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Abstract 

This article presents an optimal shape design methodology for heat conduction and convection problems. In this 

study, the shape of the conductive and convective medium is parameterized by means of non-uniform rational B-

spline (NURBS) surfaces, and their control points represent the design variables. The conductive and convective 

domain is discretized by choosing the parameters of NURBS surfaces as generalized curvilinear coordinates, and 

the heat conduction and convection equation is solved using the finite difference method. The simplified 

conjugate-gradient method (SCGM) is used as the optimization method to obtain the optimal shape and adjust 

the design variables intelligently. By optimizing the profile of a straight fin with the objective of enhancing heat 

transfer rate and reducing the fin mass the methodology is demonstrated for conduction problems and by 

optimizing the shape profile of a natural convective cavity with the objective of reducing the maximum wall 

temperature the methodology is shown for convection problems. 
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1. Introduction 

Optimal shape design for heat transfer problems is of great importance, since using an optimal design reduces the 

consumption of energy, matter and time. The aim of optimal shape design for a heat transfer system is to improve the 

performance of the system or to meet some specific heat transfer requirements such as specified heat flux or 

temperature distribution. 

Extensive work has been done in shape design problems, such as fin profile optimization [1-3], shape design for 

heat conduction problems [4,5], shape design of a cylinder with heat transfer [6], shape design of millimeter-scale air 

channels [7], geometric optimization of radiative enclosures [8], shape optimization of convective periodic channels [9], 

shape optimization of a heat exchanger [10] and optimization of steady fluid-thermal systems [11] and design 

optimization of an air-filled cavity [12]. 

In general, optimal shape design problems require a great amount of computation time and memory space. This 

paper is aimed at describing a robust and efficient method for shape optimization of heat conduction problems by 

reducing the computation time and improving the accuracy and the quality of the optimal design. 

In the discussion that follows, a parametric representation of the conductive (convective) domain geometry is 

presented. The computational methods for solving the heat conduction equation and the conservation equations are then 

discussed. Subsequently, the simplified conjugate-gradient method (SCGM) is described as the optimization method. 

Finally the methodology is demonstrated by optimizing the profile of a straight fin with the objective of enhancing heat 

transfer rate and reducing the fin mass and also by optimizing the shape profile of a natural convective cavity with the 

objective of reducing the maximum wall temperature 

 

2. Parametric representation of the conductive (convective) domain geometry 

The first step in optimal shape design for heat conduction (convection) problems is to specify the conductive 

(convective) domain geometry. The shape profile of the conductive (convective) medium could be either represented 

parametrically or built by using a point-by-point approach [4,5]. Parametric representation of the shape profile reduces 

the overall number of design variables and consequently the computation time. However, the point-by-point approach 

gives a wider range of shape alternatives. 

In the present study, the shape of the conductive (convective) medium is parameterized by means of non-uniform 

rational B-spline (NURBS) surfaces, and their control points represent the design variables. These parametric surfaces 

allow free-form representation with total geometry control over the surface. The number of control points, and hence 

the number of degrees of freedom  (DOFs)  of  the shape  profile could be increased, if a  
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Fig. 1  Transformation of the physical domain (a) into the computational domain (b).

 

finer description of the shape and more flexibility in shape design are required. 

A non-uniform rational B-spline (NURBS) surface is defined as 

𝐒(𝜉, 𝜂) =
∑ ∑ 𝑁𝑖,𝑝(𝜉)𝑁𝑗,𝑞(𝜂)𝑤𝑖,𝑗𝐏𝑖,𝑗

𝑚
𝑗=0

𝑛
𝑖=0

∑ ∑ 𝑁𝑖,𝑝(𝜉)𝑁𝑗,𝑞(𝜂)
𝑚
𝑗=0

𝑛
𝑖=0

          0 ≤ 𝜉, 𝜂 ≤ 1 (1) 

where the 𝐏𝑖,𝑗 are the control points that form a bidirectional control net. The 𝑛 and 𝑚 are the number of control 

points in the 𝜉 and 𝜂 directions, respectively. The 𝑤𝑖,𝑗 are the weights. The 𝑁𝑖,𝑝(𝜉) and 𝑁𝑗,𝑞(𝜂) are the non-rational 

