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Abstract A R T I C L E I N F O 

This research presents a data-driven framework that integrates spatial modeling 

techniques and nonlinear methods to analyze the performance of pumping 

stations in water transmission infrastructure. The study highlights the importance 

of considering spatial and temporal factors to enhance operational reliability and 

optimize resource allocation.Modeling the number of failures against electrical 

energy consumption in pumping stations enables better maintenance planning. 

By analyzing the relationship between energy use and failures, patterns can be 

identified to predict potential breakdowns and schedule preventive maintenance 

more effectively. This approach helps reduce unexpected downtime, lower costs, 

and improve system efficiency and equipment lifespan.By combining advanced 

statistical methods, such as spatial regression and generalized additive model, 

the study develops a comprehensive tool for predicting pumping station 

performance. A case study at the Pumping Station in Iran demonstrates how 

these techniques can help analyze the of pumping stations in water transmission. 
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INTRODUCTION 

The effective operation of pumping stations is 

crucial for ensuring the efficient and reliable 

functioning of water distribution networks. 

These stations are vital for maintaining the 

continuous movement of water across extensive 

distances, yet they face various operational 

challenges, including failures and variations in 

energy usage. Successfully predicting and 

managing these challenges is key to enhancing 

system efficiency, reducing downtime, and 

lowering operational expenses (Dadar et al., 

2021) 

Pumping stations are often equipped with 

complex machinery and control systems that, 

when exposed to wear and tear, may lead to 

unexpected failures. Additionally, fluctuations 

in energy consumption due to changes in 

demand and operational conditions can further 

increase operational costs and reduce efficiency 

in water transmission systems (Luna et al., 

2019). 

These challenges not only impact the 

performance and reliability of the infrastructure 

but also result in higher operational costs and 

diminished service quality (Ikramov et al., 

2020). Effective management of pumping 

stations requires continuous monitoring and 

predictive maintenance strategies to avoid 

costly breakdowns and extend the lifespan of 

equipment. To address these challenges, there 

is an increasing demand for data-driven 

approaches that can monitor, predict, and 

optimize the performance of these stations in 

real time (Yates et al., 2001). Spatial statistics 

and spatio-temporal modeling provide 

powerful tools for analyzing the complex 

relationships between various operational 

factors, such as equipment failure rates, energy 

consumption patterns, and environmental 

influences. These techniques have been widely 

applied in infrastructure management to 

enhance decision-making processes and 

improve system reliability (Blokus-Dziula et 

al., 2023). By integrating these advanced 

techniques, predictive models can be developed 

to identify potential issues before they arise, 

optimize energy usage, and ultimately improve 

the overall operational efficiency of pumping 

stations. 

There is a notable correlation between the 

frequency of mechanical failures in pumping 

stations and their energy usage. Failures such as 

impeller wear, bearing degradation, and shaft 

misalignment tend to reduce hydraulic 

efficiency by increasing internal resistance. As 

a result, more electrical energy is required to 

maintain the same level of output, which leads 

to higher operational expenses and accelerated 

equipment aging. 

A case study conducted at the Gigiri Pumping 

Station in Kenya highlighted how different 

operational configurations impact overall 

efficiency. The study showed that operating a 

single pump (Pump No. 4) yielded a 

significantly higher efficiency of 74%, 

compared to just 34% when Pumps 1 and 2 

were run together. These differences were 

attributed to variations in maintenance status 

and mechanical condition (Tiony, 2013). 

These findings underscore the importance of 

preventive maintenance, precise equipment 

selection, and real-time monitoring in 

minimizing breakdowns and optimizing energy 

consumption. Utilizing smart diagnostics and 

predictive tools allows for early detection of 

faults, which helps ensure reliable performance 

while minimizing unnecessary power usage. 

