تأثیر توأم مصرف گوگرد، ماده آلی و باکتری تیوباسیلوس بر فراهمی برخی عناصر غذایی در سایهانداز درختان گردو
محورهای موضوعی : فیزیولوژی گیاهیعلی خانمیرزایی 1 * , شکوفه رضائی 2 , مسعود محمودی 3
1 - گروه خاکشناسی، دانشکده کشاورزی و منابع طبیعی، واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران
2 - گروه خاکشناسی، دانشکده کشاورزی و منابع طبیعی، واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران
3 - گروه خاکشناسی، دانشکده کشاورزی و منابع طبیعی، واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران
کلید واژه: تیوباسیلوس, گوگرد, گردو, عناصر غذایی,
چکیده مقاله :
وجود کربنات کلسیم فراوان و واکنش خاک قلیایی در اغلب خاکهای کشور، فراهمی زیستی برخی از عناصر برای گیاهان را کاهش داده است. استفاده از اصلاح کنندههایی مانند گوگرد و ماده آلی میتواند باعث بهبود وضعیت عناصر غذایی در خاک شود. بدین منظور آزمایشی به صورت فاکتوریل در قالب طرح بلوک-های کامل تصادفی با 18 تیمار و 3 تکرار بر روی خاک سایهانداز درختان گردو اجرا شد. فاکتورهای آزمایش شامل باکتری تیوباسیلوس در دو سطح (بدون تلقیح و با تلقیح)، گوگرد در سه سطح (صفر، 1000 و 2000 کیلوگرم در هکتار) و ماده آلی در سه سطح (صفر، 5 و 10 تن در هکتار) بودند. نتایج نشان داد تیمار گوگرد بر روی pH خاک در سطح یک درصد و بر روی فسفر و آهن قابل جذب در سطح 5 درصد معنیدار شد. بیشترین مقدار فسفر (06/9 میلیگرم بر کیلوگرم) و آهن قابل جذب (34/6 میلیگرم بر کیلوگرم) در تیمار 2000 کیلوگرم گوگرد در هکتار مشاهده شد. تیمار ماده آلی بر روی pH و روی قابل جذب خاک در سطح 5 و بر روی فسفر و آهن قابل جذب در سطح احتمال 1 درصد معنیدار بود. با افزایش سطح ماده آلی، pH کاهش یافت. بیشترین مقدار فسفر، آهن و روی قابل جذب در تیمار 10 تن در هکتار ماده آلی مشاهده شد. تلقیح با باکتری تیوباسیلوس باعث کاهش pH خاک و افزایش فسفر قابل جذب خاک شد. بر اساس نتایج، مصرف توأم گوگرد، تیوباسیلوس و ماده آلی میتواند باعث افزایش قابلیت جذب عناصر فسفر، آهن و روی در سایه انداز درختان گردو شود.
1 رضوی نسب، ا.، فتوت، ا.، آستارایی، ع و. ا، تاج آبادی پور.1390 . تأثیر گچ، گوگرد و هیوماکس بر برخی ویژگی های
نهال پسته و خاک در مزرعه. مدیریت خاک و تولید پایدار. 7(3): 138-123.
2سیاحی، ا و. ب، سوری. 1391 . ارزیابی کاربرد توأم گوگردپودری و Thiobacillus thioparus به منظور اصلاح
خاک های آهکی غرب ایران. تحقیقات آب و خاک ایران. 54 (3): 762-753.
3) Abdou, A. S. 2006. Effect of applied elemental sulfur and sulfur-oxidizing bacteria (Parococcus versutus) in to calcareous sandy soils on the availability of native and applied phosphorus and some micronutrients. In: 18th World Congress of Soil Science. Philadelphia, Pennsylvania, USA.
4) Al-Daher, R., Al- Baho, M., Guerinik, K., Al-Mutawa, Q.A., Al-Surrayai, T., Sharma, N., Al-Rashdan, A., Al-Ali, A., Al-Kandari, R., Iwamatsu, E., Yorifuji, T., Kadota, A., Miyamoto, H., Shono, T. and M, Kurihara. 2003. Development of an elemental sulfur/sulfur-oxidizing bacteria amendment product for improving desert soil fertility. In: The Joint State of Kuwait-Japan Symposium. pp. 26–28. Kuwait and Tokyo: Kuwait Institute for Scientific Research (KISR) and Japan Cooperation Center, Petroleum (JCCP).
