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 ABSTRACT 

In this paper, a new non-monotone line search is used in the diagonal discrete 

gradient bundle method to solve large-scale non-smooth optimization problems. 

Non-smooth optimization problems are encountered in many applications in fi-

nance problems. The new principle causes the step in each iteration to be longer, 

which reduces the number of iterations, evaluations, and the computational time. 

In other words, the efficiency and performance of the method are improved. We 

prove that the diagonal discrete gradient bundle method converges with the pro-

posed non-monotone line search principle for semi-smooth functions, which are 

not necessarily differentiable or convex. In addition, the numerical results confirm 

the efficiency of the proposed correction. 

 

 

1 Introduction 

In this paper, we are considering the non-smooth optimization problem of the form  

{
minimize                      𝑓(𝑥)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                𝑥 ∈ ℝ𝑛   (1) 

where the objective function 𝑓: ℝ𝑛 → ℝ is supposed to be semi-smooth and the number of variables n 

is supposed to be large. Note that no differentiability or convexity assumptions for problem (1) are 

made. In general, iterative algorithms for non-smooth optimization proceed as follows: given a point 

𝑥𝑘, find a descent direction 𝑑𝑘 such that 𝑑𝑘
𝑇𝑣𝑘 < 0 (𝑣𝑘 is discrete gradient), a suitable steplength 𝑡𝑘 

and construct the new point as follows:  

𝑥𝑘+1 = 𝑥𝑘 + 𝑡𝑘𝑑𝑘 (2) 

The line search is a sub-problem to find 𝑡𝑘 in iterative process (2). In this process to find a steplength 

𝑡𝑘, we must solve the following one-dimensional minimization problem 

min
𝑡≥0

𝜑(𝑡) = 𝑓(𝑥𝑘 + 𝑡𝑑𝑘) 
(3) 

https://portal.issn.org/resource/ISSN/2538-5569
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Very often in practice, we use the line search technique to find the step length. Exact line search methods 

to calculate step length can be expensive and time consuming. Therefore, some inexact line search 

techniques [6, 7, 9, 22] namely the Armijo technique, the Wolfe technique and the Goldstein technique 

have been proposed to determine an acceptable step length 𝑡𝑘. Among these condition, the Armijo con-

dition is the most popular condition stating as follows: 

𝑓(𝑥𝑘 + 𝑡𝑘𝑑𝑘) ≤ 𝑓(𝑥𝑘) + 𝜎𝑡𝑘𝑣𝑘
𝑇𝑑𝑘 (4) 

Where 𝜎 ∈ (0, 1 2⁄ ). According to the condition (4), we can conclude 𝑓(𝑥𝑘+1) < 𝑓(𝑥𝑘), so this proce-

dure is called a monotone line search.  

In [10], Grippo et al. presented the new line search condition for unconstrained optimization that allows 

𝑓(𝑥𝑘+1) more than 𝑓(𝑥𝑘), so they called their rule as the non-monotone line search. Non-monotone 

line search method is a new approach to determine the step length in optimization problems. This 

method reduces the line search range to find the largest step length in each iteration and avoids being 

confined to a narrow valley as much as possible [6, 11, 19]. Grippo et al. defined their condition as 

follows: 

𝑓(𝑥𝑘 + 𝑡𝑘𝑑𝑘) ≤ max
0≤𝑗≤𝑚(𝑘)

{𝑓𝑘−𝑗} + 𝜎𝑡𝑘𝑔𝑘
𝑇𝑑𝑘 

(5) 

Where 𝑀 > 0 is an integer constant, 𝑚(0) = 0 and for all 𝑘 ≥ 1, we have 0 ≤ 𝑚(𝑘) ≤

min{𝑚(𝑘 − 1) + 1, 𝑀}, Although this non-monotone condition has some benefits,but it includs some 

drawbacks (see [1, 9, 25]). 

