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ABSTRACT 
 

One important issue in data envelopment analysis (DEA) which has been studied 

by many researchers is returns to scale (RTS). The authors developed DEA 

models to evaluate the efficiency of two-stage networks in returns to scale 

variable and introduced a new definition to determine return to scale classification 

in two-stage networks. The current article proposed an approach for determining 

the stability region of returns to scale classification in two-stage network DEA. 

The data were collected from insurance companies in Iran in 2019. We consider 

the insurance industry process as a two-stage network; the stage of marketing and 

that of investment. The effectiveness of insurance companies was evaluated, and, 

after determining the classification of returns to scale, we found a sustainability 

interval to classify returns to their scale. 

 

 

1 Introduction 
 
Data envelopment analysis (DEA) is one of the methods used to measure relative efficiency of peer 

decision-making units (DMUs) that have multiple homogeneous inputs and outputs introduced by 

Charnes et al. [3]. They discussed a non-parametric approach to identify the best performance in a set 

of DMUs and presented CCR model. BCC model offered by Banker et al [1]. This model with produc-

tion frontiers measured the existing decision-making units by the convex hull. Later on the DEA was 

used as a measurement tool in different fields such as management, economics etc. During this period 

of model development, the economic concept of returns to scale (RTS) has also been widely studied 

within different frameworks provided by these methods. In the literature of classical economics, returns 

to scale describes the behavior of the rate of increase in single output relative to the associated increase 

in the inputs. If output increases by the same proportional change as all inputs change, then there are 

constant returns to scale (CRS). If output increases by less than the proportional change in inputs, there 

are decreasing returns to scale (DRS). If output increases by more than the proportional change in inputs, 
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there are increasing returns to scale (IRS). Banker et al [2] described RTS concept for multiple-output 

cases using DEA. They focused on the sign of u0 from BCC model for returns to scale classification. 

Färe and Grosskopf [6] provided a two-stage method to recognize returns to scale classification based 

on CCR and BCC models. Banker and Lovell [4] prepared a new method to determine returns to scale 

in DEA based on the envelopment form of the BCC model. Consequently, many scholars studied returns 

to scale in DEA. For example, Khodabakhshi et al [13] provided an Additive model method to estimate 

returns to scale in both stochastic and fuzzy data envelopment analyses. One of the interesting research 

topics is network DEA and many studies have been conducted in this regard. In traditional DEA models, 

DMUs were considered as a black box and the efficiency evaluation was limited by the final outputs and 

initial inputs. Färe and Grosskopf [5] presented a network model that measured the efficiency of the entire 

system due to its sub-units. Subsequently, the researchers recruited many networks in areas such as inter-

mediate products, allocation of budgets, fixed factors, dynamic systems and etc. Kao and Hwang [8] ex-

amined the structure of the two-stage networks and provided a new model to evaluate the efficiencies of 

the whole process. This model described series of relationships between the whole process and the two 

sub-processes. Khaleghi et al. [12] studied the structure of the two-stage systems. The aim of their study 

was to determine the returns to scale (RTS) classification and scale elasticity (SE) in two-stage DEA. 

Sarparast et al. [28] presented diverse approaches to deal with two-stage networks  which evaluated the 

efficiency of two-stage networks in variable returns to scale and introduced a new definition of the types 

of returns to scale in two-stage networks and also methods to determining the type of returns to scale of 

efficient units. Researchers provided DEA models for sensitivity analysis of returns to scale in the two-

stage network DMUs. Peykani et al [25] introduced novel robust data envelopment analysis models capa-

ble of being investigated in the presence of discrete and continuous uncertainties. A year laer, in 2019, 

they [27] presented a new approach, FDEA, for scale efficiency and stock ranking. Put differently, the 

very model was offered to measure the efficiency of stocks when negative data and uncertainties within 

input/output parameters exist (Peykani et al. [23, 24, 26]. Khodakaram et al. [14], in their article “concur-

rent estimation of efficiency, effectiveness, and returns to scale” studied the efficiency, effectiveness and 

return to scale of DMUs simultaneously. Neralic and Wendell [22], also, provided an algorithm approach 

to sensitivity in DEA for the CCR and additive models that provide sufficient conditions that preserve the 

efficiency of the input and/or outputs of DMUs. Nastion and et al [21] prepared an article entitled “sensi-

tivity analysis in data envelopment analysis for interval data remains insure and improve the efficiency of 

DEA modeling and presented a model to calculate the lower and upper limits for each DMU. Kang et al 

[7] presented an article in this study proposes a hybrid two-stage network model and a mixed network 

DEA with the shared-inputs model to jointly measure the efficiency and effectiveness of a metro transport 

system. Performance is determined by the hybrid two-stage network DEA with the shared-inputs model 

to account for the non-storable service feature. To solve the problems of non-linearity, obtaining a total 

return greater than one, the need to assign variable weights to combine the divisive returns, adopt a fixed 

weight to combine the divisive returns, and Inability to find efficient two-stage DMUs in the network 

contribute network DEA, Khoveynia et al [15] have proposed an input-output-oriented linear model to 

measure the overall efficiency of two-stage DMUs with shared resources. 

Tavassoli et al [29] formulated a Fuzzy Network DEA (FNDEA) model to assess the efficiency of Iran's 

EDNs components with sustainability, considerations and uncertain data. In order to utilize all input and 

output criteria, this study also proposes a fuzzy linear programming model to determine the optimal lower 

bound to all input and output weights. Furthermore, some appropriate policies are suggested based on the 
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strengths and weaknesses of each EDN to improve its efficiency. Michalia et al. [19] examined the ap-

plicability of the subsampling bootstrap procedure in the approximation of the asymptotic distribution of 

the DEA estimator when the production process has a network structure, and in the presence of undesirable 

factors. Evidence on the performance of subsampling bootstrap is obtained through Monte Carlo experi-

ments for the case of two-stage series structures, where overall and stage efficiency scores are calculated 

using the additive decomposition approach. Results indicate great sensitivity both to the sample and sub-

sample size, as well as to the data generating process.   Lianga et al [16] provided, for the first time, the 

production process of manufacturing industry is modeled as a network system integrated by AI technology 

development stage, AI application stage and AI upgrade stage because by optimizing production and in-

dustrial structure, artificial intelligence (AI) is considered to play a key role in low carbon manufacturing. 

Understanding the performance of AI driven low carbon manufacturing is of great significance to achieve 

carbon emission reduction targets and sustainable development of resources. Then, an interactive three 

stage network DEA model with ratio data is developed to evaluate the manufacturing industry in China 

from 2016 to 2019.  Show that many regions perform well in the AI application stage while most of them 

have low AI technology development and AI upgrade performance.   

In this study we propose a new method for sensitivity analysis of returns to scale and present a new 

model based on Kao and Hwang’s model [8] and concepts presented by Sarparast et al. [28]. The rest 

of the paper is organized as follows: Section 2 presents the basic DEA model and the generic two-stage 

process and a review of studies conducted by Kao and Hwang [8] and Sarparast et al. [28], then we 

proceed to introduce a new method for returns to scale classification and provide a new model for sen-

sitivity analysis of returns to scale classification in two-stage network systems in Section 3. In section 

4, we use data from Sarparast et al.’s [28] article and compare two methods. After that, two methods 

are used to analyze the data of insurance companies in Iran in 2019, and the results of the two methods 

are compared together. 

 

2 Background  

2.1. The Basic Concepts of DEA 

Suppose that there is a set of DMUs consisting of DMU1, DMU2, …, DMUn, where each DMUj produces 

s outputs 𝐲𝐫𝐣 (𝐫 = 𝟏…𝐬) using m inputs 𝐱𝐢𝐣 (𝐢 = 𝟏…𝐦). The CCR input-oriented radial efficiency of 

DMUo (xo, yo) is obtained by solving the following model: 

𝐌𝐢𝐧           𝛉 

      𝐬. 𝐭: 

        ∑ 𝛌𝐣𝐱𝐢𝐣 ≤ 𝛉𝐱𝐢𝐨
𝐧

𝐣=𝟏
                            𝐢 = 𝟏 ,… ,𝐦. 

        ∑ 𝛌𝐣𝐲𝐫𝐣 ≥ 𝐲 𝐫𝐨                             𝐫 = 𝟏,… , 𝐬.   
𝐧

𝐣=𝟏
 

            𝛌𝐣 ≥ 𝟎                                               𝐣 = 𝟏,… , 𝐧. 

(1) 

   The dual form of the model (1) is obtained from the same data which then is used in the model (2). 

Where u and v are non-negative variables corresponding to constraints. Model (1) and (2) are respec-

tively called envelopment form and multiplier form of CCR model (Charnes et al. [3]). DMUo is CCR-

efficient if and only if the optimal solutions obtained from model (1) and (2) are equal to 1. Then, on 

the basis of all optimal lambda solutions to (1), the CCR RTS method can be expressed as (Banker and 

Thrall. [2]): 



Sarparast et al.  