B-spline basis functions of degree 𝑝 and degree 𝑞, respectively, defined on the non-decreasing knot vectors 

𝛯 = {0,… , 0⏟  
𝑝+1

, 𝜉𝑝+1, … , 𝜉𝑟−𝑝−1, 1, … , 1⏟  
𝑝+1

} (2) 

𝛨 = {0,… , 0⏟  
𝑞+1

, 𝜂𝑞+1, … , 𝜂𝑠−𝑞−1, 1, … , 1⏟  
𝑞+1

} (3) 

where 𝑟 = 𝑛 + 𝑝 + 1 and 𝑠 = 𝑚 + 𝑞 + 1.  

The 𝑖-th B-spline basis function of degree 𝑝, denoted by 𝑁𝑖,𝑝(𝜉), is defined recursively by the Cox-De Boor 

formula as 

𝑁𝑖,0(𝜉) = {
1          if 𝜉𝑖 ≤ 𝜉 < 𝜉𝑖+1
0          otherwise          

                                            

𝑁𝑖,𝑝(𝜉) =
𝜉 − 𝜉𝑖
𝜉𝑖+𝑝 − 𝜉𝑖

𝑁𝑖,𝑝−1(𝜉) +
𝜉𝑖+𝑝+1 − 𝜉

𝜉𝑖+𝑝+1 − 𝜉𝑖+1
𝑁𝑖+1,𝑝−1(𝜉) 

(4) 

The shape of NURBS surfaces could be locally changed by moving the control points or modifying the weights. These 

surfaces have several unique properties that are effective and well suited for shape optimization. The surface 

interpolates the four corner control points, i.e. 𝐒(0, 0) = 𝐏0,0, 𝐒(1, 0) = 𝐏𝑛,0, 𝐒(0, 1) = 𝐏0,𝑚, and 𝐒(1, 1) = 𝐏𝑛,𝑚. 

Furthermore, the control points approximate the surface and the surface is contained in the convex hull of its control 

points. This property is very useful, especially in defining the geometric constraints. An example of a NURBS surface 

with its defining control points is depicted in Fig. 1. A complete description of NURBS surfaces can be found in [13]. 

 

3. Solution of the heat conduction equation 

The second step in optimal shape design for heat conduction problems is to solve the heat conduction equation in the 

specified geometry. To this end, the conductive domain should be discretized first. Several methods are available for 

discretization and grid generation [14]. However, as in this study the conductive domain geometry is represented 

parametrically, through NURBS surfaces, it can be discretized by choosing the parameters of NURBS surfaces as 

generalized curvilinear coordinates. This method reduces the CPU time needed for grid generation significantly. 

Although this method is computationally efficient, the resulting grid could be highly skewed and non-uniform. When 

the grid becomes too distorted and the degree of non-uniformity becomes sever, the grid should be refined in order to 
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simulate heat transfer accurately. The use of generalized curvilinear coordinates transforms an irregular region in the 

physical domain into a rectangular region in the computational domain (Fig. 1). 

In generalized coordinates, the steady-state heat conduction equation in a two-dimensional, homogeneous, isotropic 

conducting medium can be expressed as [15] 

(  𝜂  −   𝜂  )   𝜉 + (−  𝜉  +   𝜉  )   𝜂

=  ,−*(     ) + 𝜉 − *(     ) + (𝜂 ) + *(   ) + 𝜉𝜉

+ *(   ) + 𝜉𝜂 + *(   ) + 𝜂𝜂 - +   (  𝜂   𝜉 −   𝜉   𝜂 ) 

(5) 

where  

−*(     )𝜓+ 𝜉 − *(     )𝜓+ 𝜂 + *(   )𝜓+ 𝜉𝜉 + *(   )𝜓+ 𝜉𝜂
+ *(   )𝜓+ 𝜂𝜂 = −(  𝜉   𝜂 −   𝜂   𝜉 )  