The problems with the diagonal discrete gradient bundle method, one is that it may not work for some 

problems. Our purpose in this article is to modify the above method. In the diagonal discrete gradient 

bundle method, Armijo line search method is used to calculate the step length. In this paper, we present 

a non-monotone line search algorithm to solve non-smooth optimization problems. In this algorithm, 

we combine a non-monotone strategy with the modified Armijo rule and design a new algorithm that 

will probably choose a larger step length at each iteration. This strategy may reduce the number of 

iterates, time and function evaluations and can improve the efficiency of the new approach. Numerical 

results show that the new approach to solving non-smooth optimization problems is robust and efficient. 

The paper is organized as follows. In Section 2, we introduce the diagonal discrete gradient bundle 

method. In Section 3, we describe a new non-monotone Armijo line search algorithm and present its 

convergence properties.  Section 4 shows numerical results of the algorithm. Finally, Section 5 con-

cludes the paper. 

2 Diagonal Discrete Gradient Bundle Method 
In this section, we introduce the diagonal discrete gradient bundle method. The diagonal discrete gra-

dient bundle method uses the ideas of the variable metric bundle method [12] to calculate the null step, 

simple aggregate, and the sub-gradient locality measure. The diagonal discrete gradient bundle method 

uses discrete gradients instead of sub-gradients in our calculations and the search direction 𝑑𝑘 is calcu-

lated using the diagonal variable metric update in which 

𝑑𝑘 = −𝐷𝑘�̃�𝑘 (6) 

where �̃�𝑘 is (an aggregate) discrete gradient and 𝐷𝑘 is the diagonal variable metric update. 

In order to determine a new step into the search direction 𝑑𝑘, the DDG-BUNDLE uses the so-called 
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armijo line search (see [14, 23, 24]) for a new iteration point 𝑥𝑘+1 and a new auxiliary point 𝑦𝑘+1   pro-

duced such that 

𝑥𝑘+1 = 𝑥𝑘 + 𝑡𝐿
𝑘𝑑𝑘        𝑎𝑛𝑑          𝑦𝑘+1 = 𝑥𝑘 + 𝑡𝑅

𝑘𝑑𝑘          𝑓𝑜𝑟    𝑘 ≥ 1 (7) 

With  𝑦1 = 𝑥1 , where 𝑡𝑅
𝑘 ∈ (0, 𝑡𝑚𝑎𝑥] and 𝑡𝐿

𝑘 ∈ [0, 𝑡𝑅
𝑘] are step sizes, and 𝑡𝑚𝑎𝑥 > 1 is the upper bound 

for the step size. A necessary condition for a serious step is to have 

𝑡𝐿
𝑘 = 𝑡𝑅

𝑘 > 0                𝑎𝑛𝑑

𝑓(𝑥𝑘+1) ≤ 𝑓(𝑥𝑘) + σ𝐿
𝑘𝑡𝐿

𝑘𝑤𝑘
 (8) 

Where σ𝐿
𝑘 ∈ [0,

1

2
] is a line search parameter and 𝑤𝑘 > 0 represents the desirable amount of descent of 

𝑓 at 𝑥𝑘. If the condition (8) is satisfied, we set 𝑥𝑘+1 = 𝑦𝑘+1 and a serious step is taken. On the other 

hand, a null step is taken if 

𝑡𝐿
𝑘 > 𝑡𝑅

𝑘 = 0            𝑎𝑛𝑑

−𝛽𝑘+1 + 𝑑𝑘
𝑇𝑣𝑘+1 ≥ −σ𝑅

𝑘  𝑤𝑘
 (9) 

Where σ𝑅
𝑘 ∈ [σ𝐿

𝑘,
1

2
] is a line search parameter and 𝑣𝑘+1 ∈ 𝑉0(𝑦𝑘+1, 𝜁𝑘). Moreover, 𝛽𝑘+1  is analogous 

to the sub-gradient locality measure [17, 18] used in standard bundle methods, that is 

𝛽𝑘+1 = 𝑚𝑎𝑥{|𝑓(𝑥𝑘) − 𝑓(𝑦𝑘+1) + (𝑦𝑘+1 − 𝑥𝑘)𝑇𝑣𝑘+1|, 𝛾‖𝑦𝑘+1 − 𝑥𝑘‖2} (10) 

Here, γ > 0  is a distance measure parameter supplied by the user. In the case of a null step, we set 

𝑥𝑘+1 = 𝑥𝑘 but information about the objective function is increased because we store the auxiliary point 

𝑦𝑘+1 and the corresponding auxiliary discrete gradient 𝑣𝑘+1 ∈ 𝑉0(𝑦𝑘+1, 𝜁𝑘). 

