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Abstract  

 
Concrete materials are exposed to special weather conditions, corrosion and significant damage. For this purpose, the effect of 28-day 

compressive strength changes on the samples studied in this study was investigated by considering the simultaneous effect of chloride ion 

penetration and carbonation phenomenon. For this reason, in the first case, the samples are exposed to carbon dioxide once and then to 

chloride ions. In the latter case, only samples under the influence of chloride infiltration are examined. To make the samples, which include 

9 mixing designs, three water-to-cement ratios of 0.35, 0.4 and 0.5 and three percent of 0%, 7% and 10% silica fume have been used. 

Finally, an optimal model is introduced to predict the compressive strength of concrete containing micro silica exposed to carbonation 

using artificial neural network. Also, a relation for estimating compressive strength based on the ratio of water to cement and the amount of 

silica is presented. 
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1. Introduction  
  

Despite the high durability of concrete compared to steel, 

but concrete materials in severe corrosive environments 

such as coasts and ports and islands of the Persian Gulf 

and the Sea of Oman are severely damaged and therefore 

their useful life is greatly reduced. Reinforcement 

corrosion in reinforced concrete is due to the penetration 

of chloride ions and carbonation of concrete. 

Reinforcement corrosion in concrete is one of the major 

damages to reinforced concrete structures. One of the 

unfavorable areas for the destruction of reinforced 

concrete structures is the coasts and islands of the Persian 

Gulf. On the other hand, due to the industrialization of the 

region, changes in the concentration of pollutants, 

including CO2 gas in the region can be predicted. 

Infiltration of gases in the environment and the formation 

of acids lead to changes in the pH of concrete. Among the 

effective gases are CO2 in the air and SO3 in rainwater. 

The role of carbon dioxide in this process is considerable. 

With the penetration of carbon dioxide in concrete, the 

phenomenon of carbonation occurs. In the carbonation 

phenomenon, a chemical reaction takes place between the 

carbon dioxide that has penetrated into the concrete and 

the alkaline products resulting from the hydration of the 

cement. This reaction leads to the formation of soluble 

calcium salts [1-2]. So far, many researchers have studied 

the properties of silica [3-4]. Page and Vennesland 

investigated the possibility of increasing the solubility of 

Friedel salt in microsilica-containing cements. In their 

study, this group made concrete samples with 10%, 20% 

and 30% microsilica instead of cement and observed 

changes in pore alkalinity and chloride entrapment [5]. 

Swami and Suryavanshi investigated the effect of 

carbonation on the stability of Friedel salt. Some of 

different concrete slabs were constructed with water to 

cement ratios (w / b) and the use of mineral additives such 

as microsilica, steel furnace slag, and fly ash. The slabs 

were subjected to wet and dry cycles. The results showed 

that the solubility of Friedel salt increased in carbonate 

regions [6]. Ishida and Maekawa Using thermodynamic 

equations and mass transfer governing concrete, proposed 

a finite element model to predict the useful life of 

reinforced concrete structures. This computational model 

was presented in software called DuCOM, which can 

model failure phenomena in concrete and thermal analysis 

[7-9]. Lin and Liang investigated the simultaneous effect 

of chemicals on reinforced concrete structures using one-

dimensional diffusion equations. They proposed an 

analytical solution of the diffusion equation using the 

Laplace transform method and the Convolution theorem. 

Also, the simultaneous effect of Cl- and CO2 as well as 

Cl- and SO42- as well as CO2 and SO42- was included in 

the equations. To consider the simultaneous effect of the 

above compounds, this group used a delay coefficient R 

in their equations to investigate the effect of each ion on 

the other [10]. Razzaqpour et al. presented a numerical 

model to consider the simultaneous effect of temperature 

transfer, humidity, chloride penetration, and carbonation 

phenomenon in concrete. The proposed model includes a 

numerical solution of two-dimensional equations 

governing infiltration. In this study, the finite element 
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method was used to solve the equations. The effect of 

carbonation on the change of concrete pore structure and 

its interaction with moisture and chloride transfer is 

considered in this model. The effect of carbonation on 

chloride release is not included in this group. The model 

of this group is presented in software called CONDOUR 

[11]. Putatsannan and Soma presented a nonlinear 

numerical model for the simultaneous penetration of 

chloride and carbonation into concrete. The model of this 

group was very similar to the model presented by 

Razzaqpour. The difference was that this group used the 

finite difference method to solve the equations. Heat, 

relative humidity, chloride penetration, and carbonation 

are the phenomena that were studied in this group as finite 

difference models. The effect of simultaneous diffusion of 

chloride and carbonation in two models of homogeneous 

and heterogeneous concrete has been investigated [12]. 

