قابلیت اعتماد لرزهای پلهای قوسی سنگی با در نظر گرفتن عدم قطعیت مشخصات مصالح بر اساس روش سطوح پاسخ
محورهای موضوعی : آنالیز سازه - زلزلهامیرحسین مهربد 1 , فرهاد بهنام فر 2 , آرمین عظیمی نژاد 3 , حمید هاشم الحسینی 4
1 - دانشکده عمران، واحد علوم و تحقیقات، دانشگاره آزاد اسلامی ، تهران ، ایران
2 - دانشگاه صنعتی اصفهان
3 - استادیار گروه مهندسی عمران، دانشکده مهندسی عمران، معماری و هنر، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران
4 - دانشگاه صنعتی اصفهان
کلید واژه: پل قوسی سنگی, قابلیت اعتماد, عدم قطعیت, روش سطوح پاسخ, روش المان مجزا ,
چکیده مقاله :
پلهای قوسی بنایی با استفاده از مصالح بنایی مانند آجر یا سنگ همراه با ملات یا بدون ملات ساخته شدهاند. مشخصات مکانیکی آنها با توجه به تنوع جنس مصالح بکار رفته، کیفیت ساخت و تأثیر گذشت زمان میتوانند ثابت نبوده و دچار عدم قطعیتهای قابلتوجهی باشند.بنابراین برای اطمینان از توانایی و عملکرد سازه در مقابل بارهای وارده به ویژه زلزله، اتخاذ روشهای دقیقتر مدلسازی و همچنين لحاظکردن این عدمقطعیتها، یک موضوع اساسی مهندسی سازه است. برای یک پل قوسی سنگی شبکه ریلی ایران، مشخصات مکانیکی مصالح شامل ضریب سختی نرمال و برشی درزهای بلوکهای سنگی و همچنين زاویه اصطکاک داخلی درزها به عنوان کمیتهاي دارای عدم قطعیت و به صورت متغیر تصادفی در نظر گرفته شد. با توجه به محیط گسسته پل، تحلیل دینامیکی افزاینده تحت تاثیر یازده رکورد زلزله منتخب با روش المان مجزا انجام شده است. پس از تحلیل بیش از 2600 نمونه پل با مشخصات مصالح مختلف، براساس روش سطوح پاسخ ، توابع حالت حدی گسیختگی پل بر حسب سه متغیر تصادفی، برای کلیه رکوردها تعیین شده است. با استفاده از روشهای قابلیت اعتماد FORM وMSC ، شاخص قابلیت اعتماد و احتمال شکست پل محاسبه گردید. نتایج نشان دادند برای رکوردهای منتخب زلزله، شتاب طیفی آستانه فروريزش پل با درنظر گرفتن عدم قطعیتها در حدود 30% الی 50% نسبت به حالتی که عدم قطعیت در مصالح لحاظ نشده باشد کاهش پیدا میکنند.
Masonry arch bridges are built using masonry materials such as brick or stone with or without mortar. Their mechanical properties due to the variety of materials used, the quality of construction, and the effect of the passage of time can be inconstant and have significant uncertainties. Therefore, to ensure the ability and performance of the structure against the loads, especially earthquakes, adopting more accurate modeling methods and considering these uncertainties is fundamental issue of structural engineering. For a stone arch bridge of Iran's railway network, the mechanical properties of the materials including the normal and shear stiffness coefficient of the stone block joint as well as the internal friction angle of the joints were considered as quantities with uncertainty and as random variables. According to the discrete environment of the bridge, incremental dynamic analysis has been performed under the influence of eleven selected earthquake records using the discrete element method. After analyzing more than 2,600 bridge samples with different material properties, based on the response surface method, the limit state functions of the bridge failure in terms of three random variables have been determined for all records. Using FORM and MSC reliability methods, the reliability index and probability of bridge failure were calculated. The results showed that for the selected earthquake records, the spectral acceleration of the bridge collapse threshold were reduced by 30% to 50% considering the uncertainties compared to the case where the uncertainty in the materials is not considered.
[1] Pulatsu B, Erdogmus E, Lourenço PB. Comparison of in-plane and out-of-plane failure modes of masonry arch bridges using discontinuum analysis. Engineering Structures. 2019;178:24-36. https://doi.org/10.1016/j.engstruct.2018.10.016.
[2] Jahangiri V, Yazdani M. Seismic reliability and limit state risk evaluation of plain concrete arch bridges. Structure and Infrastructure Engineering. 2021;17(2):170-90. https://doi.org/10.1080/15732479.2020.1733030.