 
 

 

 
Vol. 9, Issue 3, (2024) 

 
Advances in Mathematical Finance and Applications 

 

[1073] 

 

𝐌𝐚𝐱      ∑ 𝐮𝐫𝐲𝐫𝐩
𝐬

𝐫=𝟏
∑ 𝐯𝐢𝐱𝐢𝐩

𝐦

𝐢=𝟏
⁄  

  𝐬. 𝐭:                               

     ∑ 𝐮𝐫𝐲𝐫𝐣
𝐬

𝐫=𝟏
∑ 𝐯𝐢𝐱𝐢𝐣

𝐦

𝐢=𝟏
⁄   ≤ 𝟏            𝐣 = 𝟏,… , 𝐧. 

      𝐮𝐫 ≥ 𝟎                     𝐫 = 𝟏,… , 𝐬. 

       𝐯𝐢 ≥ 𝟎                     𝐢 = 𝟏,… . ,𝐦. 

(2) 

  Where u and v are non-negative variables corresponding to constraints. Model (1) and (2) are respec-

tively called envelopment form and multiplier form of CCR model (Charnes et al. [3]). DMUo is CCR-

efficient if and only if the optimal solutions obtained from model (1) and (2) are equal to 1. Then, on 

the basis of all optimal lambda solutions to (1), the CCR RTS method can be expressed as (Banker and 

Thrall. [2]): 

If ∑ 𝛌𝐣
∗𝐧

𝐣=𝟏 = 𝟏 in any alternate optimum, then DMUo has constant returns to scale (CRS).  

If ∑ 𝛌𝐣
∗𝐧

𝐣=𝟏 > 𝟏 for all alternate optimum, then DMUo has decreasing returns to scale (DRS).  

If ∑ 𝛌𝐣
∗𝐧

𝐣=𝟏 > 𝟏 for all alternate optimum, then DMUo has increasing returns to scale (IRS).  

Banker et al [1] introduced the BCC model which separates technical efficiency and scale efficiency. 

Unlike CCR model that assumes constant returns to scale, BCC model assumes returns to scale as var-

iable. Envelopment form (3) of BCC model is model (3). 

M𝐢𝐧           𝛉 

       𝐬. 𝐭: 

           ∑ 𝛌𝐣𝐱𝐢𝐣 ≤ 𝛉𝐱𝐢𝐨
𝐧

𝐣=𝟏
                            𝐢 = 𝟏 ,… ,𝐦. 

           ∑ 𝛌𝐣𝐲𝐫𝐣 ≥ 𝐲 𝐫𝐨                             𝐫 = 𝟏,… , 𝐬.   
𝐧

𝐣=𝟏
 

           ∑ 𝛌𝐣  
𝐧

𝐣=𝟏
= 𝟏 

            𝛌𝐣 ≥ 𝟎                                                 𝐣 = 𝟏,… , 𝐧. 

(3) 

The dual (multiplier) form of the BCC model was represented in (3): 

DMUo is BCC-efficient if and only if the optimal solutions obtained from model (3) and (4) are equal 

to 1. Banker and Thrall [2] offered a theorem based on the optimal solution obtained from multiple 

forms of BCC model to identify RTS with the sign of 𝐮𝟎. “If 𝐮𝟎
∗ = 𝟎 in any alternate optimum, then 

DMUo has constant returns to scale (CRS). If 𝐮𝟎
∗ < 𝟎 for all alternate optimum, then DMUo has de-

creasing returns to scale (DRS). If 𝐮𝟎
∗ > 𝟎 for all alternate optimum, then DMUo has increasing returns 

to scale (IRS). 
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𝐌𝐚𝐱 ∑ 𝐮𝐫𝐲𝐫𝐩 + 𝐮𝟎
𝐬

𝐫=𝟏
  

      𝐬. 𝐭:       

           ∑ 𝐯𝐢𝐱𝐢𝐩
𝐦

𝐈=𝟏
= 𝟏 

          ∑ 𝐮𝐫𝐲𝐫𝐣
𝐬

𝐫=𝟏
−∑ 𝐯𝐢𝐱𝐢𝐣

𝐦

𝐢=𝟏
+ 𝐮𝟎 ≤ 𝟎            𝐣 = 𝟏,… , 𝐧. 

            𝐮𝐫 ≥ 𝟎                     𝐫 = 𝟏,… , 𝐬. 

             𝐯𝐢 ≥ 𝟎                     𝐢 = 𝟏,… . ,𝐦. 

(4) 

2.2. Review of the Literature 

Figure 1 shows a two-stage network process. The overall system  produces the final output (y) with 

the consumption of primary input (x). The production process is composed of two sub-processes with 

D intermediate produces z so that z is the output of stage 1 as well as the input of stage 2. Let Zdp (d=1,  

Fig. 1: two-stage network system. 

…, D) is d th output of the first stage, that is produced with inputs xip (i= 1, …, m), and i th input is the 

second stage which is consumed for the output production yrp (r = 1, …, s).  Kao and Hwang [8] presented 

the following model to calculate the overall efficiency taking into account the series relationship of the 

two sub-processes. 

𝛉𝐨
𝐨𝐯𝐞𝐫𝐚𝐥 = 𝐌𝐚𝐱          ∑ 𝐮𝐫𝐲𝐫𝐨

𝐬

𝐫=𝟏
∑ 𝐯𝐢𝐱𝐢𝐨

𝐦

𝐢=𝟏
⁄   

              𝐬. 𝐭: 

                   ∑ 𝐰𝐫𝐳𝐝𝐣
𝐃

𝐝=𝟏
∑ 𝐯𝐢𝐱𝐢𝐣

𝐦

𝐢=𝟏
⁄   ≤ 𝟏            𝐣 = 𝟏,… , 𝐧. 

                   ∑ 𝐮𝐫𝐲𝐫𝐣
𝐬

𝐫=𝟏
∑ 𝐰𝐫𝐳𝐝𝐣

𝐃

𝐝=𝟏
⁄   ≤ 𝟏          𝐣 = 𝟏,… , 𝐧     

                    ∑ 𝐮𝐫𝐲𝐫𝐣
𝐬

𝐫=𝟏
∑ 𝐯𝐢𝐱𝐢𝐣

𝐦

𝐢=𝟏
⁄   ≤ 𝟏            𝐣 = 𝟏,… , 𝐧. 

                    𝐯𝐢 ≥ 𝟎                            𝐢 = 𝟏,… ,𝐦. 

                    𝐰𝐝 ≥ 𝟎                         𝐝 = 𝟏,… , 𝐃. 

                    𝐮𝐫 ≥ 𝟎                            𝐢 = 𝟏,… , 𝐬. 

(5) 

Note that they used the multipliers associated with Zdj to be the same no matter whether it plays the 

role of output or input. The dual version of (5) is  

r= 1, …, s 

𝑦
𝑟𝑝

 𝑥𝑖𝑝 

Stage 1 Stage 2 

𝑧𝑑𝑝 

d= 1, …, D i= 1, …, m 

DMU
p 
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𝛉𝐨
∗ = 𝐌𝐢𝐧           𝛉 

   𝐬. 𝐭:        ∑ (𝛌𝐣 + 𝛅𝐣)𝐱𝐢𝐣 + 𝐬𝐢𝐢 = 𝛉𝐱𝐢𝐨
𝐧

𝐣=𝟏
                 𝐢 = 𝟏 , … ,𝐦. 

        ∑ 𝛅𝐣𝐳𝐝𝐣 − 𝐬𝐰𝐝 = 𝟎                                          𝐝 = 𝟏.… . 𝐃.   
𝐧

𝐣=𝟏
 

        ∑ 𝛌𝐣𝐲𝐫𝐣 − 𝐬𝐨𝐫 = 𝐲 𝐫𝐨                                        𝐫 = 𝟏.… . 𝐬.   
𝐧

𝐣=𝟏
 

    𝛌𝐣 ≥ 𝟎                                                                              𝐣 = 𝟏.… . 𝐧 

(7) 

DMUo is efficient if and only if  the optimal solutions obtained from model (5) and (6) are equal to 

1. This means that  DMUo  is efficient if and only if  both stages are efficient in model (3).  In this article, 

we used model  (6) to identify returns to scale in the two-stage networks and sensitivity analysis of 

returns to scale. Sarparast et al. [28] provided model  (7) to deal with two-stage networks which evalu-

ated the efficiency of two-stage networks in variable returns to scale with regard to  relationship of the 

two sub-processes and on the basis of presentation of a new method to identify returns to scale in a two-

stage network. They used Production Possibility Set (PPS) for a network system defined by Fare and 

Grosskopf [5] and gave a new definition to the returns to scale in a two-stage network as follows: 

 

PPSn-v={(𝑥, 𝑧, 𝑦)|𝑥 ≤ ∑ 𝜆𝑗𝑥𝑗
𝑛
𝑗=1 &𝑧 ≥ ∑ 𝜆𝑗𝑧𝑗& 𝑧 ≤ ∑ 𝜇𝑗𝑧𝑗

𝑛
𝑗=1

𝑛
𝑗=1 &𝑦 ≥ ∑ 𝜇𝑦𝑗

𝑛
𝑗=1  , 𝜆𝑗&𝜇𝑗 ≥ 0; 𝑗 = 1,… , 𝑛. } 

 