The DDG-BUNDLE uses the original discrete gradient 𝑣𝑘  after the serious step and the aggregate sub-

gradient �̃�𝑘 after the null step for direction finding (i.e. we set 𝑣𝑘 = �̃�𝑘 if the previous step is a serious 

step). The aggregation procedure is carried out by determining multipliers 𝜆𝑖
𝑘 satisfying  𝜆𝑖

𝑘 > 0 for all 

𝑖 = {1,2,3} and ∑ 𝜆𝑖
𝑘  3

𝑖=1 = 1 that minimize a simple quadratic function 

φ(𝜆1, 𝜆2, 𝜆3) = [𝜆1𝑣𝑚 + 𝜆2𝑣𝑘+1 + 𝜆3�̃�𝑘]𝑇𝐷𝑘[𝜆1𝑣𝑚 + 𝜆2𝑣𝑘+1 + 𝜆3�̃�𝑘]

+ 2(𝜆2𝛽𝑘+1 + 𝜆3�̃�𝑘) (11) 

Here, 𝑣𝑚 ∈ 𝑉0(𝑥𝑘, 𝜁𝑘) is the current discrete gradient,  𝑣𝑘+1 ∈ 𝑉0(𝑦𝑘+1, 𝜁𝑘) is the auxiliary discrete 

gradient, and �̃�𝑘 is the current aggregate discrete gradient from the previous iteration (�̃�1 = 𝑣1). In 

addition, 𝛽𝑘+1 is the current sub-gradient locality measure and �̃�𝑘 is the current aggregate sub-gradient 

locality measure (�̃�1 = 0) (see [22]).  

The resulting aggregate discrete gradient �̃�𝑘+1 and aggregate sub-gradient locality measure �̃�𝑘+1 are 

computed by 

�̃�𝑘+1 = 𝜆1
𝑘𝑣𝑚 + 𝜆2

𝑘𝑣𝑘+1 + 𝜆3
𝑘�̃�𝑘           𝑎𝑛𝑑

�̃�𝑘+1 = 𝜆2
𝑘𝛽𝑘+1 + 𝜆3

𝑘�̃�𝑘                                 
 (12) 

Due to this simple aggregation procedure, only one trial point 𝑦𝑘+1 and the corresponding discrete 

gradient 𝑣𝑚 ∈ 𝑉0(𝑦𝑘+1, 𝜁𝑘) need to be stored. 



A New Non-Monotone Line Search Algorithm to Solve Non-Smooth Optimization Finance Problem 

 
 

   

 

[464] 

 

Vol. 9, Issue 2, (2024) 

 

Advances in Mathematical Finance and Applications  

 

We need to consider how to update the matrix 𝐷𝑘 and, at the same time,  to find the search direction 𝑑𝑘 

. The basic idea in direction finding is the same as that with the limited memory bundle method. How-

ever, due to the usage of null steps some modification similar to the variable metric bundle methods has 

to be made: If the previous step is a null step, the matrix 𝐷𝑘 is formed by using the limited memory SR1 

update [15]. This update formula gives us a possibility to preserve the boundedness and some other 

properties of generated matrices that are required in the proof of global convergence. 