Recent advancements in data analytics and 

spatio-temporal modeling have opened up new 

possibilities for improving the management of 

infrastructure systems. However, many 

conventional approaches still fail to account for 

the intricate spatial and temporal relationships 

that influence the performance of these 

systems. To bridge this gap, combining spatial 

clustering, spatial regression, and spatio-

temporal modeling offers a promising strategy 

to improve the management and forecasting of 

pumping station operations (Kofinas et al, 

2020) . 

This research aims to develop and implement a 

data-driven analytical framework that 

integrates these techniques to analyze and 

predict the performance of pumping stations 

within a water transmission infrastructure. The 

study particularly focuses on exploring the 

connection between energy consumption and 

failure frequency at these stations, employing 

spatial regression to forecast future 

performance trends. 

The key contributions of this paper include: 

1. Presenting a new method that integrates 

spatial clustering, regression, and 
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generalized additive modeling to enhance 

the management of pumping stations. 

2. Demonstrating how data-driven methods 

can be leveraged to gain a deeper 

understanding of the spatial and temporal 

behavior of system performance. 

3. Offering a case study based on the water 

transmission pipeline, providing insights 

into the practical application of the proposed 

framework . 

Through the integration of these advanced 

analytical techniques, this study aims to deliver 

a more precise and holistic understanding of the 

operational dynamics of pumping stations, 

ultimately aiding in more informed decision-

making and improving infrastructure 

management. 

 

Literature Review 

The efficient management of pumping stations, 

which are vital components of water 

transmission infrastructure, has been a subject 

of significant research in the field of 

infrastructure management. Various studies 

have focused on understanding and improving 

the operational performance of pumping 

stations by employing advanced analytical and 

statistical techniques. This literature review 

explores the key methodologies used in 

analyzing infrastructure performance, with a 

specific focus on spatial regression, nonlinear 

modeling, and data-driven methods. 
 

Spatial modelling in Infrastructure 

Management 

Spatial regression techniques have been widely 

applied to model and analyze spatial 

dependencies in infrastructure systems. Anselin 

(1988) introduced the concept of spatial 

econometrics, emphasizing the importance of 

spatial autocorrelation in model specification. 

Later, researchers such as Getis and Ord (1992) 

extended these concepts by applying spatial 

regression models to infrastructure systems to 

account for spatial dependencies in variables 

like system failures, maintenance costs, and 

energy consumption. These models are 

particularly useful in identifying spatial 

patterns and correlations that may not be 

evident using traditional regression methods. 

For instance, Bao & Chen (2017) used spatial 

econometrics to model water distribution 

systems and found significant spatial 

dependencies in the failure rates of different 

components . 

As infrastructure systems are influenced by 

both spatial and temporal factors, spatio-

temporal modelling has become an essential 

tool for analyzing dynamic performance over 

time. Cressie (2015) laid the foundation for 

spatio-temporal statistics by developing models 

that simultaneously account for both spatial and 

temporal correlations in environmental data. 

Du et al. (2023) further advanced these models 

by applying Gaussian Processes (GP) to 

infrastructure performance, showing that 

spatio-temporal models can significantly 

improve the prediction accuracy of system 

failures and energy consumption. 

In the context of pumping stations, Qiu et al. 

(2024) demonstrated the application of 

Gaussian Process Regression (GPR) for 

predicting the energy consumption of pumping 

stations by integrating both spatial and temporal 

variables. This approach has shown 

considerable promise in enhancing the 

predictive capabilities of infrastructure 

management systems by accounting for the 

intricate relationships between time, location, 

and system performance. 
 

Clustering Techniques in Infrastructure 

Analysis 

Clustering methods, particularly K-means 

clustering, have been widely used to group 

infrastructure units based on their operational 

characteristics. Jain (2010) discussed the 

importance of clustering in identifying patterns 

in large datasets, which can aid in segmenting 

infrastructure systems into more manageable 

units for optimization purposes. In the context 

of pumping stations, clustering has been used to 

group stations with similar failure rates or 

energy consumption patterns, thereby 

facilitating targeted management strategies. 