Song et al. presented a numerical model to predict the 

useful life of reinforced concrete structures under the 

simultaneous influence of chloride and carbonation. The 

model presented by this group is somewhat similar to 

Ishida, which includes models of thermal hydration of 

concrete components, model of microstructure formation, 

mass transfer model, chloride penetration, and 

carbonation and corrosion model of steel. In the model 

presented by this group, the finite element method was 

used to solve the equations governing the infiltration 

phenomenon. This model can also model the failure due 

to the simultaneous effects of moisture penetration, 

chloride and structural changes of concrete under the 

effect of carbonation. The model of this group considers 

the effect of carbonation on the release of chloride 

through experimental equations. The results of the 

proposed model for chloride infiltration were validated 

with the results of sampling of a river bridge [13]. Ameli 

et al. deal with the development of an environmentally 

sustainable roller compacted concrete. he variables used 

were; high volume fly ash (HVFA) at 50%, 60%, and 

70% replacement by volume; crumb rubber at 10%, 20%, 

and 30% replacement by volume of fine aggregate; nano 

silica at 0%, 1%, and 2% addition by weight of 

cementitious materials. The addition of nano silica 

increases the Vebe time, fresh density, compressive 

strength, flexural strength, splitting and tensile strength of 

HVFA RCC [14]. Since the compressive strength of 

concrete specimens is a very important parameter in the 

evaluation of concrete specimens, many researchers have 

used soft calculations and its tools to provide models for 

predicting this parameter. One of the advantages of these 

methods is the prediction of compressive strength at the 

desired age with different ratios of the mixing plan in just 

a few hours; In addition to saving materials, it leads to the 

correct use of time, which is an important parameter in 

carrying out projects. One of the most widely used 

methods of prediction is the use of artificial neural 

network method. So far, many researchers have predicted 

different properties of concrete by designing different 

models of neural networks [15-21]. One of the most 

important properties of hardened concrete is the 

compressive strength of concrete. Many different 

properties of concrete such as specific gravity, 

permeability, partial durability, abrasion resistance, 

sulfate resistance, tensile strength and some other 

properties are a function of compressive strength [22-24]. 

In this research, based on laboratory methods, concrete 

samples are made in two states of fully carbonated and 

ordinary non-carbonated concrete exposed to chloride 

ions, and then the compressive strength test is performed 

on the mentioned samples. The following is a neural 

network model for predicting compressive strength for 

concrete specimens studied in this study 
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2. Methods  

2.1. Materials 

ASTM Type I-425 Portland cement with a specific 

gravity of 3.15 and silica-fume with a specific gravity of 

2.90 was used. Nine mix designs, each with a 

cementitious material content of 400 kg/m3, were used. 

The W/CM ratios were 0.35, 0.4 and 0.5. The silica fume 

replacements for cement on a dry mass basis were 0, 7% 

and 10%. Table 1 shows the properties of various mixture 

designs in this investigation. 

Coarse aggregate with a size range of 6,20 mm was used. 

The fine aggregate was river sand with a maximum size 

of 4 mm and fineness modulus of 3. 
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                     Table 1: Physical and chemical properties of ordinary Portland cement and SF 

  Chemical composition: %  
Specific 

gravity 

Blaine: 

cm2/g 

  SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O Ig.loss     

Ordinary Portland 

cement 
21.5 3.68 2.76 61.5 4.8 0.12 0.95 1.35 3.15 3 

SF 96 0.6 0.6 0.3 0.5 0.1 0.2 1.7 2.9 3.83 

 

 

 

2.2. Mixing and preparation of specimens 

Nine mix designs, each with a cementitious material 

content of 400 kg/m3, were used. The water-to-cement 

(w/c) ratios were 0.35, 0.4 and 0.5. The SF replacements 

for cement on a dry mass 

basis were 0, 7% and 10%. Table 2 shows the properties 

of various mixture designs in this investigation. In this 

table, C represents the amount of cement and Csf 

indicates the amount of microsilica. Specimens were cast 

in moulds of 100 * 100 * 100 mm cubes, and 100 * 200 

mm cylinders. The specimens were exposed to chloride in 

three different conditions for more than 270 days at38ºc. 

The superplasticizer used in making the samples was also 

selected from the neutral type without chloride ions. The 

construction of the samples was done according to the 

Aba regulations. In making samples, a slump between 5 

and 7 cm is considered as a slump. The samples were 

processed in containers containing saturated lime water 

solution at a temperature of 21 ± 2 ° C. 

It should be noted that due to the fact that the penetration 

depth in the samples was about 2.5 cm in the maximum 

case, so the selection of the sample size had no effect on 

the results. Also, according to the dimensions of the 

experimental samples, the maximum aggregate dimension 

was limited to 2.5 cm. However, according to previous 

studies, the maximum aggregate has been little considered 

in the diffusion models and its effect on the chloride ion 

diffusion coefficient is not very significant. 