[3] de Felice G, De Santis S, Lourenço PB, Mendes N. Methods and challenges for the seismic assessment of historic masonry structures. International Journal of Architectural Heritage. 2017;11(1):143-60. https://doi.org/10.1080/15583058.2016.1238976.
[4] Hacıefendioğlu K, Başağa HB, Banerjee S. Probabilistic analysis of historic masonry bridges to random ground motion by Monte Carlo Simulation using Response Surface Method. Construction and building materials. 2017;134:199-209. http://dx.doi.org/10.1016/j.conbuildmat.2016.12.101.
[5] Saygılı Ö, Lemos JV. Seismic vulnerability assessment of masonry arch bridges. Structures.
2021;33:3311-23. https://doi.org/10.1016/j.istruc.2021.06.057.
[6] Özmen A, Sayın E. Seismic assessment of a historical masonry arch bridge. Journal of Structural Engineering & Applied Mechanics. 2018;1(2):95-104.
[7] Giordano A, Mele E, De Luca A. Modelling of historical masonry structures: comparison of different approaches through a case study. Engineering Structures. 2002;24(8):1057-69. https://doi.org/10.1016/S0141-0296(02)00033-0.
[8] Karaton M, Aksoy HS, Sayın E, Calayır Y. Nonlinear seismic performance of a 12th century historical masonry bridge under different earthquake levels. Engineering Failure Analysis. 2017;79:408-21. https://doi.org/10.1016/j.engfailanal.2017.05.017.
[9] Moradabadi E, Laefer DF, editors. Numerical modelling options for cracked masonry buildings. 9th International Masonry Conference 2014, Guimarães, Portugal, 7-9 July, 2014; 2014.
[10] Azevedo Jo, Sincraian G, Lemos J. Seismic behavior of blocky masonry structures. Earthquake Spectra. 2000;16(2):337-65.
[11] Lemos JV. Discrete element modeling of masonry structures. International
Journal of Architectural Heritage. 2007;1(2):190-213.
[12] Petromichelakis Y, Saloustros S, Pelà L, editors. Seismic assessment of historical masonry construction including uncertainty. Proceedings of the 9th International Conference on Structural Dynamics, EURODYN 2014; 2014.
[13] Shimpi V, Sivasubramanian MVR, Singh SB, Periyasamy DK. Seismic vulnerability assessment and fragility curves for a multistorey gallery arch bridge. SN Applied Sciences. 2021;3(6):1-19. 10.1007/s42452-021-04652-y.
[14] Özmen A, Sayın E. Seismic Response of a Historical Masonry Bridge under Near and Far-fault Ground Motions. Periodica Polytechnica Civil Engineering. 2021;65(3):946-58. https://doi.org/10.3311/PPci.17832.
[15] Addessi D, Gatta C, Nocera M, Liberatore D. Nonlinear Dynamic Analysis of a Masonry Arch Bridge Accounting for Damage Evolution. Geosciences. 2021;11(8):343
[16] Kiyono J, Furukawa A, Toki K, editors. Seismic assessment of stone arched bridges. Proceedings of 15th World Conference on Earthquake Engineering (WCEE), Lisbon, Portugal; 2012.
[17] Behnamfar F, Afshari M. Collapse Analysis and Strengthening of Stone Arch Bridges Against Earthquake. International Journal of Architectural Heritage. 2013;7(1):1-25. http://dx.doi.org/10.1080/15583058.2011.606594.
[18] Mehrbod A, Behnamfar F, Aziminejad A, Hashemol-Hosseini H. Seismic Vulnerability Assessment of Stone Arch Bridges by Nonlinear Dynamic Analysis Using Discrete Element Method. International Journal of Architectural Heritage. 2022:1-22. https://doi.org/10.1080/15583058.2022.2071182.
[19] Riveiro B, Caamaño J, Arias P, Sanz E. Photogrammetric 3D modelling and mechanical analysis of masonry arches: An approach based on a discontinuous model of voussoirs. Automation in Construction. 2011;20(4):380-8.
[20] Miranda LF, Rio J, Guedes JM, Costa A. Sonic Impact Method–A new technique for characterization of stone masonry walls. Construction and Building Materials. 2012;36:27-35.