For example, Alyu et al. (2023) used clustering 

algorithms to identify groups of pumping 

stations with similar failure characteristics, 

enabling better resource allocation and 

maintenance scheduling. Similarly, Huo et al. 

(2020) applied clustering to water distribution 

networks to optimize energy usage and reduce 

operational costs. 
 

Applications in Water Transmission 

Systems 

The application of spatial and spatio-temporal 

analysis methods in water transmission systems 
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has gained traction in recent years. 

Christodoulou et al. (2012) applied spatial 

analysis to optimize the maintenance schedules 

of water pumps in a large distribution system, 

showing that spatially aware models can lead to 

more efficient operations. Mutambik (2024) 

employed spatio-temporal models to predict 

pipe failure rates in a water supply system, 

providing a framework for proactive 

maintenance and resource management. 

Baerton et al. (2020) investigated the 

environmental factors influencing pipe failure 

in clean water networks using Generalized 

Additive Models (GAMs). GAMs were applied 

to model and analyze the effects of variables 

such as temperature, pressure, humidity, and 

soil quality on pipe failures. The study 

emphasized the importance of considering 

environmental impacts in the design and 

maintenance of water distribution systems, 

offering valuable insights for predicting future 

failures and improving the management of 

water systems. 

 

Gaps and Contribution of This Study 

While previous research has explored 

individual aspects of infrastructure 

performance using spatial regression, 

clustering, and nonlinear modelling (GAMs), 

few studies have integrated these methods into 

a unified framework for managing multiple 

performance indicators, such as failure count 

and energy consumption, across the same 

infrastructure system. This study aims to fill 

this gap by providing a data-driven analytical 

framework that integrates spatial clustering, 

spatial regression, and generalized additive 

model to predict and manage the performance 

of pumping stations in a water transmission 

system. By doing so, this study seeks to 

enhance the predictive accuracy and 

operational efficiency of pumping stations, 

contributing to more effective infrastructure 

management practices. 
 

Research Methodology 

This section describes the analytical methods 

used to investigate the relationship between 

electricity consumption and system failures in 

pumping stations. A combination of spatial 

analysis, time-series visualization, and 

nonlinear modeling techniques was employed 

to capture the complex interdependencies 

across both space and time. 

Moran’s I Test for Spatial Autocorrelation 

To confirm the existence of spatial 

autocorrelation in the data, Moran’s I statistic 

was calculated. This global spatial 

autocorrelation measure was applied separately 

to the variables of electricity consumption and 

failure count, using the same spatial weight 

matrix W as in the regression models. 

Moran’s I values closer to +1 indicate positive 

spatial autocorrelation (similar values cluster 

together), while values closer to –1 suggest 

negative spatial autocorrelation (dissimilar 

values are adjacent). The test helped determine 

whether the observed data exhibit significant 

spatial patterns, justifying the application of 

spatial regression (Moran, 1950; Cliff & Ord, 

1981). 

 

Cumulative Time-Series Analysis 

For temporal trend analysis, cumulative plots of 

both electricity consumption and failure counts 

were generated for each pumping station over 

the course of March 2024 to March 2025. These 

visualizations enabled identification of long-

term patterns, seasonal effects, and sudden 

surges in failures or electricity use. 

Additionally, peak analysis was conducted to 

isolate time intervals with unusually high 

values, which may correspond to periods of 

stress or inefficiency in system operations 

(Chatfield, 2004). 
 

Clustering of Pumping Stations 

To identify groups of stations with similar 

operational characteristics, unsupervised 

clustering techniques were applied. In 

particular, K-means clustering was used to 

partition the pumping stations into distinct 

groups based on their electricity consumption 

and failure counts. 

This step aimed to: Discover hidden patterns in 

station behavior, Facilitate targeted 

interventions, Improve maintenance strategies 

and resource allocation. 

Spatial mapping of the resulting clusters also 

revealed potential regional performance trends 

or infrastructure disparities (Jain, 2010; 

MacQueen, 1967). 