Definition 1: Network P is on the efficiency frontier Tn-v, so: 

1. P th network has increasing returns to scale if and if 𝛅∗ > 𝟎 exits, so  

    ∀ 𝛅; 𝟎 < 𝛅 < 𝛅∗  → ((𝟏 + 𝛅)𝐱𝐩, (𝟏 + 𝛅)𝐳𝐩, (𝟏 + 𝛅)𝐲𝐩) ∈ 𝐢𝐧𝐭 𝐓𝐧−𝐯                  

2. P th network has decreasing returns to scale if and if 𝛅∗ > 𝟎 exits, so  

    ∀ 𝛅; 𝟎 < 𝛅 < 𝛅∗   → ((𝟏 − 𝛅)𝐱𝐩, (𝟏 − 𝛅)𝐳𝐩, (𝟏 − 𝛅)𝐲𝐩) ∈ 𝐢𝐧𝐭 𝐓𝐧−𝐯 

𝐌𝐚𝐱         𝛉𝐩 = ( ∑ 𝐮𝐫𝐲𝐫𝐩
𝐬

𝐫=𝟏
+ 𝐮𝟎) (∑ 𝐯𝐢𝐱𝐢𝐩

𝐦

𝐢=𝟏
− 𝐯𝟎⁄ ) 

s. 𝐭: 

         (∑ 𝐮𝐫𝐲𝐫𝐣
𝐬

𝐫=𝟏
+ 𝐮𝟎) ∑ 𝐰𝐝𝐳𝐝𝐣

𝐃

𝐝=𝟏
⁄   ≤ 𝟏                  𝐣 = 𝟏,… , 𝐧. 

          ∑ 𝐰𝐝𝐳𝐝𝐣
𝐃

𝐝=𝟏
(∑ 𝐯𝐢𝐱𝐢𝐣

𝐦

𝐢=𝟏
− 𝐯𝟎)⁄   ≤ 𝟏                  𝐣 = 𝟏,… , 𝐧. 

           (∑ 𝐮𝐫𝐲𝐫𝐣
𝐬

𝐫=𝟏
+ 𝐮𝟎) (∑ 𝐯𝐢𝐱𝐢𝐣

𝐦

𝐢=𝟏
− 𝐯𝟎) ≤ 𝟏⁄         𝐣 = 𝟏,… , 𝐧. 

              𝐯𝐢 ≥ 𝛜                       𝐢 = 𝟏,… . ,𝐦. 

               𝐰𝐝 ≥ 𝛜                     𝐝 = 𝟏,… , 𝐃. 

               𝐮𝐫 ≥ 𝛜                      𝐫 = 𝟏,… . , 𝐬. 

(6) 
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3. P th network has constant returns to scale if and if 𝛅∗ > 𝟎 exits, so  

a) ∀ 𝛅; 𝟎 < 𝛅 < 𝛅∗ → ((𝟏 + 𝛅)𝐱𝐩, (𝟏 + 𝛅)𝐳𝐩, (𝟏 + 𝛅)𝐲𝐩) ∈ 𝛛 𝐓𝐧−𝐯&((𝟏 − 𝛅)𝐱𝐩, (𝟏 − 𝛅)𝐳𝐩, (𝟏 − 𝛅)𝐲𝐩) ∈ 𝛛 𝐓𝐧−𝐯 

or 

b) ∀ 𝛅; 𝟎 < 𝛅 < 𝛅∗  → ((𝟏 + 𝛅)𝐱𝐩, (𝟏 + 𝛅)𝐳𝐩, (𝟏 + 𝛅)𝐲𝐩) ∉  𝐓𝐧−𝐯& ((𝟏 − 𝛅)𝐱𝐩, (𝟏 − 𝛅)𝐳𝐩, (𝟏 − 𝛅)𝐲𝐩) ∉  𝐓𝐧−𝐯 

or 

c) ∀ 𝛅; 𝟎 < 𝛅 < 𝛅∗  → ((𝟏 + 𝛅)𝐱𝐩, (𝟏 + 𝛅)𝐳𝐩, (𝟏 + 𝛅)𝐲𝐩) ∈ 𝛛 𝐓𝐧−𝐯& ((𝟏 − 𝛅)𝐱𝐩, (𝟏 + 𝛅)𝐳𝐩, (𝟏 − 𝛅)𝐲𝐩) ∉ 𝐓𝐧−𝐯 

or 

d) ∀ 𝛅; 𝟎 < 𝛅 < 𝛅∗  → ((𝟏 + 𝛅)𝐱𝐩, (𝟏 + 𝛅)𝐳𝐩, (𝟏 + 𝛅)𝐲𝐩) ∉  𝐓𝐧−𝐯& ((𝟏 − 𝛅)𝐱𝐩. (𝟏 − 𝛅)𝐳𝐩, (𝟏 − 𝛅)𝐲𝐩) ∈ 𝛛𝐓𝐧−𝐯.” 

They provided a theorem for returns to scale which identifies RTS with the sign of 𝐮𝟎
∗ + 𝐯𝟎

∗ in model 

(7) as follows: 

Theorem 1: Suppose that DMUo is called efficient under model (7), and (𝐯∗. 𝐰∗. 𝐮∗. 𝐯𝟎
∗. 𝐮𝟎

∗ ) is an 

obtained optimal solution from model (7); then: 

i)  If in any optimal solution; 𝐮𝟎
∗ + 𝐯𝟎

∗ > 𝟎 then DMUP has IRS. 

ii) If in any optimal solution; 𝐮𝟎
∗ + 𝐯𝟎

∗ < 𝟎 then DMUP has DRS. 

iii) If in some optimal solution; 𝐮𝟎
∗ + 𝐯𝟎

∗ = 𝟎 then DMUP has CRS.  

Proof: Refers to [28]. 

In the theorem (1), efficient DMUs were divided into three categories. 

𝐄 = ⟨  𝐣   |   𝐃𝐌𝐔𝐣𝐢𝐬 𝐞𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐭 𝐮𝐧𝐝𝐞𝐫 𝐦𝐨𝐝𝐞𝐥 (𝟕) ⟩ 

𝐄𝟏 = ⟨  𝐣   │𝐣 ∈ 𝐄 & 𝐮𝟎+𝐯𝟎 > 𝟎 ⟩ 

𝐄𝟐 = ⟨  𝐣   │  𝐣 ∈ 𝐄 & 𝐮𝟎+𝐯𝟎 < 𝟎  ⟩ 

𝐄𝟑 = ⟨  𝐣   │   𝐣 ∈ 𝐄 & 𝐮𝟎+𝐯𝟎 = 𝟎 ⟩ 

If p belongs to the E1 set, then DMUp has IRS; therefore, increasing outputs can change its returns 

to scale. By taking this concept into account, they offered the following non-linear programming. Let 

us suppose that DMUp (xp, zp, yp) has increasing returns to scale, and zp is the first-stage out-

put produced by using xp as input. In the second stage, it is used as an input to produce yp. 

They are interested in the sensitivity analysis of the classification of returns to scale in DMUp. 

For DMUp, therefore, we have the following perturbed data: 

𝑥𝑝 = 𝑥𝑝 + 𝛼; 0 ≤ 𝛼 ≤ min
𝑗
{min

𝑖
{|𝑥𝑖𝑗 − 𝑥𝑖𝑝|}}                                               
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𝑦𝑝 = 𝑦𝑝 + 𝛽; 0 ≤ 𝛽 ≤ min
𝑗
{min

𝑟
{|𝑦𝑟𝑗 − 𝑦𝑟𝑝|}}                                               

 If DMUp has increasing returns to scale, according to the concept above, a model for sen-

sitivity analysis is presented as follows:  

𝐌𝐚𝐱         𝛂 + 𝛃 

 

     𝐬. 𝐭: 

          ∑ 𝐯𝐢
𝐦

𝐢=𝟏
+∑ 𝐮𝐫

𝐬

𝐫=𝟏
= 𝟏. 

          ∑ 𝐮𝐫(𝐲𝐫𝐩 + 𝛃)
𝐬

𝐫=𝟏
−∑ 𝐯𝐢(𝐱𝐢𝐩

𝐦

𝐢=𝟏
+ 𝛂) + 𝐮𝟎 + 𝐯𝟎   =  𝛉𝐩

∗ − 𝟏 

          ∑ 𝐮𝐫(𝐲𝐫𝐩 + 𝛃)
𝐬

𝐫=𝟏
−∑ 𝐰𝐝𝐳𝐝𝐩

𝐃

𝐝=𝟏
+ 𝐮𝟎   ≤ 𝟎                          

          ∑ 𝐰𝐝𝐳𝐝𝐩
𝐃

𝐝=𝟏
−∑ 𝐯𝐢(𝐱𝐢𝐩

𝐦

𝐢=𝟏
+ 𝛂) + 𝐯𝟎   ≤ 𝟎                         

           ∑ 𝐮𝐫𝐲𝐫𝐣
𝐬

𝐫=𝟏
−∑ 𝐰𝐝𝐳𝐝𝐣

𝐃

𝐝=𝟏
+ 𝐮𝟎   ≤ 𝟎                𝐣 = 𝟏,… , 𝐧. & 𝐣 ≠ 𝐩               

            ∑ 𝐰𝐝𝐳𝐝𝐣
𝐃

𝐝=𝟏
−∑ 𝐯𝐢𝐱𝐢𝐣

𝐦

𝐢=𝟏
+ 𝐯𝟎   ≤ 𝟎                 𝐣 = 𝟏,… , 𝐧. & 𝐣 ≠ 𝐩     

            ∑ 𝐮𝐫𝐲𝐫𝐣
𝐬

𝐫=𝟏
−∑ 𝐯𝐢𝐱𝐢𝐣

𝐦

𝐢=𝟏
+ 𝐮𝟎 + 𝐯𝟎  ≤ 𝟎          𝐣 = 𝟏,… , 𝐧.& 𝐣 ≠ 𝐩 

                    𝐮𝟎 + 𝐯𝟎 ≥ 𝛜.           