(6) 

(  𝜂  −   𝜂  )   𝜉 + (−  𝜉  +   𝜉  )   𝜂
= 𝛼,−*(     ) + 𝜉 − *(     ) + (𝜂 ) + *(   ) + 𝜉𝜉
+ *(   ) + 𝜉𝜂 + *(   ) + 𝜂𝜂 - 

(7) 

where  

 =
− 𝜂𝜓𝜉 +  𝜉𝜓𝜂

 𝜉 𝜂 −  𝜂 𝜉
, 

 =
− 𝜂𝜓𝜉 −  𝜉𝜓𝜂

 𝜉 𝜂 −  𝜂 𝜉
, 

GTT ≡
 𝜂
2 +  𝜂

2

 𝜉 𝜂 −  𝜂 𝜉
, 

GWT ≡ −
2( 𝜉 𝜂 −  𝜉 𝜂)

 𝜉 𝜂 −  𝜂 𝜉
, 

GWW ≡
 𝜉
2 +  𝜉

2

 𝜉 𝜂 −  𝜂 𝜉
, 

DELZI ≡
GTT( 𝜂 𝜉𝜉 −  𝜂 𝜉𝜉)

 𝜉 𝜂 −  𝜂 𝜉
+
GWT( 𝜂 𝜉𝜂 −  𝜂 𝜉𝜂)

 𝜉 𝜂 −  𝜂 𝜉
+
GWW( 𝜂 𝜂𝜂 −  𝜂 𝜂𝜂)

 𝜉 𝜂 −  𝜂 𝜉
, 

DELET ≡
GTT( 𝜉 𝜉𝜉 −  𝜉 𝜉𝜉)

 𝜉 𝜂 −  𝜂 𝜉
+
GWT( 𝜉 𝜉𝜂 −  𝜉 𝜉𝜂)

 𝜉 𝜂 −  𝜂 𝜉

+
GWW( 𝜉 𝜂𝜂 −  𝜉 𝜂𝜂)

 𝜉 𝜂 −  𝜂 𝜉
 

(8) 

 

The subscripts 𝜉 and 𝜂 represent partial derivatives with respect to 𝜉 and 𝜂, respectively. 

In the present study, the conservation equations with the imposed boundary conditions are discretized and solved 

iteratively using the finite difference method. 

 

4. Optimization method 

The last step in optimal shape design for heat conduction (convection) problems is to use an optimization method to 

adjust the design variables intelligently. The two most commonly used optimization methods for shape design problems 

are the genetic algorithms and the gradient-based optimization algorithms. The genetic algorithms are robust, and can be 

used for multi- objective problems. However, the main drawback to them is the reduced convergence rate. The gradient-

based optimization algorithms are computationally efficient. But, the drawback of these methods is their tendency to get 

trapped in local optima. To remedy this problem, multiple optimizations should be performed, each starting from 

different values of design variables. 

In this study, the simplified conjugate gradient method (SCGM), proposed by Cheng and Chang [16], is used as the 

optimization method. The SCGM is capable of dealing with various forms of the objective functions, and thus it is a 

well suited method for shape optimization. The iterative procedure of SCGM for finding the optimum design variables 

�⃗�  and hence the optimal shape can be stated as follows: 

 

(1) Define an objective function 𝑓(�⃗� ) that the minimum point of it corresponds with the optimal shape. 

(2) Make an initial guess for �⃗�  (as initial point). Set iteration number as 𝑖 = 1. 

(3) Solve the heat conduction equation and find the objective function 𝑓(�⃗� ) associated with the latest values of 

design variables. 



Optimal shape design for heat conduction and convection problems using NURBS 
 

Fakhrabadi and Kowsary 

 

52 

 

(4) Compute the gradient of the objective function, ∇⃗⃗ 𝑓𝑖, at the point �⃗� 𝑖, by means of the direct numerical 

sensitivity analysis [16]. 