The stopping parameter 𝑤𝑘 at iteration k is defined by 

𝑤𝑘 = −𝑣𝑘
𝑇𝑑𝑘 + 2�̃�𝑘 (13) 

and the algorithm stops if 𝑤𝑘 < 𝜖 for some user specified  𝜖 > 0. The parameter 𝑤𝑘 is also used during 

the line search procedure to represent the desirable amount of descent. (See [1516] for more details on 

the diagonal discrete gradient bundle method) 

 

3 Modified Non-Monotone Line Search Method  
Non-monotone line search methods have been studied by many researchers (see [6, 9, 22]). The Barzilai 

and Borwein method [4, 5, 21] is a descent method. In many cases, nonlinear linear search does not 

need to satisfy condition (5); therefore, it is suitable for overcoming the situation where the repetition 

sequence goes to a very narrow valley [6, 11], the event that occurs in most practical nonlinear optimi-

zation problems. Grippo et al [9, 10]. introduce new linear search methods, including non-monotone 

line search method for Newton method. In addition, the non-monotone line search method has been 

studied by many researchers. In the following, we will introduce non-monotone Armijo line search. In 

this article, we want to look at how to choose step length 𝑡𝑘 and develop a modification of non-mono-

tone Armijo line search method [9]. 

We use the condition 

𝑓(𝑥𝑘 + 𝑡𝑑𝑘) ≤ 𝐻𝑘 + σ𝑇𝑡𝑤𝑘 +  θ‖𝑣𝑘‖ 2   (14) 

to produce a serious step, where 𝑡𝑘is the largest number in {𝑠, 𝜌𝑠, 𝜌2𝑠, … },with 𝜌 ∈ (0,1) and 

𝑠𝑘 = −
𝑔𝑘

𝑇𝑑𝑘

𝑑𝑘
𝑇𝐵𝑘𝑑𝑘

 (15) 

In condition (14), 𝐻𝑘 is obtained from the following equation: 

𝐻𝑘 = {
𝑓0                                                          𝑖𝑓 𝑘 = 0
𝜏𝑓𝑘 + (1 − 𝜏)𝐻𝑘−1                           𝑖𝑓 𝑘 ≥ 1

 (16) 

where 0 < τ < 1 is a constant. In [25], it is shown that one can obtain a stronger non-monotone strategy 

whenever τ is close to 1 and can obtain a  weaker non-monotone strategy whenever τ is close to 0. In 

this paper, we use the Fibonacci sequence to calculate τ  (see [8]). At a glance to the standard Armijo 

rule and the new Armijo-type line search, firstly, we can see that the term θ‖𝑣𝑘‖ 2 is added to right-

hand side of the Armijo rule. Secondly, we substitute 𝐻𝑘 instead of 𝑓𝑘 which is possibly greater than 𝑓𝑘. 

Therefore, we can see the right-hand side of the approach is greater than the right-hand side of the 

standard Armijo rule, so a larger steplength is possible for the algorithm to gain. These changes may 

reduce the number of iterations and function evaluations for attaining the same optimum. 
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3.1. Non-Monotone Line Search Procedure. 

Initial. Positive parameters  σ𝐴 , σ𝐿 , σ𝑅 , σ𝑇  satisfying σ𝑇 + σ𝐴 < σ𝑅 <
1

2
 and σ𝐿 < σ𝑇 , distance 

measure parameter 𝛾 > 0, an interpolation parameter 𝜅 ∈ (0, 1 2⁄ ) and 𝜃 ∈ (1 2⁄ , 1). All of these pa-

rameters are constant. 

Step i. Set 𝑡𝐴 = 0 and 𝑡 = 𝑡𝑈. 

Step ii Calculate 𝑓(𝑥𝑘 + 𝑡𝑑𝑘), 𝑔 ∈ ∂𝑓(𝑥𝑘 + 𝑡𝑑𝑘) and    
𝛽𝑘+1 = 𝑚𝑎𝑥{|𝑓(𝑥𝑘) − 𝑓(𝑦𝑘+1) + (𝑦𝑘+1 − 𝑥𝑘)𝑇𝑣𝑘+1|, 𝛾‖𝑦𝑘+1 − 𝑥𝑘‖2} 

If 𝑓(𝑥𝑘 + 𝑡𝑑𝑘) ≤ 𝐻𝑘 + σ𝑇𝑡𝑤𝑘 + + θ‖𝑣𝑘‖ 2  , set 𝑡𝐴 = 𝑡; otherwise, set 𝑡𝑈 = 𝑡. 