        𝟎 ≤ 𝛂 ≤ 𝐦𝐢𝐧
𝐣
{𝐦𝐚𝐱

𝐢
{|𝐱𝐢𝐣 − 𝐱𝐢𝐩|}},  

                𝟎 ≤ 𝛃 ≤ 𝐦𝐢𝐧
𝐣
{𝐦𝐢𝐧

𝐫
{|𝐲𝐫𝐣 − 𝐲𝐫𝐩|}} 

                    𝐯𝐢 ≥ 𝛜                     𝐢 = 𝟏,… . ,𝐦. 

                  𝐰𝐝 ≥ 𝛜                     𝐝 = 𝟏,… , 𝐃. 

                   𝐮𝐫 ≥ 𝛜                     𝐫 = 𝟏,… . , 𝐬. 

(8) 

They have used the restriction ∑ 𝐯𝐢
𝐦
𝐢=𝟏 + ∑ 𝐮𝐫

𝐬
𝐫=𝟏 = 𝟏, and assumptions; 𝐤𝐩

′ = 𝐦𝐢𝐧
𝐣
{𝐦𝐚𝐱

𝐢
{|𝐱𝐢𝐣 − 𝐱𝐢𝐩|}}, 

and  𝐤𝐩 = 𝐦𝐢𝐧
𝐣
{𝐦𝐚𝐱

𝐫
{|𝐲𝐫𝐣 − 𝐲𝐫𝐩|}}, so 𝟎 ≤ 𝐯𝐢𝛃 ≤ 𝐯𝐢𝐤𝐩 (for all i), hence 𝟎 ≤ ∑ 𝐯𝐢𝛃

𝐦
𝐢=𝟏 ≤ ∑ 𝐯𝐢𝐤𝐩

𝐦
𝐢=𝟏 , and 

also 𝟎 ≤ ∑ 𝐮𝐫𝛂
𝐬
𝐫=𝟏 ≤ ∑ 𝐮𝐫𝐤𝐩

′𝐬
𝐫=𝟏 ; to convert a nonlinear model (8) to a linear model (9). 

The following assumptions were made: kp
′ = min

j
{max

i
{|xij − xip|}} and kp = min

j
{max

r
{|yrj −

yrp|}} .   Accordinally, if (𝛼∗, 𝛽∗) is an optimal solution of model (9), increasing inputs per 𝛼; 0 ≤

𝛼 ≤ 𝛼∗ and increasing outputs per 𝛽; 0 ≤ 𝛽 ≤ 𝛽∗ cannot change the type of constant returns 

to scale in the evaluated unit.  

 

 



A New Method of Sensitivity Analysis of Returns to Scale in Two-Stage Network; A Case Study of the Insurance … 

 
 

   

 

[1078] 

 
Vol. 9, Issue 3, (2024) 

 
Advances in Mathematical Finance and Applications  

 

𝐌𝐚𝐱         𝛂 + 𝛃 

𝐬. 𝐭:  

        ∑ 𝐮𝐫𝐲𝐫𝐩
𝐬

𝐫=𝟏
−∑ 𝐯𝐢𝐱𝐢𝐩

𝐦

𝐢=𝟏
 + 𝛃 + ∑ 𝐮𝐫

𝐬

𝐫=𝟏
𝐤𝐩
′ −  𝛂 + 𝐮𝟎 + 𝐯𝟎   ≤  𝛉𝐩

∗ − 𝟏 

     −∑ 𝐮𝐫𝐲𝐫𝐩
𝐬

𝐫=𝟏
+∑ 𝐯𝐢𝐱𝐢𝐩

𝐦

𝐢=𝟏
− 𝛃 +  𝛂 +∑ 𝐯𝐢𝐤𝐩

𝐦

𝐢=𝟏
− 𝐮𝟎 − 𝐯𝟎   ≤ 𝟏 − 𝛉𝐩

∗  

        ∑ 𝐮𝐫𝐲𝐫𝐩
𝐬

𝐫=𝟏
−∑ 𝐰𝐫𝐳𝐝𝐩

𝐃

𝐝=𝟏
+  𝛃 + 𝐮𝟎   ≤ 𝟎               

        ∑ 𝐰𝐫𝐳𝐝𝐩
𝐃

𝐝=𝟏
−∑ 𝐯𝐢𝐱𝐢𝐩

𝐦

𝐢=𝟏
− 𝛂 + ∑ 𝐮𝐫

𝐬

𝐫=𝟏
𝐤𝐩
′ + 𝐯𝟎   ≤ 𝟎                  

        ∑ 𝐮𝐫𝐲𝐫𝐣
𝐬

𝐫=𝟏
−∑ 𝐰𝐫𝐳𝐝𝐣

𝐃

𝐝=𝟏
+ 𝐮𝟎   ≤ 𝟎                𝐣 = 𝟏,… , 𝐧.& 𝐣 ≠ 𝐨               

        ∑ 𝐰𝐫𝐳𝐝𝐣
𝐃

𝐝=𝟏
−∑ 𝐯𝐢𝐱𝐢𝐣

𝐦

𝐢=𝟏
+ 𝐯𝟎   ≤ 𝟎                 𝐣 = 𝟏,… , 𝐧. & 𝐣 ≠ 𝐨     

        ∑ 𝐮𝐫𝐲𝐫𝐣
𝐬

𝐫=𝟏
−∑ 𝐯𝐢𝐱𝐢𝐣

𝐦

𝐢=𝟏
+ 𝐮𝟎 + 𝐯𝟎  ≤ 𝟎          𝐣 = 𝟏,… , 𝐧. & 𝐣 ≠ 𝐨 

                 𝐮𝟎 + 𝐯𝟎 ≥ 𝛜.           

                𝟎 ≤ 𝛂 ≤ 𝐤𝐩
′                

                𝟎 ≤ 𝛃 ≤ 𝐤𝐩 

                    𝐯𝐢 ≥ 𝛜                      𝐢 = 𝟏,… ,𝐦. 

                  𝐰𝐝 ≥ 𝛜                     𝐝 = 𝟏,… , 𝐃. 

                   𝐮𝐫 ≥ 𝛜                      𝐫 = 𝟏,… , 𝐬. 

(9) 

Also, they provided another linear programming problem (10) when p belongs to the E2 set. Note 

that if DMUp has DRS, then increasing outputs cannot change its returns to scale. 

𝐌𝐚𝐱        𝛂 + 𝛃 

       𝐬. 𝐭: 

           ∑ 𝐮𝐫𝐲𝐫𝐩
𝐬

𝐫=𝟏
−∑ 𝐯𝐢𝐱𝐢𝐩

𝐦

𝐢=𝟏
− 𝛃 +∑ 𝐯𝐢𝐤𝐩

𝐦

𝐢=𝟏
+  𝛂 + 𝐮𝟎 + 𝐯𝟎   ≤  𝛉𝐩

∗ − 𝟏 

        −∑ 𝐮𝐫𝐲𝐫𝐩
𝐬

𝐫=𝟏
+∑ 𝐯𝐢𝐱𝐢𝐩

𝐦

𝐢=𝟏
+ 𝛃 −  𝛂 +∑ 𝐮𝐫

𝐬

𝐫=𝟏
𝐤𝐩
′ − 𝐮𝟎 − 𝐯𝟎   ≤ 𝟏 − 𝛉𝐩

∗  

            ∑ 𝐮𝐫𝐲𝐫𝐩
𝐬

𝐫=𝟏
−∑ 𝐰𝐫𝐳𝐝𝐩

𝐃

𝐝=𝟏
−  𝛃 +∑ 𝐯𝐢𝐤𝐩 +

𝐦

𝐢=𝟏
𝐮𝟎   ≤ 𝟎               

            ∑ 𝐰𝐫𝐳𝐝𝐩
𝐃

𝐝=𝟏
−∑ 𝐯𝐢𝐱𝐢𝐩

𝐦

𝐢=𝟏
+ 𝛂 + 𝐯𝟎   ≤ 𝟎                  

            ∑ 𝐮𝐫𝐲𝐫𝐣
𝐬

𝐫=𝟏
−∑ 𝐰𝐫𝐳𝐝𝐣

𝐃

𝐝=𝟏
+ 𝐮𝟎   ≤ 𝟎                𝐣 = 𝟏,… , 𝐧. & 𝐣 ≠ 𝐩               

            ∑ 𝐰𝐫𝐳𝐝𝐣
𝐃

𝐝=𝟏
−∑ 𝐯𝐢𝐱𝐢𝐣

𝐦

𝐢=𝟏
+ 𝐯𝟎   ≤ 𝟎                 𝐣 = 𝟏,… , 𝐧. & 𝐣 ≠ 𝐩     

            ∑ 𝐮𝐫𝐲𝐫𝐣
𝐬

𝐫=𝟏
−∑ 𝐯𝐢𝐱𝐢𝐣

𝐦

𝐢=𝟏
+ 𝐮𝟎 + 𝐯𝟎  ≤ 𝟎          𝐣 = 𝟏,… , 𝐧.& 𝐣 ≠ 𝐩 

(10) 
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             𝐮𝟎 + 𝐯𝟎 ≤ 𝛜.           