 

Spatial Regression Analysis 

To analyze the spatial dependency between 

electricity consumption and failure count in 
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pumping stations, spatial regression models 

were utilized. The primary objective was to 

assess whether electricity consumption at a 

station is associated with failure occurrences in 

the same station or its neighboring stations. 

Specifically, the Spatial Lag Model (SLM) was 

implemented. The SLM incorporates the 

influence of neighboring units through a 

spatially lagged dependent variable and is 

expressed as follows: 

𝑌 = 𝜌𝑊𝑌 + 𝑋𝛽 + 𝜀 
Where: 

 𝑌  is the dependent variable (failure 

count) 

 𝑋 is the matrix of explanatory variables 

(e.g., electricity consumption) 

 𝑊  is the spatial weight matrix 

representing spatial relationships among 

stations 

 𝜌  is the spatial autoregressive 

coefficient 

 𝜀 is the error term. 

The inclusion of the term WY allows the model 

to account for spatial spillover effects, where 

failures in one station may be influenced by 

conditions in nearby stations (Anselin, 1988; 

Elhorst, 2014). 

To complement the analysis and correct for 

potential spatial autocorrelation in the 

residuals, the Spatial Error Model (SEM) was 

also applied. The SEM is suitable when 

unobserved spatial effects influence the 

dependent variable indirectly through the error 

term (Elhorst, 2014). 

 

Generalized Additive Model   
In the final stage of the analysis, a Generalized 

Additive Model (GAM) was employed to 

capture potential non-linear relationships 

between the number of failures and electricity 

consumption. The model was fitted using a 

Poisson distribution with a log link function, 

suitable for count data. A smooth term was 

applied to the electricity consumption variable 

to allow for flexible, data-driven estimation of 

its effect, while the categorical effects of month 

and station id were included as parametric 

terms. This approach allowed the potential 

nonlinear influence of energy use on failure 

counts to be identified without imposing a strict 

functional form. General form of the GAM is 

expressed as follow : 

𝑔(𝐸[𝑌]) = 𝛽0 +∑𝑓𝑗(𝑋𝑗)

𝑝

𝑗=1

 

Where: 

 𝑌 is the response variable 

 𝐸[𝑌]  is the expected value of the 

response 

 𝑔(. ) is the link function  

 𝛽0is the intercept  

 𝑓𝑗(. )  is Smooth functions estimated 

from the data (e.g., splines), allowing for 

nonlinear relationships 

 𝑃 is the number of predictors  

One of the advantages of GAM is its ability to 

model complex, non-linear effects of 

predictors, such as electricity consumption, 

while also accounting for other factors like 

month and station id (Wood, 2017).  

  

A real word case study  
This section presents the case study used in the 

present research, focusing on a water 

transmission line located in Kerman Province, 

Iran. The transmission line includes four 

pumping stations situated in the southeastern 

region of the province, responsible for the 

transportation and pumping of water. 

A real-world dataset was collected, including 

the number of failures at each pumping station 

and the corresponding electricity consumption 

over a 12-month period. The geographic 

coordinates (longitude and latitude) of each 

station were used as spatial axes for 

geostatistical analysis. 

"The data collection period spans from March 

2024 to March 2025. All spatial and statistical 

analyses in this study were conducted using 

specialized R packages, including sf, ggplot2, 

sp, spdep, spatialreg and mgcv. 

 

Research findings 

Moran’s I statistic was initially employed to 

detect potential spatial autocorrelation in the 

distribution of failure counts and electricity 

usage across stations. The results of the Moran's 

I test for the failure count and electricity 

consumption have been presented in Table 1 

and Table 2, respectively. 
 

Table 1:  Moran's I statistic for failure count 

Moran I statistic standard deviate  =  5.3308 p-value = 0.7161 

Moran I statistic Expectation Variance 

-0.064384141 -0.021276596 0.005692039 
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The result of the Moran’s I test suggests that 

there is no significant spatial pattern or 

clustering in the failure count data, meaning 

that failures are randomly distributed across the 

stations and do not exhibit a clear spatial 

correlation. Since the p-value is greater than 

0.05, we fail to reject the null hypothesis, 

indicating that there is no significant spatial 

autocorrelation in the failure count data. In 

other words, the number of failures does not 

show any significant spatial clustering or 

pattern. 

