ارزیابی سطح بیان MiR-191 در سلولهای خون محیطی زنان مبتلا به سرطان پستان در مقایسه با زنان سالم
محورهای موضوعی : فصلنامه زیست شناسی جانوریآرزو شاهی 1 , نغمه بهرامی 2 , رباب رفیعی طباطبایی 3 , عبدالرضا محمد نیا 4 *
1 - گروه زیست شناسی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران
2 - گروه مهندسی بافت و علوم سلولی کاربردی،دانشکده فن آوریهای نوین پزشکی ،دانشگاه علوم پزشکی تهران، تهران، ایران|مرکز تحقیقات جراحی های فک و صورت،بیمارستان شریعتی،دانشگاه علوم پزشکی تهران، تهران، ایران
3 - گروه زیست شناسی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران
4 - مرکز تحقیقات بیماریهای مزمن تنفسی، پژوهشکده سل و بیماریهای ریوی، مرکز آموزشی، پژوهشی و درمانی سل و بیماریهای ریوی بیمارستان دکتر مسیح دانشوری ، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران
کلید واژه: سرطان پستان, نشانگر زیستی, 191-.miR,
چکیده مقاله :
سرطان پستان شایعترین سرطان در زنان است. میکروRNAها به عنوان نشانگر زیستی برای تشخیص و درمان سرطان پستان ظاهر شدهاند. هدف از مطالعه حاضر بررسی 191 miR- در خون محیطی بیماران مبتلا به سرطان پستان بود. تعداد 80 نمونه خون محیطی (40 نمونه خون بیمار مبتلا به سرطان پستان و 40 نمونه خون سالم) جمعآوری شد. بلافاصله استخراج RNA و سنتز cDNA انجام شد و واکنش زنجیرهای پلیمراز (Realtime RT-PCR) انجام شد. طراحی پرایمر اختصاصی با استفاده از نرم افزار AlleleID6 پرایمرهای اختصاصی طراحی و جهت ساخت به شرکت سازنده سفارش داده شد. داده ها با استفاده از آزمون تی- تست زوجی تجزیه و تحلیل شدند. دادههای بهدست آمده از مطالعه حاضر نشان داد که میزان 191-miR در خون محیطی بیماران مبتلا به سرطان پستان در مقایسه با افراد سالم به صورت معناداری بالاتر بود. بررسی سطح بیان نسبی ژن 191- miRدر سلولهای خون محیطی افراد میتواند به عنوان یک بیومارکر جهت شناسایی سرطان پستان در زنان مورد استفاده قرار گیرد.
Breast cancer is the most common cancer in women. Micro RNAs have emerged as a biomarker for the diagnosis and treatment of breast cancer. This study aimed to evaluate miR-191 in the peripheral blood of patients with breast cancer. 80 peripheral blood samples (40 patients with breast cancer and 40 healthy individuals) were collected. Immediately, RNA extraction and cDNA synthesis were performed, and polymerase chain reaction (Real-time RT-PCR) was performed. Dedicated primer design: Dedicated primers were designed and manufactured by the manufacturer using AlleleID6 software. The data were analyzed using paired t-test. The data obtained from the present study showed that the blood level of miR-191 was significantly higher in the patients with breast cancer compared to the healthy individuals. The evaluation of the relative expression level of the Mir-191 gene in patients' peripheral blood cells can be used as a biomarker to detect breast cancer in women.
1. Billing A.M., Hamidane H.B., Dib S.S., Cotton R.J., Bhagwat A.M., Kumar P., Hayat S., Yousri N.A., Goswami N., Suhre K., Rafii A., 2016. Comprehensive transcriptomic and proteomic characterization of human mesenchymal stem cells reveals source specific cellular markers. Scientific Reports, 6(1): 1-15.
2- Chen Q., Shou P., Zheng C., Jiang M., Cao G., Yang Q., Cao J., Xie N., Velletri T., Zhang X., Xu C. 2016. Fate decision of mesenchymal stem cells: adipocytes or osteoblasts?. Cell Death and Differentiation, 23(7): 1128-1139.
3- Cho P.S., Messina D.J., Hirsh E.L., Chi N., Goldman S.N., Lo D.P., Harris I.R., Popma S.H., Sachs D.H., Huang C.A., 2008. Immunogenicity of umbilical cord tissue–derived cells. Blood. The Journal of the American Society of Hematology, 111(1): 430-438.
4- Choudhery M.S., Khan M., Mahmood R., Mehmood A., Khan S.N., Riazuddin S. 2012. Bone marrow derived mesenchymal stem cells from aged mice have reduced wound healing, angiogenesis, proliferation and anti‐apoptosis capabilities. Cell Biology International, 36(8): 747-753.
5- Ciciarello M., Corradi G., Loscocco F., Visani G., Monaco F., Curti A., Cavo M. Isidori A. 2019. The yin and yang of the bone marrow microenvironment: pros and cons of mesenchymal stromal cells in acute myeloid leukemia. Frontiers in Oncology, 9: 1135.
6- Ding D.C., Chang Y.H., Shyu W.C., Lin S.Z. 2015. Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy. Cell Transplantation, 24(3): 339-347.
7- Ding D.C., Chang Y.H., Shyu W.C., Lin S.Z. 2015. Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy. Cell Transplantation, 24(3): 339-347.
8- Fulle S., Centurione L., Mancinelli R., Sancilio S., Manzoli A.F., Di Pietro R. 2012. Stem cell ageing and apoptosis. Current Pharmaceutical Design, 18(13): 1694-1717.