Step iii (Serious step). If 𝑓(𝑥𝑘 + 𝑡𝑑𝑘) ≤ 𝐻𝑘 + σ𝑇𝑡𝑤𝑘 + + θ‖𝑣𝑘‖ 2  , set 𝑡𝑅 = 𝑡𝐿 = 𝑡 and return. 

Step iv (Null step). If −𝛽𝑖 + 𝑑𝑘
𝑇𝑔𝑖 ≥ −σ𝑅𝑤𝑘 , set 𝑡𝑅 = 𝑡 , 𝑡𝐿 = 0 and return. 

Step v. Choose 𝑡 ∈ [𝑡𝐿 + 𝜅(𝑡𝑈 − 𝑡𝐿), 𝑡𝑈 − 𝜅(𝑡𝑈 − 𝑡𝐿)]by some interpolation procedure, and go to 

Step (ii). 

3.2. Convergence Analysis 
In this section, we show the global convergence of the diagonal discrete gradient bundle algorithm. The 

convergence of diagonal discrete gradient bundle algorithm is described in [15]. In [1], it is shown that 

the non-monotone line search method is well-defined. We will continue to show that the non-monotone 

line search procedure terminates in a finite number of iterations. First, the non-monotone line search 

procedure has been proved to be finite under the assumption of upper semi-smoothness when sub-gra-

dients are used. 

Lemma 1. Let f satisfy the following semi-smoothness hypothesis. For any  𝑥 ∈ ℝ𝑛 , 𝑑 ∈ ℝ𝑛 and 

sequences {�̂�𝑖} ⊂ ℝ+ and {𝑔𝑖} ⊂ ℝ𝑛 satisfying �̂�𝑖 ↓ 0 and 𝑔𝑖 ∈ ∂𝑓(𝑥 + �̂�𝑖𝑑), one has 

lim
𝑖→∞

sup 𝑔𝑖
𝑇𝑑 ≥ lim

𝑖→∞
inf

𝑓(𝑥 + �̂�𝑖𝑑) − 𝑓(𝑥)

�̂�𝑖
 (17) 

Then, the non-monotone line search procedure terminates in a finite number of iterations. 

Proof. The proof becomes identical to the proof of Theorem 3.6 in [23] by replacing 𝑓(𝑥𝑘) by 𝐻𝑘. 

The set of discrete gradients is an approximation to the sub-differential if the function is semi-smooth. 

Since the class of semi-smooth functions includes the class of upper semi-smooth functions, we here 

assume that the objective function f is semi-smooth. Now, due to assumption of semi-smoothness and 

sub-gradient (see [15]), the non-monotone Armijo line search procedure is also finite when sub-gradi-

ents are replaced with discrete gradients. 
 

4 Numerical Experiments 
As already said, the test set used in our experiments consists of extensions of classical academic non-

smooth minimization problems from the literature. That is, problems 1 − 8 were first introduced in [13, 

19, 24]. These problems can be formulated with any number of variables. Note that in the computation 

of both the Armijo line search and non-monotone Armijo line search, more than n function evaluations 

are needed for each iteration. Here, we examine problems with dimensions of 50, 200 and 1000 varia-

bles. We perform our experiments in MATLAB 8.1 programming environment. We say that a solver 

finds the solution with respect to a tolerance ε > 0 if 
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|
𝑓𝑘+1 − 𝑓𝑘

1 + 𝑓𝑘
| ≤ ε (18) 

or 

‖𝑥𝑘+1 − 𝑥𝑘‖

1 + ‖𝑥𝑘‖
≤ ε (19) 

Where 𝑓𝑘+1and 𝑥𝑘+1 are the values of the function and the optimal point in the current iteration,  𝑓𝑘and 

𝑥𝑘are the values of the function and the optimal point in the previous iteration. We have accepted the 

results with respect to the tolerance 𝜀 = 10−3. For the diagonal discrete gradient bundle method, these 

are 

𝑣𝑚𝑖𝑛 = 0.01               𝑣𝑚𝑎𝑥 = 1010 

𝜎𝐿 = 10−4                   𝜎𝑅 = 0.25 

𝑡𝑚𝑖𝑛 =  10−12                  𝑡𝑚𝑎𝑥 = 1000           

𝛾 = 10−4                               𝜃 = 0.8. 