 
Table 2:   Moran's I statistic for electricity consumption 

Moran I statistic standard deviate  =  -0.57137 p-value = 4.889e-08 

Moran I statistic Expectation Variance 

0.0005835877 -0.021276596 0.005835877 

 

Since the p-value is very small (much smaller 

than 0.05), we reject the null hypothesis and 

conclude that there is significant spatial 

autocorrelation in the electricity consumption 

data. This means that electricity consumption 

values exhibit a spatial pattern, suggesting that 

stations located closer to each other tend to have 

similar levels of electricity consumption. 

A cumulative plot for failure count and 

electricity consumption over time was 

generated to investigate the temporal trends of 

these variables. The plot, shown in Fig 1, 

displays the cumulative sum of failures and 

electricity consumption for each station, 

revealing underlying patterns and trends across 

the period.  

 

 
Fig 1:   Cumulative failure count and electricity consumption over time 

 

The cumulative plot in Fig 1 shows the 

temporal trends of failure count and electricity 

consumption over the period of one year. The 

horizontal axis represents the months of the 

year, while the vertical axis shows the 

cumulative failures. The horizontal line, located 

at the bottom of the plot, represents the failure 

count. This line remains relatively constant, 

showing that failures occur at specific times 

throughout the year but do not exhibit a rapid 

increase or decrease over time. The blue 

stepped line represents electricity consumption. 

This line increases progressively, showing the 

cumulative electricity consumption over the 

months. The stepped nature of the line indicates 

that electricity consumption increases in 

increments, reflecting usage over time. 

 K-means clustering was applied to partition the 

pumping stations into distinct groups based on 

their electricity consumption and failure counts. 

This technique helps to categorize stations that 

exhibit similar characteristics in terms of 

energy usage and failure frequency, enabling a 

better understanding of operational patterns and 

performance. The result has been shown in Fig 

2.  
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Fig 2:  Clustering of stations based on electricity consumption and failure count 

 

The clustering clearly shows that the stations 

with similar characteristics, in terms of failure 

count and electricity consumption, are grouped 

together. The points within each cluster are 

close to one another, indicating that these 

stations have similar patterns of performance 

and energy usage. 

 The blue cluster might represent stations 

with high failure counts and relatively 

higher electricity consumption. 

 The green cluster could indicate stations 

with moderate failure counts and moderate 

energy consumption 

 The red cluster may correspond to stations 

with low failure counts and lower 

electricity consumption 

To investigate the relationship between 

electricity consumption and failure count at the 

four pumping stations, a simple linear 

regression model was applied, and the results 

are presented in Table 3. 

 
Table 3:  Simple linear regression analysis 

Pr(>|t|) t value Std. Error Estimate  

0.0118 2.624 6.380e+00 1.674e+01 (Intercept)               

0.1892 -1.333 1.978e-06 -2.637e-06 electricity_consumption 

0.9957 -0.005 8.549e-01 -4.609e-03 station_id               

0.004668 Adjusted R-squared 0.04702 Multiple R-squared 

 

As observed from the results of the model, the 

p-value for electricity consumption is greater 

than 0.05, indicating that the model is not 

statistically significant. Therefore, changes in 

electricity consumption does not have a 

significant impact on the number of failures. 

Although the model does not show a significant 

impact of energy consumption on failure count, 

it is important to consider other factors or use 

more advanced models to capture potential 

effects. 

Also, for the stations, the p-value is greater than 

0.05, indicating that the number of failures is 

not significantly different between the stations 

according to the model. In other words, the 

model does not distinguish significant 

variations in failure counts based on the station 

id. 