(5) Compute the conjugate gradient coefficients  𝑖, and the search directions 𝑆 𝑖 as 

 𝑖 =
∇⃗⃗ 𝑓𝑖

𝑇 ∇⃗⃗ 𝑓𝑖

∇⃗⃗ 𝑓𝑖−1
𝑇  ∇⃗⃗ 𝑓𝑖−1

 (9) 

𝑆 𝑖 = − ∇⃗⃗ 𝑓𝑖 +  𝑖𝑆 𝑖−1 
(10) 

(6) Assign an appropriate fixed value to the step sizes 𝜆𝑖
∗, and update the design variables as 

�⃗� 𝑖+1 = �⃗� 𝑖 + 𝜆𝑖
∗𝑆 𝑖  

(11) 

(7) Test the new point �⃗� 𝑖+1 for optimality. If �⃗� 𝑖+1 is optimal, terminate the iteration process. Otherwise, set the new 

iteration number 𝑖 = 𝑖 + 1, and go to step (3). 

 

5. Implementation for heat conduction problems 

To demonstrate the performance of the methodology presented in this paper, the profile of a straight fin is optimized 

with the objective of enhancing heat transfer rate and reducing the fin mass. The fin geometry is shown in Fig. 2. For 

simplicity, the shape profile of the fin is presented parametrically, through a B-spline surface of degree three in the 𝜉 
direction and degree two in the 𝜂 direction. B-spline surfaces  

 
Fig. 2  Shape profile of the fin

 

are a special subclass of NURBS surfaces with 𝑤𝑖,𝑗 = 1 and the uniform knots distribution.  The ambient 

temperature and the temperature of the base are set equal to 20°C and 70°C, respectively. The convective coefficient 

of the ambient ℎ and the thermal conductivity of the fin 𝑘 have been assumed constant and equal to 30 W/m
2
 · K and 

100 W/m K, respectively. 

As shown in Fig. 2, the coordinates of selected control points represent the design variables �⃗� . The following 

constraints have been imposed on the design variables �⃗�  to restrict the fin dimensions and to prevent the grid from 

becoming too distorted and non-uniform. 

0.001 ≤ 𝜙1 ≤ 0.019, 
0.001 ≤ 𝜙2 ≤ 0.01,   
0.0001 ≤ 𝜙3 ≤ 0.01 

(12) 

Now, in order to find vector of unknowns �⃗� , an objective function 𝑓(�⃗� ) is defined as 

𝑓(�⃗� ) =
1

𝐶𝑄 +
1
𝑀

 (13) 

where 𝑄 is the fin heat transfer rate and 𝑀 is the fin mass. 𝐶 is a constant that its value depends on the requirement 

of the design purpose. The minimum point of function 𝑓 corresponds to the solution �⃗�  of the problem. As explained 

previously, the computational method of the minimization procedure consists of two main modules; the direct 

problem solver and the search modules. 

The  temperature  distribution  in  the  optimal  fin  profile  is shown  in  Fig.  3.  Considering   both   the   accuracy   

and   the computational cost, the calculations were performed on a 40×40 grid system. Finer grids have been tested 

without finding any significant changes in the results.  
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 Fig. 3  Temperature distribution in the optimal fin profile (𝐶=1000)

 

 

 
Fig. 4  Dependence of optimal shape on the value of 𝐶

 

 
Fig. 5  Reduction history of the objective function per each cycle of the SCGM

 

 

A personal computer with a Pentium IV 3.2GHz processor has been used to perform the calculations. The CPU time 

required for the shape optimization problem is approximately 10-12 minutes. Fig. 4 shows the dependence of 

optimal shape on the value of 𝐶. The reduction history of the objective function 𝑓 is shown in Fig. 5. The 

convergence criterion is set at ‖∇𝑓‖ ≤ 10−10. 
 