We put 𝜃 =
𝐹𝑘−1

𝐹𝑘
 in the modified line search condition, where 𝐹𝑘 is the sum of the first k sentences of 

the Fibonacci sequence(see [8]).Also, in this paper, multipliers 𝜆𝑖
𝑘for 𝑖 = {1,2,3} are calculated by the 

default optimization method in MATLAB. 

Table 1: Summary of the Results with 50 Variables.  

problem 
Armijo line search 

nf / time 

Modied non-monotone Armijo line search 

nf / time 

1 3201 / 0.077 3008 / 0.066 

2 Fail 10563 / 0.122 

3 8132 / 0.513 7952 / 0.318 

4 14189 / 0.302 14009 / 0.282 

5 5400 / 0.268 4984 / 0.234 

6 3345 / 0.09 3002 / 0.03 

7 11471 / 0.18 10891 / 0.11 

8 13356 / 0.11 12803 / 0.07 

 

Table 2: Summary of the Results with 200 Variables.  

problem 
Armijo line search 

nf / time 

Modied non-monotone Armijo line search 

nf / time 

1 42815 / 1.168 41095 / 0.844 

2 Fail 52364 / 2.690 

3 44654 / 1.638 43031 / 1.375 

4 113918 / 10.291 110523 / 1.001 

5 41104 / 1.663 40980 / 1.532 

6 279301 / 5.36 209147 / 4.13 

7 58965 / 7.235 54178 / 6.137 

8 51297 / 1.34 48354 / 0.98 
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Table 3: Summary of the Results with1000 Variables.  

problem 
Armijo line search 

nf / time 

Modied non-monotone Armijo line search 

nf / time 

1 1821133 / 47.864 1523451 / 42.796 

2 Fail 902478 / 40426 

3 1506899 / 81.411 1498568 / 76.298 

4 2932844 / 39.886 2523569 / 38.416 

5 129091 / 47.276 121957 / 46.289 

6 176458 / 55.45 175142 / 30.25 

7 203372 / 61.32 199354 / 45.37 

8 5390563 / 59.45 5142 638 / 51.871 
 

The results are summarized in Tables 1-3 where we have compared the efficiency of the conditions both 

in terms of the computational time and the number of function evaluations (nf, evaluations for short). 

The phrase Fail indicates that the method in question is not able to solve the problem. In problem 2, the 

old method is not able to solve the problem, but the modified method is able to solve the problem. In 

details, these results suggest that the proposed algorithm has promising behaviour encountering with 

medium-scale and large-scale unconstrained optimization problems and it is superior to the considered 

algorithm in all cases. Summarizing the results of tables. 1, 2 and 3 implies that modified diagonal 

discrete gradient bundle method is superior to the presented algorithm with respect to the number of 

iterations and function evaluations. 

5 Conclusions 
In this paper, we propose a new family of Armijo-type line search approach to calculate the step length 

in an unconstrained optimization problem that the objective function is non-smooth and non-convex. 

In the sense, we present a correction for the diagonal discrete gradient bundle method. In this modifi-

cation, we focus on a new approach to new non-monotone line search. This rule produces a larger step 

size, especially when the repetition is far from optimal. We proved the global convergence of this 

method for semi-smooth functions that are not necessarily differentiable and convex. The numerical 

experiments confirm the efficiency of the proposed correction compared to the diagonal discrete gra-

dient bundle method to solve large-scale non-smooth optimization problems. 
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