The values of Multiple R-squared and Adjusted 

R-squared indicate that the model does not 

effectively captures the variations in the 

number of failures. These values suggest that 

the model does not explains a significant 

portion of the variability in failure counts, 

reflecting its adequacy in modeling the 

underlying patterns. The intuitive interpretation 

of the linear regression model is presented in 

Fig 3. 
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Fig3:   Spatial relationship between electricity consumption and failure count 

 

Although the values Multiple R-squared and 

Adjusted R-squared do not confirm the 

goodness of fit of the model, the Figure1 

suggests that there is an inverse relationship 

between electricity consumption and the 

number of failures. Generally, with an increase 

in electricity consumption, the number of 

failures decreases. This downward trend is 

more pronounced at stations 1, 2, and 3, while 

it is less evident at station 4. In other words, the 

reduction in failure count with increasing 

electricity consumption is stronger at stations 1 

to 3, while this relationship is less clear at 

station 4. This could indicate differences in 

performance or specific characteristics of the 

stations that should be considered in further 

analysis. 

Due to the inadequacy of the linear regression 

model in explaining the variations in failure 

count with respect to electricity consumption, 

spatial regression has been applied to further 

investigate the relationship, and the results are 

presented in Table 4:  

 

Table 4:  Spatial Lag model analysis 

 Estimate Std. Error z value Pr(>|z|) 

(Intercept) 2.1540e+01 4.6631e+00 4.6192 3.852e-06 

electricity consumption -3.7555e-07 1.6707e-06 -0.2248 0.8221431 

factor(month)2 -1.0480e+01 3.0181e+00 -3.4723 0.0005161 

factor(month)3 -1.2836e+01 3.0121e+00 -4.2616 2.030e-05 

factor(month)4 -1.5619e+01 3.0559e+00 -5.1109 3.206e-07 

factor(month)5 -1.0977e+01 3.0296e+00 -3.6232 0.0002910 

factor(month)6 -6.4960e+00 3.0163e+00 -2.1536 0.0312713 

factor(month)7 -8.4140e+00 3.0885e+00 -2.7243 0.0064437 

factor(month)8 -1.4270e+01 3.3094e+00 -4.3121 1.617e-05 

factor(month)9 -1.1240e+01 3.3698e+00 -3.3355 0.0008515 

factor(month)10 -1.3003e+01 3.3445e+00 -3.8878 0.0001012 

factor(month)11 -1.3836e+01 3.1951e+00 -4.3303 1.489e-05 

factor(month)12 -1.4158e+01 3.0951e+00 -4.5744 4.776e-06 

Rho 0.0308 LR test value 0.03283  

z-value 0.13011 p-value 0.89648  

 

The results of fitting the Spatial Lag Model 

(SAR) to the data indicate that the spatial lag 

parameter (ρ = 0.0308, p = 0.896) is not 

statistically significant. This suggests that 

incorporating spatial dependence does not 

substantially improve the model's explanatory 

power. Furthermore, electricity consumption 

(p-value= 0.822) does not have a statistically 

significant effect on failure counts, confirming 

that changes in energy consumption are not a 

significant driver of failure events in this 

context. 

To evaluate the adequacy of the model, a scatter 

plot of residuals versus fitted values has been 

used, and the results are presented in Fig 4. 
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Fig 4:  Residuals versus Fitted values  

 

As visually observed in Fig 4, the residuals 

appear randomly scattered around the fitted 

values without forming an S-shaped pattern 

along the diagonal, indicating that the spatial 

lag model is appropriately fitted to the data." 

Despite the adequate fit of the spatial regression 

model, it failed to reveal a significant 

relationship between electricity consumption 

and the number of failures across pumping 

stations.  Therefore, to investigate the effect of 

electricity consumption on the number of 

failures, a generalized additive model (GAM) 

has been applied, and the results are presented 

in Table 5. 

