 1511-1530.
[23] Bagher, Askari Mohammad, Mirzaei Mahmoud Abadi Vahid, and Mirhabibi Mohsen. "Types of solar cells and application." American Journal of optics and Photonics 3, no. 5 (2015): 94-113.
[24] Kamat, Prashant V. "Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer." Accounts of chemical research 45, no. 11 (2012): 1906-1915.
[25] Angmo, Dechan, and Frederik C. Krebs. "Flexible ITO‐free polymer solar cells." Journal of Applied Polymer Science 129, no. 1 (2013): 1-14.
[26] Prochowicz, Daniel, Mohammad Mahdi Tavakoli, Małgorzata Wolska-Pietkiewicz, Maria Jędrzejewska, Suverna Trivedi, Manoj Kumar, Shaik M. Zakeeruddin, Janusz Lewiński, Michael Graetzel, and Pankaj Yadav. "Suppressing recombination in perovskite solar cells via surface engineering of TiO2 ETL." Solar Energy 197 (2020): 50-57.
[27] Mahmoudi, Tahmineh, Yousheng Wang, and Yoon‐Bong Hahn. "SrTiO3/Al2O3‐graphene electron transport layer for highly stable and efficient composites‐based perovskite solar cells with 20.6% efficiency." Advanced Energy Materials 10, no. 2 (2020): 1903369.
[28] Yu, Bin‐Bin, Min Liao, Yudong Zhu, Xusheng Zhang, Zheng Du, Zhixin Jin, Di Liu et al. "Oriented Crystallization of Mixed‐Cation Tin Halides for Highly Efficient and Stable Lead‐Free Perovskite Solar Cells." Advanced Functional Materials 30, no. 24 (2020): 2002230.
[29] Marchioro, Arianna, Joël Teuscher, Dennis Friedrich, Marinus Kunst, Roel Van De Krol, Thomas Moehl, Michael Grätzel, and Jacques-E. Moser. "Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells." Nature photonics 8, no. 3 (2014): 250-255.
[30] P. Singh, A. Raman, and N. Kumar, “Spectroscopic and simulation analysis of facile PEDOT:PSS layer deposition-silicon for perovskite solar cell,” Silicon, vol. 12, pp. 1769–1777, 2020.
[31] Rombach, Florine M., Saif A. Haque, and Thomas J. Macdonald. "Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells." Energy & Environmental Science (2021).
[32] Green, Martin A., Anita Ho-Baillie, and Henry J. Snaith. "The emergence of perovskite solar cells." Nature photonics 8, no. 7 (2014): 506-514.
[33] Grätzel, M., Recent advances in sensitized mesoscopic solar cells. Accounts of chemical research, 2009. 42(11): p. 1788-1798.
[34] Hagfeldt, A., et al., Dye-sensitized solar cells. Chemical reviews, 2010. 110(11): p. 6595-6663.
[35] Grätzel, M., Photoelectrochemical cells. Nature, 2001. 414(6861): p. 338-344.
[36] Jalali, T.; Arkian, P.; Solati, Z.; Jalali, M. Improving of Safranin-O Characteristics as a Photosynthesis through Adjusting pH Value in Dye-Sensitized Solar Cells. IOP Solid-State Science and Technology. Interfaces 2020, 9(6), 065022.