                𝟎 ≤ 𝛂 ≤ 𝐤𝐩
′  

                𝟎 ≤ 𝛃 ≤ 𝐤𝐩 

                    𝐯𝐢 ≥ 𝛜                      𝐢 = 𝟏,… ,𝐦. 

                  𝐰𝐝 ≥ 𝛜                     𝐝 = 𝟏,… , 𝐃. 

                   𝐮𝐫 ≥ 𝛜                      𝐫 = 𝟏,… , 𝐬. 

 In this case, they regarded   kp
′ = min

j

{max
i
{|xij − xip|}} and kp = {min

r
{|yrp|}}. And, finally, 

they catered model (11) and (12) when DMUp has CRS because increasing or decreasing outputs can 

change its returns to scale.  

 

𝐌𝐚𝐱         𝛂𝟏 + 𝛃𝟏 

s.t:                                      

       ∑ 𝐮𝐫𝐲𝐫𝐩
𝐬

𝐫=𝟏
−∑ 𝐯𝐢𝐱𝐢𝐩

𝐦

𝐢=𝟏
 + 𝛃𝟏 + ∑ 𝐮𝐫

𝐬

𝐫=𝟏
𝐤𝐩
′ − 𝛂𝟏 + 𝐮𝟎 + 𝐯𝟎   ≤  𝛉𝐩

∗ − 𝟏 

        −∑ 𝐮𝐫𝐲𝐫𝐩
𝐬

𝐫=𝟏
+∑ 𝐯𝐢𝐱𝐢𝐩

𝐦

𝐢=𝟏
− 𝛃𝟏 + 𝛂𝟏 +∑ 𝐯𝐢𝐤𝐩

𝐦

𝐢=𝟏
− 𝐮𝟎 − 𝐯𝟎   ≤ 𝟏 − 𝛉𝐩

∗  

       ∑ 𝐮𝐫𝐲𝐫𝐩
𝐬

𝐫=𝟏
−∑ 𝐰𝐫𝐳𝐝𝐩

𝐃

𝐝=𝟏
+ 𝛃𝟏 + 𝐮𝟎   ≤ 𝟎               

       ∑ 𝐰𝐫𝐳𝐝𝐩
𝐃

𝐝=𝟏
−∑ 𝐯𝐢𝐱𝐢𝐩

𝐦

𝐢=𝟏
− 𝛂𝟏 + ∑ 𝐮𝐫

𝐬

𝐫=𝟏
𝐤𝐩
′ + 𝐯𝟎   ≤ 𝟎                  

       ∑ 𝐮𝐫𝐲𝐫𝐣
𝐬

𝐫=𝟏
−∑ 𝐰𝐫𝐳𝐝𝐣

𝐃

𝐝=𝟏
+ 𝐮𝟎   ≤ 𝟎                𝐣 = 𝟏,… , 𝐧. & 𝐣 ≠ 𝐩               

       ∑ 𝐰𝐫𝐳𝐝𝐣
𝐃

𝐝=𝟏
−∑ 𝐯𝐢𝐱𝐢𝐣

𝐦

𝐢=𝟏
+ 𝐯𝟎   ≤ 𝟎                 𝐣 = 𝟏,… , 𝐧. & 𝐣 ≠ 𝐩     

       ∑ 𝐮𝐫𝐲𝐫𝐣
𝐬

𝐫=𝟏
−∑ 𝐯𝐢𝐱𝐢𝐣

𝐦

𝐢=𝟏
+ 𝐮𝟎 + 𝐯𝟎  ≤ 𝟎          𝐣 = 𝟏,… , 𝐧. & 𝐣 ≠ 𝐩 

        𝐮𝟎 + 𝐯𝟎 = 𝟎.           

        𝟎 ≤ 𝛂𝟏 ≤ 𝐤𝐩
′                

         𝟎 ≤ 𝛃𝟐 ≤ 𝐤𝐩 

           𝐯𝐢 ≥ 𝛜                     𝐢 = 𝟏,… . ,𝐦. 

           𝐰𝐝 ≥ 𝛜                    𝐝 = 𝟏,… , 𝐃. 

            𝐮𝐫 ≥ 𝛜                     𝐫 = 𝟏,… . , 𝐬. 

(11) 

 

And  
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              𝐬. 𝐭                                                                                       

               ∑ 𝐮𝐫𝐲𝐫𝐩
𝐬

𝐫=𝟏
−∑ 𝐯𝐢𝐱𝐢𝐩

𝐦

𝐢=𝟏
− 𝛃𝟐 +∑ 𝐯𝐢𝐤𝐩

𝐦

𝐢=𝟏
+ 𝛂𝟐 + 𝐮𝟎 + 𝐯𝟎   ≤  𝛉𝐩

∗ − 𝟏 

               −∑ 𝐮𝐫𝐲𝐫𝐩
𝐬

𝐫=𝟏
+∑ 𝐯𝐢𝐱𝐢𝐩

𝐦

𝐢=𝟏
+ 𝛃𝟐 − 𝛂𝟐 +∑ 𝐮𝐫

𝐬

𝐫=𝟏
𝐤𝐩
′ − 𝐮𝟎 − 𝐯𝟎   ≤ 𝟏 − 𝛉𝐩

∗  

                ∑ 𝐮𝐫𝐲𝐫𝐩
𝐬

𝐫=𝟏
−∑ 𝐰𝐫𝐳𝐝𝐩

𝐃

𝐝=𝟏
− 𝛃𝟐 +∑ 𝐯𝐢𝐤𝐩 +

𝐦

𝐢=𝟏
𝐮𝟎   ≤ 𝟎               

                ∑ 𝐮𝐫𝐲𝐫𝐣
𝐬

𝐫=𝟏
−∑ 𝐰𝐫𝐳𝐝𝐣

𝐃

𝐝=𝟏
+ 𝐮𝟎   ≤ 𝟎                𝐣 = 𝟏,… , 𝐧. & 𝐣 ≠ 𝐩               

                ∑ 𝐰𝐫𝐳𝐝𝐣
𝐃

𝐝=𝟏
−∑ 𝐯𝐢𝐱𝐢𝐣

𝐦

𝐢=𝟏
+ 𝐯𝟎   ≤ 𝟎                 𝐣 = 𝟏,… , 𝐧. & 𝐣 ≠ 𝐩     

                ∑ 𝐮𝐫𝐲𝐫𝐣
𝐬

𝐫=𝟏
−∑ 𝐯𝐢𝐱𝐢𝐣

𝐦

𝐢=𝟏
+ 𝐮𝟎 + 𝐯𝟎  ≤ 𝟎          𝐣 = 𝟏,… , 𝐧. & 𝐣 ≠ 𝐩 

                    𝐮𝟎 + 𝐯𝟎 = 𝟎.           

                𝟎 ≤ 𝛂 ≤ 𝐟𝐩
′  , 

                 𝟎 ≤ 𝛃 ≤ 𝐟𝐩 

                    𝐯𝐢 ≥ 𝛜                     𝐢 = 𝟏,… . ,𝐦. 

                    𝐰𝐝 ≥ 𝛜                   𝐝 = 𝟏,… , 𝐃. 

                    𝐮𝐫 ≥ 𝛜                     𝐫 = 𝟏,… . , 𝐬. 

(12) 

Where 𝐤𝐩 = 𝐦𝐢𝐧
𝐣
{𝐦𝐢𝐧

𝐫
{|𝐲𝐫𝐣 − 𝐲𝐫|}} , 𝐤𝐩

′ = 𝐦𝐢𝐧
𝐣
{𝐦𝐚𝐱

𝐢
{|𝐱𝐢𝐣 − 𝐱𝐢𝐩|}} , 𝐟𝐩 = {𝐦𝐢𝐧

𝐫
{|𝐲𝐫𝐩|}} and  𝐟𝐩

′ =

𝐦𝐢𝐧
𝐣
{𝐦𝐢𝐧

𝐢
{|𝐱𝐢𝐣 − 𝐱𝐢𝐩|}} By choosing 𝛂∗ = 𝐦𝐢𝐧 {𝛂𝟏. 𝛂𝟐 } and  𝛃∗ = 𝐦𝐢𝐧 {𝛃𝟏. 𝛃𝟐 }, per 𝛂; 𝟎 ≤ 𝛂 ≤ 𝛂∗ 

increasing and decreasing in inputs and per 𝛃; 𝟎 ≤ 𝛃 ≤ 𝛃∗increasing and decreasing in outputs cannot 

change type of constant returns to scale evaluation unit. In all above situations, [0,  𝛃∗] is best interval to 

increase or decrease outputs for DMUO so that its returns to scale does not change.  Actually [0,  𝛃∗] is the 

stability region of the RTS classifications.  