5) Asadi Rahmani, H., Khavazi, K., Jahandideh Mahjen Abadi, V.A., Ramezanpour, M.R., Mirzapour, M.H. and k, Mirzashahi. 2018. Effect of Thiobacillus, sulfur, and phosphorus on the yield and nutrient uptake of canola and the chemical properties of calcareous soils in Iran. Communications in Soil Science and Plant Analysis. 49 (14): 1671-1683.
6) Azeem, M., Hassan, T., Tahir, M., Ali, A., Jeyasundar, P.G., Hussain, Q., Bashir, S., Mehmood, S. and Z, Zhang. 2021. Tea leaves biochar as a carrier of Bacillus cereus improves the soil function and crop productivity. Applied Soil Ecology. 157: 103732.
7) Besharati, H. 2017. Effects of sulfur application and Thiobacillus inoculation on soil nutrient availability, wheat yield and plant nutrient concentration in calcareous soils with different calcium carbonate content. Journal of Plant Nutrition 40: 447–56. doi:10.1080 /01904167. 2016.1245326.
8) Cheng, J., Lee, X., Gao, W., Chen, Y., Pan, W. and Y, Tang. 2017. Effect of biochar on the bioavailability of difenoconazole and microbial community composition in a pesticide-contaminated soil. Applied Soil Ecology. 121: 185–192.
9) Cifuentes, F.R. and W.C, Lindemann. 1993. Organic matter stimulation of elemental sulfur oxidation in a calcareous soil. Soil Science Society of America Journal. 57(3): 727–731.
10) El-Tarabily, K. A., Abdou, A.S., Mehr, E.S. and M, Satoshi. 2006. Isolation and characterization of sulfur-oxidizing bacteria, including strains of Rhizobium, from calcareous sandy soils and their effects on nutrient uptake and growth of maize (Zea mays L.). Australian Journal of Agricultural Research. 57(1): 101–111.
تأثیر توأم مصرف گوگرد، ماده آلی و باکتری تیوباسیلوس بر فراهمی برخی.. . . 9
11) Feng, Y., Chen, R., Hu, J., Zhao, F., Wang, J., Chu, H., Zhang, J., Dolfing, J. and X, Lin. 2015. Bacillus asahii comes to the fore in organic manure fertilized alkaline soils. Soil Biology and Biochemistry. 81: 186-194.
12) Gee, G.W. and J.W, Bauder. 1986. Particle –size analysis, In: Klute, A. (Ed). Methods of Soil Analysis. Part 1-2 nded., vol. 9. Agron Monogr, ASS and SSSA, Madison, pp. 383-411.
13) Jaggi, R.C., Aulakh, M.S. and R, Sharma. 2005. Impacts of elemental S applied under various temperature and moisture regions on pH and available P in acidic, neutral and alkaline soils. Biology and Fertility of Soils. 41: 52–58.
14) Kaler, A.S. 2013. Elemental sulfur effects on nutrient availability in organic soil having variable calcium carbonate. MS thesis, Florida State University, Gainesville, FL, USA.
15) Kaler, A.S., McCray, M., Wright, A.L., Erikson, J.E. 2017. Sugarcane Yield and Plant Nutrient Response to Sulfur- Amended Everglades Histosols. Journal of Plant Nutrition. 40 (2): 187-196.
16) Kaya, M., Zeliha, K. and I, Erdal. 2009. Effects of elemental sulfur and sulfur-containing waste on nutrient concentrations and growth of bean and corn plants grown on a calcareous soil. African Journal of Biotechnology. 8(18): 4481–4489.
17) Lakhdar, A., Ben Achiba, W., Jedidi, N. and C, Abdelly. 2008. Effect of MSW compost and sewage sludge on soil biologic activities and wheat yield. 9th (ed). Tunisian- Japan Symposium on Society, Science and Technology. 23: 456-462.