 

 
            Table 2: Mix proportions of concretes 

Mix ID W/(c+csf) Csf/(c+csf) 
Water 

kg/m3 

Cement 

kg/m3 

Gravel 

kg/m3 

Sand 

kg/m3 

SF 

kg/m3 

M-35-0 0.35 0 140 400 1050 800 0 

M-35-7 0.35 7% 140 372 1050 800 28 

M-35-10 0.35 10% 140 360 1050 800 40 

M-40-0 0.4 0 160 400 1050 800 0 

M-40-7 0.4 7% 160 372 1050 800 28 

M-40-10 0.4 10% 160 360 1050 800 40 

M-50-0 0.5 0 200 400 1050 800 0 

M-50-7 0.5 7% 200 372 1050 800 28 

M-50-10 0.5 10% 200 360 1050 800 40 

 

 

2.3. Carbonate the samples 

Due to the fact that the purpose of this study is to 

investigate the effect of carbonation on changing the 

properties of concrete, so the samples were tested in both 

carbonate and non-carbonate states. In order to carbonate 

the concrete, the samples, after 28 days of curing, a 

number of samples were subjected to CO2 gas for 1 

month to perform the carbonation process in the 

carbonation machine at 60% humidity. Control samples 

were also placed in the tank to control the carbonation of 

the samples. The amount of incoming gas was determined 

to occupy at least half of the space inside the tank with 

carbon dioxide gas. For this purpose, the amount of 

exhaust gas was determined according to the exhaust gas 

flow rate (observed from the regulator degree) and time 

measurement. However, due to the possibility of gas 

leakage, gas injection was performed several times. 

Phenolphthalein solution was used to control the 

carbonation depth of the control samples. Carbonated 

samples along with control samples were exposed to 

chloride ion for 270 days in three submerged 

environmental conditions, tides and above water level 

(atmosphere). The concentration of chloride ion in the 

medium was considered to be 30 gr / lit. 
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3. Results and Discussion 

3.1. Compressive strength of samples 

Compressive strength test was performed on 10 cm cubic 

specimens at 28days according to ASTM C39 standard. 

Table 3 shows the average results on the three samples for 

each mixing scheme. 

 

 
 

                                       Table 3: Compressive strength test results of samples 

carbonated concrete Non-carbonated concrete Mix ID 
Age(days) Age(days) 

90 28 90 28  

456 
436 

462 453 M-35-0 

552 
537 

559 525 M-35-7 

632 
593 

629 595 M-35-10 

408 
394 

397 400 M-40-0 

524 
490 

536 498 M-40-7 

555 
532 

569 528 M-40-10 

379 
366 

382 372 M-50-0 

460 
443 

453 448 M-50-7 

513 
490 

518 496 M-50-10 

 

Figure 1 show the strength of carbonated and non-

carbonated samples based on the type of mixing design 

and the age of the samples. As can be seen, the resistance 

changes in the samples do not have a specific trend based 

on whether the samples are carbonate or not, and 

practically carbonation does not cause a significant 

change in the strength of the samples. The reason for this 

can be considered in the low carbonation depth compared 

to the sample dimensions. In other words, despite the fact 

that it is expected that the strength of this layer will 

increase with surface carbonation, but because the 

strength of the cubic sample is more affected by the 

middle layers of concrete, the effect of carbonation on 

changing the strength is not obvious. 

3.2. Artificial neural networks 

One of the most widely used models in soft computing is 

the neural network, which is inspired by the human brain 

and includes weighted connections between artificial 

neurons. In general, in neural networks, there are three 

types of neural layers: the input layer, which is 

responsible for receiving raw information. Hidden layers 

where the performance of these layers is determined by 

the inputs and the weight of the connection between them 

and the hidden layers. The output layer also depends on 

the activity of the hidden unit and the weight of the 

connection between the hidden unit and the output. The 

difference between the output of the neural network and 

the desired output is defined as the error function. The 

error is then reversed and the weights and biases are 

corrected to reduce the error. This process, known as the 

learning step, is repeated until the most accurate 

determination of the outputs. Validation was also 

performed indirectly during learning to show the pre-

fitting of a neural network. The stopping point of the 

learning process is when the validation error starts to 

increase. The last step in modeling an artificial neural 

network is the experimental step, which is performed only 

to determine the efficiency of the trained network [25]. 

Figure 2 shows a schematic representation of a 

computational neuron and its components. 