 

3 Methodology  

3.1 Classification of Returns to Scale 

In reality, most productions are manufactured based on multi-stage nature. Identification of such 

technologies by the concept like network returns to scale is of utmost importance to firm managers for 

the stage-specific analysis of their business decisions concerning development or relationships so as to 

improve their firm’s overall behavior; therefore, determination of stability region  of returns to scale 

classification is very important. For this reason, we proposed a new method to detect returns to scale in 
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two-stage networks.  We employed model (6) and (7), then we used the obtained optimal solutions from 

model (6) to offer a new method for identification of returns to scale.  

It is supposed that DMUp is efficient under model (7) and (𝛉∗, 𝛌∗, 𝛅∗) is an optimum solution from 

model (6)  to assess the  DMUp. We claim that the following theorem is always true. Theorem2: Sup-

posing that DMUo is called efficient under model (7) and (𝛉∗, 𝛌∗, 𝛅∗) is an obtained optimal solution 

from model (6), then 

i) If in any optimal solution; 𝟏𝛌∗ +  𝟏𝛅∗ < 𝟏 then DMUP has IRS. 

ii) If in any optimal solution; 𝟏𝛌∗ +  𝟏𝛅∗ > 𝟏 then DMUP has DRS. 

iii) If in some optimal solutions; 𝟏𝛌∗ +  𝟏𝛅∗ = 𝟏  then DMUP has CRS. 

Proof: If we suppose that (𝐯∗, 𝐰∗, 𝐮∗) is the optimal value of (5) and (𝛉∗, 𝛌∗, 𝛅∗) is optimal value for 

(6) and (�̂�, �̂�, �̂�, 𝐮𝟎
∗ , 𝐯𝟎

∗) is the optimal value of (7), So: 

�̂�𝐲𝐩 + 𝐮𝟎
∗ = 𝟏  , �̂�𝐱𝐩 − 𝐯𝟎

∗ = 𝟏                                                                   (13) 

�̂�𝐲𝐣 − �̂�𝐱𝐣 + 𝐮𝟎
∗ + 𝐯𝟎

∗ = −𝐆𝐣
°           ∀  𝐣                                                              (14) 

�̂�𝒛𝐣 − �̂�𝐱𝐣 + 𝐯𝟎
∗ = −𝐆𝟏𝐣

°                    ∀  𝐣                                                             (15) 

�̂�𝐲𝐣 − �̂�𝐳𝐣 + 𝐮𝟎
∗ = −𝐆𝟐𝐣

°                    ∀  𝐣                                                             (16) 

𝛉∗𝐱𝐩 − 𝐬𝐯
∗ = ∑ (𝛌𝐣

∗ + 𝛅𝐣
∗

𝐣 )𝐱𝐣                                                                        (17) 

𝐲𝐩 + 𝐬𝐮
∗ = ∑ 𝛌𝐣

∗𝐲𝐣𝐣                                                                                  (18) 

𝐬𝐰
∗ = ∑ 𝛅𝐣

∗𝐳𝐣𝐣                                                                                     (19) 

It is supposed that ∑ 𝛌𝐣
𝐧
𝐣=𝟏 + ∑ 𝛍𝐣

𝐧
𝐣=𝟏 = 𝟏 + 𝛆. Multiplying the sides by constraints: (16), (17) and (18)  in 𝛟𝐣

∗, 

𝛂𝐣
∗ and 𝛃𝐣

∗, respectively  that 𝛟𝐣
∗, 𝛂𝐣

∗ and 𝛃𝐣
∗ ≥ 𝟎 : 

�̂�(∑ 𝛟𝐣
∗𝐲𝐣𝐣 ) − �̂�(∑ 𝛟𝐣

∗𝐱𝐣𝐣 ) + ∑ 𝛟𝐣
∗

𝐣 𝐮𝟎
∗ + ∑ 𝛟𝐣

∗
𝐣 𝐯𝟎

∗ = −∑ 𝛟𝐣
∗

𝐣 𝐆𝐣
°                              (20) 

�̂�(∑ 𝛂𝐣
∗𝐳𝐣𝐣 ) − �̂�(∑ 𝛂𝐣

∗𝐱𝐣𝐣 ) + ∑ 𝛂𝐣
∗

𝐣 𝐯𝟎
∗ = −∑ 𝛂𝐣

∗
𝐣 𝐆𝟏𝐣

°                                                    (21) 

�̂�(∑ 𝛃𝐣
∗𝐲𝐣𝐣 ) − �̂�(∑ 𝛃𝐣

∗𝐱𝐣𝐣 ) + ∑ 𝛃𝐣
∗

𝐣 𝐮𝟎
∗ = −∑ 𝛃𝐣

∗
𝐣 𝐆𝟐𝐣

°                                                  (22) 

The sum of constraints (20) and (21) and (22) is equal  

�̂�(∑ (𝛟𝐣
∗ + 𝛃𝐣

∗)𝐲𝐣𝐣 ) − �̂�(∑ (𝛟𝐣
∗ + 𝛂𝐣

∗)𝐱𝐣𝐣 ) + �̂�(∑ (𝛂𝐣
∗

𝐣 − 𝛃𝐣
∗)𝐳𝐣) + ∑ (𝛟𝐣

∗ + 𝛃𝐣
∗)𝐣 𝐮𝟎

∗ +∑ (𝛟𝐣
∗ + 𝛂𝐣

∗)𝐣 𝐯𝟎
∗+ 

(∑ 𝛟𝐣
∗

𝐣 𝐆𝐣
° +∑ 𝛂𝐣

∗
𝐣 𝐆𝟏𝐣

° +∑ 𝛃𝐣
∗

𝐣 𝐆𝟐𝐣
° ) =0                                                              

(23) 
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Let 𝛟𝐣
∗ + 𝛃𝐣

∗ = 𝛌𝐣
∗ and  𝛂𝐣

∗ − 𝛃𝐣
∗ = 𝛅𝐣

∗. Hence (24) can be expressed like this: 

�̂�(∑ 𝛌𝐣
∗𝐲𝐣𝐣 ) − �̂�(∑ (𝛌𝐣

∗ + 𝛅𝐣
∗)𝐱𝐣𝐣 ) + �̂�(∑ 𝛅𝐣

∗
𝐣 𝐳𝐣) + ∑ 𝛌𝐣

∗
𝐣 𝐮𝟎

∗ +∑ (𝛌𝐣
∗ + 𝛅𝐣

∗)𝐣 𝐯𝟎
∗ +(∑ 𝛟𝐣

∗
𝐣 𝐆𝐣

° +

∑ 𝛂𝐣
∗

𝐣 𝐆𝟏𝐣
° +∑ 𝛃𝐣

∗
𝐣 𝐆𝟐𝐣

° ) =0   
(24) 

It is clear that ∑ 𝛟𝐣
∗

𝐣 𝐆𝐣
° + ∑ 𝛂𝐣

∗
𝐣 𝐆𝟏𝐣

° + ∑ 𝛃𝐣
∗

𝐣 𝐆𝟐𝐣
° > 𝟎, so:                

�̂�(∑ 𝛌𝐣
∗𝐲𝐣𝐣 ) − �̂�(∑ (𝛌𝐣

∗ + 𝛅𝐣
∗)𝐱𝐣𝐣 ) + �̂�(∑ 𝛅𝐣

∗
𝐣 𝐳𝐣) + ∑ 𝛌𝐣

∗
𝐣 𝐮𝟎

∗ +∑ (𝛌𝐣
∗ + 𝛅𝐣

∗)𝐣 𝐯𝟎
∗ < 𝟎        (25) 

Due to the (17), (18), (19) and (25), then we have �̂�(𝐲𝐩 + 𝐬𝐮
∗) − �̂�(𝛉∗𝐱𝐩 − 𝐬𝐯