18) Leoppert, R.H. and D.L, Suarez. 1996. Carbonate and gypsum. In Methods of soil analysis. (Eds). (Spaarks, D.L., A.L. SSSA). p. 437-474. (Soil Science Society of America, Madison, Wisconsin).
19) Lindsay, W.L. and W.A, Norvell. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal. 42: 421-428.
20) Ling, N., Sun, Y.M., Ma, J.H., Guo, J.J., Zhu, P., Peng, C., Yu, G.H., Ran, W., Guo, S.W. and Q.R, Shen,. 2014. Response of the bacterial diversity and soil enzyme activity in particle-size fractions of Mollisol after different fertilization in a long-term experiment. Biology and Fertility of Soils. 50: 901- 911.
21) Moosavi, A.A., Mansouri, S. and M, Zahedifar. 2015. Effect of soil water stress and nickel application on micronutrient status of canola grown on two calcareous soils. Plant Production Science. 18 (3): 377–387. https://doi.org/10.1626/pps.18.377.
22) Olsen, S.R., Cole, C.V., Watanabe, F.S. and L.A, Dean. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U. S. Department of Agriculture Circular No. 939. Banderis, A. D., D. H. Barter and K. Anderson. Agricultural and Advisor.
23) Richards, L.A. 1954. Diagnosis and improvement of saline and alkali soils, U.S.D.A Handbook 60: 65-86.
24) Salcedo, C.L., López de Mishima, B.A. and M.A, Nazareno. 2010. Walnuts and almonds as model systems of foods constituted by oxidisable, pro-oxidant and antioxidant factors. Food Research International. 43: 1187-1197.
25) Saleh, M.E. 2001. Some agricultural application for biologically produced sulfur recovered from sour gases. I- Effect on soil nutrients availability in highly calcareous soils. International Symposium on Elemental Sulfur for Agronomic Application and Desert Greening. UAE University, Abu Dhabi, UAE, 24–25 February.
26) Salimpour, S., Khavazi, K., Nadiana, H., Besharati, H. and M, Miransari. 2012. Canola oil production and nutrient uptake as affected by phosphate solubilizing and sulfur oxidizing bacteria. Journal of Plant Nutrition. 35(13): 1997– 2008.
27) Scherer, H.W. 2001. Sulfur in crop production: invited paper. European Journal of Agronomy. 14: 81–111.
01 فصلنامه گیاه و زیست فناوری ایران، دوره شانزدهم، شماره دوم، 0011
28) Sheikh Beig Goharrizi, M.A., Vahdati, K., Bahrami Sirmandi, H., Kalantari, S. and Ch, Leslie. 2010. Enhancement of maturation and germination of somatic embryos in Persian walnut (Juglans regia L.) using osmolites, hormones and cold treatments. African Journal of Food Science. 4(12): 735-743.
29) Stamford, N.P., Figueiredo, M.V.B., Junior, S.S., Freitas, A.D.S., Santos, C.E.R.S. and M.A.L, Junior. 2015. Effect of gypsum and sulfur with Acidithiobacillus on soil salinity alleviation and on cowpea biomass and nutrient status as affected by PK rock biofertilizer. Scientia Horticulturae. 192: 287–92. doi:10.1016/j.scienta.2015.06.008.
30) Tejada, M., Garcia, C., Gonzalez, J. and M, Hernandez. 2006. Use of organic amendment as a strategy for saline soil remediation: influence on the physical chemical and biological properties of soil. Soil Biology and Biochemistry. 38: 1413-1421.
31) Win, K.T., Okazaki, K., Ohkama-Ohtsu, N., Yokoyama, T. and Y, Ohwaki. 2020. Short-term effects of biochar and Bacillus pumilus TUAT-1 on the growth of forage rice and its associated soil microbial community and soil properties. Biology and Fertility of Soils. 1: 1–17.
32) Wright, A.L., Hanlon, E.A. and R, Rice. 2012. Managing pH in the Everglades agricultural soils. Florida Cooperative Extension Service Fact Sheet SL-287. UF/IFAS Electronic Data Information Source (EDIS) Database. Available at http://edis.ifas.ufl.edu/SS500. Univ. of Florida, Gainesville FL