9- Gao F., Chiu S.M., Motan D.A.L., Zhang Z., Chen L., Ji H.L., Tse H.F., Fu Q.L., Lian Q. 2016. Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death and Disease, 7(1): e2062-e2062.
10- Haybar H., Maleki Behzad M., Shahrabi S., Ansari N., Saki N. 2020. Expression of Blood Cells Associated CD Markers and Cardiovascular Diseases: Clinical Applications in Prognosis. Laboratory Medicine, 51(2): 122-142.
11- Huang Z., Nelson E.R., Smith R.L., Goodman S.B. 2007. The sequential expression profiles of growth factors from osteroprogenitors to osteoblasts in vitro. Tissue Engineering, 13(9): 2311-2320.
12-Haybar H., Maleki Behzad M., Shahrabi S., Ansari N., Saki N. 2020. Expression of Blood Cells Associated CD Markers and Cardiovascular Diseases: Clinical Applications in Prognosis. Laboratory Medicine, 51(2): 122-142.
13- Kargozar S., Mozafari M., Hashemian S.J., Brouki Milan P., Hamzehlou S., Soleimani M., Joghataei M.T., Gholipourmalekabadi M., Korourian A., Mousavizadeh K., Seifalian A.M. 2018. Osteogenic potential of stem cells‐seeded bioactive nanocomposite scaffolds: A comparative study between human mesenchymal stem cells derived from bone, umbilical cord Wharton's jelly, and adipose tissue. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 106(1): 61-72.
14- Khosravi M., Azarpira N., Shamdani S., Hojjat-Assari S., Naserian S., Karimi M.H. 2018. Differentiation of umbilical cord derived mesenchymal stem cells to hepatocyte cells by transfection of miR-106a, miR-574-3p, and miR-451. Gene, 667: 1-9.
15- Kobolak J., Dinnyes A., Memic A., Khademhosseini A., Mobasheri A. 2016. Mesenchymal stem cells: Identification, phenotypic characterization, biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche. Methods, 99: 62-68.
16- Krause U., Seckinger A., Gregory C.A. 2011. Assays of osteogenic differentiation by cultured human mesenchymal stem cells. In Mesenchymal Stem Cell Assays and Applications. Humana Press, pp. 215-230.
17- Le Blanc K., Davies L.C., 2015. Mesenchymal stromal cells and the innate immune response. Immunology Letters, 168(2): 140-146.
18- Li F., Cao J., Zhao Z., Li C., Qi F., Liu T. 2017. Mesenchymal Stem Cells Suppress Chronic Rejection in Heterotopic Small Intestine Transplant Rat Models Via Inhibition of CD68, Transforming Growth Factor-β1, and Platelet-Derived Growth Factor Expression. Experimental and Clinical Transplantation: Official Journal of the Middle East Society for Organ Transplantation, 15(2): 213-221.
19- Liu H., Li R., Liu T., Yang L., Yin G., Xie Q. 2020. Immunomodulatory Effects of Mesenchymal Stem Cells and Mesenchymal Stem Cell-Derived Extracellular Vesicles in Rheumatoid Arthritis. Frontiers in Immunology, 11:1912.
20- Li T., Xia M., Gao Y., Chen Y., Xu Y. 2015. Human umbilical cord mesenchymal stem cells: an overview of their potential in cell-based therapy. Expert Opinion on Biological Therapy, 15(9): 1293-1306.
21- Nadig R.R. 2009. Stem cell therapy–Hype or hope? A review. Journal of Conservative Dentistry, 12(4): 131-138.
22- Nagamura-Inoue T., He H. 2014. Umbilical cord-derived mesenchymal stem cells: their advantages and potential clinical utility. World Journal of Stem Cells, 6(2): 195-202.
23- Pires A.O., Mendes-Pinheiro B., Teixeira F.G., Anjo S.I., Ribeiro-Samy S., Gomes E.D., Serra S.C., Silva N.A., Manadas B., Sousa N., Salgado A.J. 2016. Unveiling the differences of scretome of human bone marrow mesenchymal stem cells, adipose tissue-derived stem cells, and human umbilical cord perivascular cells: a proteomic analysis. Stem cells and development, 25(14): 1073-1083.
24- Rohban R., Pieber T.R., 2017. Mesenchymal stem and progenitor cells in regeneration: tissue specificity and regenerative potential. Stem Cells International, ID 5173732.
25- Sierra-Sanchez A., Ordonez-Luque A., Ibanez O.E., Ruiz-Garcia A., Santiago S.A. 2018. Epithelial in vitro differentiation of mesenchymal stem cells. Current Stem Cell Research and Therapy, 13(6): 409-422.
26- Stoltz J.F., de Isla N., Li Y.P., Bensoussan D., Zhang L., Huselstein C., Chen Y., Decot V., Magdalou J., Li N., Reppel L. 2015. Stem cells and regenerative medicine: myth or reality of the 21th century. Stem Cells International, ID: 734731.
27- Vladimirovna I.L., Sosunova E., Nikolaev A., Nenasheva T. 2016. Mesenchymal stem cells and myeloid derived suppressor cells: common traits in immune regulation. Journal of Immunology Research, ID: 7121580.
28- Yousefi A.M., James P.F., Akbarzadeh R., Subramanian A., Flavin C., Oudadesse H. 2016. Prospect of stem cells in bone tissue engineering: a review. Stem Cells International, ID: 6180487.
29- Zajdel A., Kałucka M., Kokoszka-Mikołaj E., Wilczok A. 2017. Osteogenic differentiation of human mesenchymal stem cells from adipose tissue and Wharton’s jelly of the umbilical cord. Acta Biochimica Polonica, 64(2): 365-369.
_||_