 
Table 5:  Generalized additive model 

 Estimate Std. Error z value Pr(>|z|) 

(Intercept) 2.949449 0.153235 19.248 < 2e-16 

factor(month)2 -0.599345 0.211560 -2.833 0.004612 

factor(month)3 -0.876623 0.208450 -4.205 2.61e-05 

factor(month)4 -0.440336 0.327143 -1.346 0.178302 

factor(month)5 0.000000 0.000000 NaN NaN 

factor(month)6 0.164635 0.269455 0.611 0.541204 

factor(month)7 0.719540 0.263956 2.726 0.006411 

factor(month)8 0.000000 0.000000 NaN NaN 

factor(month)9 0.301532 0.264218 1.141 0.253777 

factor(month)10 0.000000 0.000000 NaN NaN 

factor(month)11 -0.002296 0.298742 -0.008 0.993867 

factor(month)12 0.156700 0.292498 0.536 0.592146 

factor(station_id)2 -0.627595 0.274741 -2.284 0.022353 

factor(station_id)3 -1.143090 0.278886 -4.099 4.15e-05 

factor(station_id)4 -1.021784 0.281624 -3.628 0.000285 

Electricity consumption 
edf Ref . df Chi . sq p-value 

6.756 7.694 24.8 0.00148 

 

To better capture the potential nonlinear 

relationship between electricity consumption 

and the number of failures, a Generalized 

Additive Model (GAM) with a Poisson 

distribution and a log link function has been 

applied. In this model, a smooth term was used 

for electricity consumption, while month and 

station id were included as categorical 

covariates. 

According to the results, the smooth term 

(electricity consumption) was found to be 

statistically significant (p-value = 0.00148), 

indicating that a nonlinear relationship between 

electricity consumption and failure count is 

present. This suggests that a linear model would 

not have been sufficient to capture this pattern 

accurately. 

Additionally, several levels of the month and 

station id variables were shown to have 

significant effects, indicating their influence on 

failure count. Approximately 67% of the 

deviance was explained, and the adjusted R-

squared was reported as 0.469, suggesting that 
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the model was reasonably well-fitted to the 

data. 

These results imply that nonlinear effects and 

spatial-temporal variation should be accounted 

for when modeling failure counts in pump 

stations. 

The non-linear relationship between electricity 

consumption and failure count has been 

depicted in Fig 5 based on the smooth term of 

the GAM:  

Fig 5:  Smooth plot of the GAM 

 

In Fig 5, the smooth term corresponding to 

electricity consumption has been plotted. The 

x-axis represents electricity consumption 

levels, while the y-axis displays the estimated 

partial effect on failure count. The figure clearly 

reveals a sinusoidal pattern in the relationship 

between electricity consumption and failure 

count. 

 

Results 

In conclusion, this research successfully 

integrates spatial modeling techniques and 

nonlinear method to analyze the performance of 

pumping stations in a water transmission 

infrastructure. The study underscores the 

importance of considering spatial and temporal 

factors in infrastructure management to 

enhance operational reliability and optimize 

resource allocation. By combining advanced 

analytical techniques, the study offers a robust 

framework for improving the management of 

pumping stations. Further research is needed to 

refine predictive models and explore the 

underlying causes of station-specific variations 

in performance, particularly at stations where 

performance patterns do not align with general 

trends. 

In summary, this research offers a 

comprehensive approach to infrastructure 

management by integrating spatial statistics and 

predictive modeling techniques. The findings 

contribute to a deeper understanding of the 

factors influencing the performance of pumping 

stations, with the potential to guide future 

improvements in the management of water 

transmission systems and beyond. 

Lastly, the application of this framework to 

other types of infrastructure systems beyond 

water transmission, such as wastewater 

treatment plants or energy distribution 

networks, could further validate its versatility 

and impact. By expanding the scope of analysis 

to include various systems, researchers and 

practitioners alike can leverage these advanced 

analytical techniques to enhance decision-

making, optimize system operations, and 

ensure long-term sustainability. 

Future research should aim to uncover these 

local factors more comprehensively. 

Additionally, refining the predictive models 

through machine learning techniques could 

provide more accurate forecasts and improve 

the overall predictive power of the framework

. 
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