∗) + �̂�(𝐬𝐰
∗ ) + (𝟏 + 𝛆)𝐮𝟎

∗ +

(𝛉∗ + 𝛆)𝐯𝟎
∗ < 𝟎, So �̂�𝐲𝐩 − �̂�𝛉

∗𝐱𝐩 + 𝐮𝟎
∗+𝐯𝟎

∗ + �̂�𝐬𝐮
∗ + �̂�𝐬𝐯

∗ + �̂�𝐬𝐰
∗ + 𝛆𝐮𝟎

∗ + 𝛆𝐯𝟎
∗ < 𝟎, Hence, 𝛆(𝐮𝟎

∗ +

𝐯𝟎
∗) < 𝟎 if 𝛆 < 𝟎 , then 𝐮𝟎

∗ + 𝐯𝟎
∗ > 𝟎.  As a result, if DMUp was efficient, then if 𝟏𝛌∗ +  𝟏𝛅∗ < 𝟏, and 

then DMUP has IRS.Other cases can be proved, similarly. □ Assume that 𝐐 =

⟨  𝐣 |𝐃𝐌𝐔𝐣 𝐢𝐬 𝐞𝐟𝐟𝐢𝐜𝐢𝐨𝐧𝐭  𝐮𝐧𝐝𝐞𝐫 𝐦𝐨𝐝𝐞𝐥 (𝟕)⟩, Then the RTS classification for DMUo is identified as 

IRS if and only if 𝐨𝛜𝐐𝟏 = {𝐣 ∈ 𝐐 & 𝟏𝛌∗ +  𝟏𝛅∗ < 𝟏} in all optimal solutions, DRS if and only if 

𝐨𝛜𝐐𝟐 = {𝐣 ∈ 𝐄 &𝟏𝛌∗ +  𝟏𝛅∗ > 𝟏} in all optimal solutions, and CRS if and only if 𝐨𝛜𝐐𝟑 =

{𝐣 ∈ 𝐄 &𝟏𝛌∗ +  𝟏𝛅∗ = 𝟏} in some optimal solutions. The classification is used for sensitivity analysis 

of returns to scale. 

3.2. Stability Regions for Maintaining Returns to Scale in Two Stage Networks 

Returns to scale is an economic and important concept in DEA which explains the behavior of the 

increase rate in output relative to the associated increase in the inputs. In this section, we are looking 

for degree of changes in the outputs and inputs of efficient DMUo, on the condition that its returns to 

scale classification remains constant. If 𝐨𝛜𝐐𝟏, then DMUo has IRS; hence, decreasing outputs cannot 

change its returns to scale. Consider the following disturbed at the inputs and outputs of the DMUo: 

𝐱𝐨 = 𝐱𝐨 + 𝛂 

𝐲𝐨 = 𝐲𝐨 + 𝛃 

The following model obtains the best interval between increasing outputs and inputs that DMUo is still 

IRS. 

𝐌𝐚𝐱   𝛂 + 𝛃 

  𝐬. 𝐭:       

 ∑ (𝛌𝐣 + (𝛅𝐣
′ − 𝛅𝐣

′′)) 𝐱𝐢𝐣 + (𝛌𝐨 + (𝛅𝐨
′ − 𝛅𝐨

′′))(𝐱𝐢𝐨 + 𝛂) ≤ 𝛉∗(𝐱𝐢𝐨 + 𝛂)
𝐧

𝐣=𝟏
𝐣≠𝐨

    𝐢 = 𝟏,… ,𝐦. 

 ∑ (𝛅𝐣
′ − 𝛅𝐣

′′)𝐳𝐝𝐣 ≥ 𝟎                                                        𝐝 = 𝟏,… , 𝐃.   
𝐧

𝐣=𝟏
 

 ∑ 𝛌𝐣𝐲𝐫𝐣+ 𝛌𝐨(𝐲 𝐫𝐨 + 𝛃) ≥ (𝐲 𝐫𝐨 + 𝛃)                              𝐫 = 𝟏,… , 𝐬.   
𝐧

𝐣=𝟏
𝐣≠𝐨

 

 ∑ 𝛌𝐣
   𝐧

𝐣=𝟏
+ ∑ (𝛅𝐣

′ − 𝛅𝐣
′′)

   𝐧

𝐣=𝟏
 ≤ 𝟏 + 𝛜 

𝟎 ≤ 𝛂 ≤ 𝐤𝐨
′  

(26) 
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𝟎 ≤ 𝛃 ≤ 𝐤𝐨 

𝛌𝐣, 𝛅𝐣
′, 𝛅𝐣

′′ ≥ 𝟎                                            𝐣 = 𝟏,… , 𝐧. 

The 𝛉∗ is efficiency score of the DMUo under Model (6). 𝛜 > 𝟎 is a non-Archimedean constant? 

Model (26) is a non-linear programming problem. Let 𝟎 ≤ 𝛂 ≤ 𝐤𝐨
′  and 𝟎 ≤ 𝛃 ≤ 𝐤𝐨 that 𝐤𝐨

′ =

𝐦𝐢𝐧
𝐣
{𝐦𝐚𝐱

𝐢
{|𝐱𝐢𝐣 − 𝐱𝐢𝐩|}} and  𝐤𝐨 = 𝐦𝐢𝐧

𝐣
{𝐦𝐚𝐱

𝐫
{|𝐲𝐫𝐣 − 𝐲𝐫𝐩|}} (Sarparast et al.[28]). Thus,  

 

{
 
 

 
 𝟎 ≤ 𝛌𝐨𝛂 ≤ 𝐤𝐨

′  𝛌𝐨 → 𝛂𝛌𝐨 = 𝐤𝐨
′  𝛌𝐨 − 𝐒

𝟏    ; 𝐤𝐨
′  𝛌𝐨 − 𝐒

𝟏 ≥ 𝟎 , 𝐒𝟏 ≥ 𝟎

𝟎 ≤ 𝛅𝐣
′𝛂 ≤ 𝐤𝐨

′ 𝛅𝐣
′ → 𝛂𝛅𝐣

′ = 𝐤𝐨
′ 𝛅𝐣

′ − 𝐒𝟐    ; 𝐤𝐨
′ 𝛅𝐣

′ − 𝐒𝟐 ≥ 𝟎, 𝐒𝟐 ≥ 𝟎

𝟎 ≤ 𝛂𝛅𝐣
′′ ≤ 𝐤𝐨

′ 𝛅𝐣
′′ → 𝛂𝛅𝐣

′′ = 𝐤𝐨
′ 𝛅𝐣

′′ − 𝐒𝟑  ; 𝐤𝐨
′ 𝛅𝐣

′′ − 𝐒𝟑 ≥ 𝟎, 𝐒𝟑 ≥ 𝟎

𝟎 ≤ 𝛃 𝛌𝐨 ≤ 𝐤𝐨 𝛌𝐨 → 𝛃 𝛌𝐨 = 𝐤𝐨 𝛌𝐨 − 𝐒
𝟒    ; 𝐤𝐨 𝛌𝐨 − 𝐒

𝟒 ≥ 𝟎 , 𝐒𝟒 ≥ 𝟎

 (27) 

Based on the above factors (27), model (26) can be changed as follows: 

𝐌𝐚𝐱 𝛂 + 𝛃                                            

  𝐬. 𝐭:          

∑ (𝛌𝐣 + (𝛅𝐣
′ − 𝛅𝐣

′′)) 𝐱𝐢𝐣 + (𝐤𝐨
′  𝛌𝐨 − 𝐒

𝟏) + (𝐤𝐨
′ 𝛅𝐣

′ − 𝐒𝟐) − (𝐤𝐨
′ 𝛅𝐣

′′ − 𝐒𝟑) ≤ 𝛉∗(𝐱𝐢𝐨 + 𝛂),
𝐧

𝐣=𝟏
 

𝐢 = 𝟏,… ,𝐦 

∑ (𝛅𝐣
′ − 𝛅𝐣

′′)𝐳𝐝𝐣 ≥ 𝟎                                                                    𝐝 = 𝟏,… ,𝐃.   
𝐧

𝐣=𝟏
 

∑ 𝛌𝐣𝐲𝐫𝐣 + 𝐤𝐨 𝛌𝐨 − 𝐒
𝟒     ≥ (𝐲 𝐫𝐨 + 𝛃)                                       𝐫 = 𝟏,… , 𝐬.   

𝐧

𝐣=𝟏
 

∑ 𝛌𝐣
𝐧

𝐣=𝟏
+ ∑ (𝛅𝐣

′ − 𝛅𝐣
′′)

𝐧

𝐣=𝟏
≤ 𝟏+ 𝛜 

              𝐤𝐨
′  𝛌𝐨 − 𝐒

𝟏 ≥ 𝟎 

              𝐤𝐨
′ 𝛅𝐣

′ − 𝐒𝟐 ≥ 𝟎 

             𝐤𝐨
′ 𝛅𝐣

′′ − 𝐒𝟑 ≥ 𝟎 

             𝐤𝐨 𝛌𝐨 − 𝐒
𝟒 ≥ 𝟎 

             𝟎 ≤ 𝛂 ≤ 𝐤𝐨
′  

             𝟎 ≤ 𝛃 ≤ 𝐤𝐨 

            𝐒𝟏, 𝐒𝟐, 𝐒𝟑, 𝐒𝟒 ≥ 𝟎 

              𝛌𝐣, 𝛅𝐣
′, 𝛅𝐣

′′ ≥ 𝟎                                            𝐣 = 𝟏,… , 𝐧. 

(28) 

 

Model (28) is a linear programming problem. Theorem 3 shows that its optimal solution is equal to the 

optimal solution obtained from the model (26). 