[21] Stavroulaki M, Riveiro B, Drosopoulos GA, Solla M, Koutsianitis P, Stavroulakis GE. Modelling and strength evaluation of masonry bridges using terrestrial photogrammetry and finite elements. Advances in Engineering Software. 2016;101:136-48.
[22] Conde B, Matos JC, Oliveira DV, Riveiro B. Probabilistic-based structural assessment of a historic stone arch bridge. Structure and Infrastructure Engineering. 2020;17(3):379-91. 10.1080/15732479.2020.175226
[23] Der Kiureghian A. Structural reliability methods for seismic safety assessment: a review. Engineering Structures. 1996;18(6):412-24.
[24] Nowak AS, Collins KR. Reliability of structures: CRC press; 2012.
[25] Moreira VN, Fernandes J, Matos JC, Oliveira DV. Reliability-based assessment of existing masonry arch railway bridges. Construction and Building Materials. 2016;115:544-54.
[26] Schueremans L, Verstrynge E, editors. Use of reliability methods for evaluating safety of historic structures. SAHC08–6th International Conference on Structural Analysis of Historical Constructions; 2008.
[27] Lu X, Tian Y, Guan H, Xiong C. Parametric sensitivity study on regional seismic damage prediction of reinforced masonry buildings based on time-history analysis. Bulletin of Earthquake Engineering. 2017:1-30.
[28] Gönen S, Soyöz S. Reliability-based seismic performance of masonry arch bridges. Structure and Infrastructure Engineering. 2021:1-16. https://doi.org/10.1080/15732479.2021.1918726.
[29] Lourenço PB, Rots JG. Multisurface interface model for analysis of masonry structures. Journal of engineering mechanics. 1997;123(7):660-8. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:7(660).
[30] Lagomarsino S, Giovinazzi S. Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings. Bulletin of Earthquake Engineering. 2006;4(4):415-43.
[31] Park J, Towashiraporn P, Craig JI, Goodno BJ. Seismic fragility analysis of low-rise unreinforced masonry structures. Engineering Structures. 2009;31(1):125-37. https://doi.org/10.1016/j.engstruct.2008.07.021.
[32] Mouyiannou A, Rota M, Penna A, Magenes G. Identification of suitable limit states from nonlinear dynamic analyses of masonry structures. Journal of Earthquake Engineering. 2014;18(2):231-63. https://doi.org/10.1080/13632469.2013.842190.
[33]Seo J, Linzell DG. Horizontally curved steel bridge seismic vulnerability assessment. Engineering Structures. 2012;34:21-32. 10.1016/j.engstruct.2011.09.008.
[34] Ghosh S, Ghosh S, Chakraborty S. Seismic reliability analysis of reinforced concrete bridge pier using efficient response surface method–based simulation. Advances in Structural Engineering. 2018;21(15):2326-39. 10.1177/1369433218773422.
[35] Itasca D. Itasca. 3DEC (3-Dimensional distinct element code) Version 5.2 2019 Minneapolis (MN). 2019.
[36] Tóth AR, Orbán Z, Bagi K. Discrete element analysis of a stone masonry arch. Mechanics Research Communications. 2009;36(4):469-80. https://doi.org/10.1016/j.mechrescom.2009.01.001.
[37] Furukawa A, Yoshikawa H, Kiyono J. Investigation of the Tsujun Bridge damage mechanism during the 2016 Kumamoto earthquake. Japan Society for Natural Disaster Science. 2019;38:1-23. https://doi.org/10.24762/jndsj.38.S06_1.
[38] ASCE7-16. ASCE7 (2016) Minimum design loads and associated criteria for buildings and other structures. American Society of Civil Engineers (ASCE), Reston. 2016.
[39] Sýkora M, Holický M. Probabilistic model for masonry strength of existing structures. Engineering Mechanics. 2010;17(1):61-70.
[40] Saloustros S, Pelà L, Contrafatto FR, Roca P, Petromichelakis I. Analytical derivation of seismic fragility curves for historical masonry structures based on stochastic analysis of uncertain material parameters. International Journal of Architectural Heritage. 2019;13(7):1142-64.
[41] ISO C. 13822 Bases for design of structures-Assessment of existing structures. CEN Brussels. 2005.
[42] Gulvanessian H, Calgaro J-A, Holický M. Designer's guide to EN 1990: eurocode: basis of structural design: Thomas Telford; 2002.
[43] Mahsuli M, Haukaas T. Computer program for multimodel reliability and optimization analysis. Journal of computing in civil engineering. 2013;27(1):87-98.