6. Implementation for heat convection problems 

To demonstrate the performance of the methodology presented in this paper, the shape profile of a natural convective 

cavity is optimized with the objective of reducing the maximum wall temperature. The cavity geometry is shown in 

Fig. 6. For simplicity, the shape profile of the cavity is presented parametrically, through a B-spline surface of 



Optimal shape design for heat conduction and convection problems using NURBS 
 

Fakhrabadi and Kowsary 

 

54 

 

degree four in the 𝜉 direction and degree two in the 𝜂 direction. B-spline surfaces are a special subclass of NURBS 

surfaces with 𝑤𝑖,𝑗 = 1 and the uniform knots distribution. The cavity is filled with air and the top and bottom walls 

are insulated. The left vertical wall is subjected to a uniform heat flux of 200 W/m
2
; while on the right vertical wall 

convection heat transfer takes place with the ambient. The ambient temperature and the convective coefficient of the 

ambient have been assumed constant and equal to 300 K and 20 W/m
2
 · K, respectively.  

As shown in Fig. 6, the coordinates of selected control points represent the design variables �⃗� . The following 

constraints have been imposed on the design variables �⃗�  to restrict the cavity dimensions and to prevent the grid 

from becoming too distorted and non-uniform. 

0.001 ≤ 𝜙1 ≤ 0.5𝜙3 − 0.001, 

0.0 ≤ 𝜙2 ≤ 0.02 

0.01 ≤ 𝜙3 ≤ 0.02 

(14) 

Now, in order to find vector of unknowns �⃗� , an objective function 𝑓(�⃗� ) is defined as 

𝑓(�⃗� ) =  𝑚𝑎𝑥 + 𝐶𝐴  (15) 

where  𝑚𝑎𝑥 is the maximum wall temperature and 𝐴 is the area of the cavity. 𝐶 is a constant that its value depends 

on the requirement of the design purpose. The minimum point of function 𝑓 corresponds to the solution �⃗�  of the 

problem. As explained previously, the computational method of the minimization procedure consists of two main 

modules; the direct problem solver and the search modules.  

The streamlines and isotherms of the optimal cavity profile are shown in Figs. 7 and 8, respectively. Considering 

both the accuracy and the computational cost, the calculations were performed on an 80×80 grid system. Finer grids 

have been tested without finding any significant changes in the results.  

A personal computer with a Pentium IV 3.2GHz processor has been used to perform the calculations. The CPU time 

required for the shape optimization problem is approximately 7-10 hours. Fig. 9 shows the dependence of optimal 

shape on the value of 𝐶. The reduction history of the objective function 𝑓 is shown in Fig. 10. The convergence 

criterion is set at ‖∇𝑓‖ ≤ 10−10. 

 
 

Fig. 6.  Shape profile of the cavity 

 

 
Fig. 7.  Streamlines for the optimal cavity profile (𝐶=1) 
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Fig. 8.  Isotherms for the optimal cavity profile (𝐶=1) 

 
Fig. 9.  Dependence of optimal shape on the value of 𝐶 

 

 
Fig. 10. Reduction history of the objective function per each cycle of the SCGM 

 

7. Conclusions 

In this paper a method is presented for shape optimization of heat conduction and convection problems. The shape of 

the conductive (convective) medium is represented parametrically, through non-uniform rational B-spline (NURBS) 

surfaces, and their control points represent the design variables. These parametric surfaces allow free-form 

representation with total geometry control over the surface. Moreover, parametric representation of the shape profile 

reduces the overall number of design variables and consequently the computation time. The simplified conjugate-

gradient method (SCGM) is used as the optimization method to obtain the optimal shape and adjust the design variables 

intelligently. The SCGM is capable of dealing with various forms of the objective functions, and thus it is a well suited 

method for shape optimization. The performance of the proposed method is demonstrated by optimizing the shape 

profile of a straight fin
 
with the objective of enhancing heat transfer rate and reducing the fin mass and also by 

optimizing the shape profile of a natural convective cavity with the objective of reducing the maximum wall 

temperature.
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