 

 Fig.1. Results of compressive strength testing at 28 days age 



 

5 
 

 

 

3.3. Architecture of neural network model 

The software used to build the model of artificial neural 

networks is MATLAB. This software is a technical 

language with strong performance in computing that has 

undergone many changes and improvements over the 

years and according to the needs of users, including the 

addition of a neural network toolbox to it. A neural 

network model was developed to predict compressive 

strength. In this model, the number of hidden layers as 

well as the number of neurons in each layer was 

determined to minimize network error. Network inputs, 

water to cement ratio, silica content and 28 and 90 days 

compressive strength were selected as the output. To 

evaluate the performance and accuracy of the network, 

two stat                                                

                                                

                                                    

                                                       

                                          the average    

                           the average of the measured 

data. 
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To determine the best network model, different models 

with the number of layers and neurons as well as different 

training functions in each layer were used. Table 4 shows 

examples of these models for the carbonate state.One of 

the problems with neural networks is the need for a lot of 

data to compare models. In the present model, due to lack 

of data, it is difficult to compare models. Because the 

output error of the models in all models was a small 

number. Also, due to lack of data, it was not possible to 

delete some of them in order to control the network. For 

this reason, the following algorithm was used to compare 

the proposed models: 

A. In the first stage, 5 samples of input and output results 

were used as data for network training so that the network 

could be trained with the help of this data. After training, 

the ninth data network was given to the networks used 

and the network output was compared with the value 

obtained from the laboratory results and the amount of 

difference between the test result and the network output 

was recorded. 

B- In the second stage, the process of the first stage was 

repeated. The difference is that at this stage another 

mixing scheme result was used to control the network. 

C- Steps A and B were used for all mixing designs and in 

all proposed networks. Finally, the total error of different 

networks was calculated for 9 times of network training 

and control, and the network with the lowest error rate 

was selected as the optimal network. 

 

 

 

 

 

 

Fig. 1. Single processing element of ANNs 
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                       Table 4. Results of training steps of ANN 

MSE 
Training 

Transfer function ANN model structure 
   Max Error 

0.12 0.99 0.028 G-S-S 2-2-2-1 

0.15 0.99 0.03 S-S-HT 2-3-2-1 

0.07 0.99 0.0399 S-HT-G 2-3-2-1 

0.08 0.99 0.0346 HT-HT-S 2-3-2-1 

0.14 0.99 0.03 G-HT-S 2-3-2-1 

0.10 0.99 0.03 G-HT-S 2-4-3-1 

0.11 0.99 0.03 HS-G-S 2-4-3-1 

0.19 0.99 0.03 HT-S-G 2-4-3-1 

0.17 0.99 0.03 G-G-S 2-5-3-1 

0.12 0.99 0.03 G-S-S 2-5-3-1 

0.11 0.99 0.03 HS-G-S 2-5-3-1 

0.13 0.99 0.028 HS-G-S 2-6-7-1 

0.18 0.99 0.03 S-HT-G 2-6-7-1 

0.14 0.99 0.03 S-S-G 2-6-7-1 

0.11 0.99 0.03 HT-HT-S 2-6-7-1 

                         S: Sigmoid, G: Gaussian, HT: Hyperbolic Tangent, HS: Hyperbolic Secant 

 

Based on the mentioned steps and also Table 4, the 

network with three hidden layers and two neurons in each 

layer, with sigmoid functions in the first layer, hyperbolic 

tangent function in the second layer and Gaussian 

function in the output layer produces the best results. The 

best network model is shown in Figure 3. 

 

 

Fig. 3. optimal network model in determining compressive strength  
 

 

3.4. Linear fit model 

The following function (Equations (3)) was used to 

determine the compressive strength. Considering that the 

input parameters, water to cement ratio (w / c) and SF 

silica content were considered, the maximum power of the 

proposed function was selected twice. 

 

 

                     
           (

 

 
)                  (

 

 
)          (

 

 
)
 

         (
 

 
)    

       (
 

 
)
 

        (
 

 
)
 

          

 



 

7 
 

4. Conclusion 

 

In the present paper, compressive strength in concretes 

containing silica fume under the influence of carbonation 

was investigated in a laboratory and a prediction model 

using a neural network. The procedure was performed in 

such a way that concrete samples were first carbonated 

and then compressive strength was performed in 

carbonate and non-carbonate samples. In total, the 

following results were obtained from experiments and 

modeling: 

1- There are no specific changes in the compressive 

strength of the samples based on whether the 

samples are carbonated or not. One of the reasons 

for this is the low depth of carbonation compared 

to the dimensions of the sample. Although it is 

expected that the strength of this layer will 

increase with surface carbonation, but because the 

strength of the cubic sample is more affected by 

the middle layers of concrete, the effect of 

carbonation on the change in strength is not 

obvious. 

2- By using the neural network model proposed in 

this research, a quadratic function with concrete 

mix proportion (w/c and SF contents) was 

developed to predict the effect of carbonation on 

compressive strength l variations. The model could 

be useful in prediction of compressive strength in 

carbonated concrete. 
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