Theorem 3. The optimal solution obtained from the model (28) is equal to the optimal solution obtained 

from the model (26). 
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Proof: It is assumed that (α∗, β∗, λ∗, δ′
∗
, δ′′

∗
) is an optimal solution obtained from non-linear program-

ming problem (26) and (α̂, β̂, λ̂, δ′, δ′′, Ŝ1, Ŝ2, Ŝ3, Ŝ4) is an optimal solution obtained from model (28).  

(α̂, β̂, λ̂, δ̂′, δ̂′′, ko
′  λ̂o − α̂λ̂o, ko

′ δ̂o
′
− α̂δ̂o

′
, ko
′ δ̂o

′′
− α̂δ̂o

′′
, ko λ̂o − β̂ λ̂o)is a feasible solution for model 

(28), so it is true in the constraint of the model (28) as follows: 

∑ (λ̂j + (δ̂j
′
− δ̂j

′′
)) xij + (ko

′  λ̂o − (ko
′  λ̂o − α̂λ̂o)) + (ko

′ δ̂j
′
− (ko

′ δ̂o
′
− α̂δ̂o

′
)) − (ko

′ δj
′′ − (ko

′ δ̂o
′′
− α̂δ̂o

′′
))

n

j=1

≤ θ∗(xio + α)                           i = 1 ,… ,m. 

∑ (δ̂j
′
− δ̂j

′′
)zdj ≥ 0                                                                                           d = 1,… ,D.   

n

j=1
 

∑ λ̂jyrj + ko λ̂o − (ko λ̂o − β̂ λ̂o)     ≥ (y ro + β)                                          r = 1,… , s.   
n

j=1
 

∑ λ̂j
n

j=1
+ ∑ (δ̂j

′
− δ̂j

′′
)

n

j=1
≤ 1 + ϵ 

0 ≤ α̂ ≤ ko
′  

0 ≤ β̂ ≤ ko 

 ko
′  λ̂o − (ko

′  λ̂o − α̂λ̂o) ≥ 0 

 ko
′ δ̂j

′
− (ko

′ δ̂o
′
− α̂δ̂o

′
) ≥ 0 

 ko
′ δ̂j

′′
− (ko

′ δ̂o
′′
− α̂δ̂o

′′
) ≥ 0 

 ko λ̂o − (ko λ̂o − β̂ λ̂o) ≥ 0 

 ko
′  λ̂o − α̂λ̂o, ko

′ δ̂o
′
− α̂δ̂o

′
, ko
′ δ̂o

′′
− α̂δ̂o

′′
, ko λ̂o − β̂ λ̂o ≥ 0      

 λ̂j, δ̂j
′
, δ̂j

′′
≥ 0      

(29) 

 

We rewrite (29) as follows: 

∑ (λ̂j + (δ̂j
′
− δ̂j

′′
)) xij + α̂λ̂o + α̂δ̂o

′
− α̂δ̂o

′′
≤ θ∗(xio + α)

n

j=1
           i = 1 , … ,m. 

∑ (δ̂j
′
− δ̂j

′′
)zdj ≥ 0                                                                                         d = 1,… , D.   

n

j=1
 

∑ λ̂jyrj + β̂ λ̂o  ≥ (y ro + β)                             r = 1,… , s.   
n

  j=1
 

∑ λ̂j
n

j=1
+ ∑ (δ̂j

′
− δ̂j

′′
)

n

j=1
≤ 1 + ϵ   

0 ≤ α̂ ≤ kp
′  

0 ≤ β̂ ≤ kp 

�̂�𝐣, �̂�𝐣
′
, �̂�𝐣

′′
≥ 𝟎    

(30) 

 

Model (30) Shows that (α̂, β̂, λ̂, δ′, δ′′) is a feasible solution for model (26), so α∗ + β∗ ≥ α̂ + β̂; (i). 

If (α∗, β∗, λj
∗, δj

′∗, δj
′′∗) is an optimal solution for model, (26) then according to (27), 

(α∗, β∗, λj
∗, δj

′∗, δj
′′∗, S1

∗
= ko

′  λo
∗ − α∗λo

∗, S2
∗
= ko

′ δj
′∗ − α∗δj

′∗, S3
∗
= ko

′ δj
′′∗ − α∗δj

′′∗, S4
∗
=

ko λo
∗ − β∗ λo

∗) which is a  feasible solution for model (26), so α∗ + β∗ ≤ α̂ + β̂;(ii). 

According to (i) and (ii), we prove α∗ + β∗ = α̂ + β̂. □ 

To maintain the efficiency of the unit under evaluation, at least one of the constraints  

∑(λj + (δj
′ − δj

′′)) xij + (ko
′  λo − S

1) + (ko
′ δj

′ − S2) − (ko
′ δj

′′ − S3) ≤ θ∗(xio + α),

n

j=1

𝑖 = 1,… ,m. 

 

is satisfied. That is why we propose the following model.   
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Max  α + β 

  s. t: 

   ∑ (λj + (δj
′ − δj

′′)) xij + (ko
′  λo − S

1) + (ko
′ δj

′ − S2) − (ko
′ δj

′′ − S3) + soi
n

j=1

= θ∗(xio + α)                                                    i = 1 ,… ,m. 

   ∑ (δj
′ − δj

′′)zdj ≥ 0                                                          d = 1,… , D.   
n

j=1
 

    ∑ λjyrj + ko λo − S
4     ≥ (y ro + β)                             r = 1,… , s.   

n

j=1
 

    ∑ λj
n

j=1
+ ∑ (δj

′ − δj
′′)

n

j=1
≥ 1+ ϵ 

            ko
′  λo − S

1 ≥ 0 

            ko
′ δj

′ − S2 ≥ 0 

            ko
′ δj

′′ − S3 ≥ 0 

            ko λo − S
4 ≥ 0 

             0 ≤ α ≤ ko
′  

             0 ≤ β ≤ ko 

            soi ≤ tiM 

            ∑ ti
m

i=1
≤ m− 1; 

             tiϵ{0.1} 

            so, S1, S2, S3, S4 ≥ 0 

             λj, δj
′, δj

′′ ≥ 0                                            j = 1, … , n. 

(31) 

Now, imagine DMUo has DRS and oϵQ2. In this case, decreasing outputs may change returns to 

scale classification of DMUo. We consider chaos in amount of inputs and outputs as follows: 

xo = xo − α 

yo = yo − β 

Applying this model yields the most appropriate amount of  reduction in inputs  and outputs where 

DMUo is still DRS. 

 
Max α + β    

      s. t:              

∑ (δj
′ − δj

′′)zdj ≥ 0                                                        d = 1,… , D.   
n

j=1
 

     ∑ λjyrj+ λo(y ro − β) ≥ (y ro − β)                             r = 1,… , s.   
n

j=1
j≠o

 

    ∑ λj
n

j=1
+ ∑ (δj

′ − δj
′′)

n

j=1
≥ 1+ ϵ 

    0 ≤ α ≤ ko
′ ,     0 ≤ β ≤ ko 

    λj, δj
′, δj

′′ ≥ 0                                                                               j = 1, … , n. 

(32) 

ϵ > 0 is a non-Archimedean constant and    kp
′ = min

j
{max

i
{|xij − xio|}} and kp = min

𝑟
{|yro|}  (Sar-

parast et al. [28]. Using the technique (27), model (32) can be transformed into the following form: 
Max α + β 

      s. t:            

∑ (λj + (δj
′ − δj

′′)) xij − (ko
′  λo − S

1) − (ko
′ δj

′ − S2) + (ko
′ δj

′′ − S3) ≤ θ∗(xio − α)
n

j=1
                                                

i = 1 , … ,m. 

∑ (δj
′ − δj

′′)zdj ≥ 0                                                         d = 1,… ,D.   
n

j=1
 

∑ λjyrj − ko λo + S
4     ≥ (y ro + β)                             r = 1,… , s.   

n

j=1
 

(33) 
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              ∑ λj
n

j=1
+ ∑ (δj

′ − δj
′′)

n

j=1
≥ 1 + ϵ 

              ko
′  λo − S

1 ≥ 0 

              ko
′ δj

′ − S2 ≥ 0 

             ko
′ δj

′′ − S3 ≥ 0 

             ko λo − S
4 ≥ 0 

              0 ≤ α ≤ ko
′  

              0 ≤ β ≤ ko 

            S1, S2, S3, S4 ≥ 0 

             λj, δj
′, δj

′′ ≥ 0                                                                            j = 1, … , n. 

 

Theorem 4. The optimal solution obtained from the model (33) is equal to the optimal solution obtained 

from the model (32). 

Proof. The proof is analogous to theorem 3. 

 Because (oϵQ1), we propose  the following model to maintain the efficiency of the unit under assess-

ment. 
Max    α + β 

  s. t:                                 

∑ (λj + (δj
′ − δj

′′)) xij − (ko
′  λo − S

1) − (ko
′ δj

′ − S2) + (ko
′ δj

′′ − S3) + soi
n

j=1
= θ∗(xio − α)                                       

     i = 1 ,… ,m. 

         ∑(δj
′ − δj

′′)zdj ≥ 0                                                            d = 1,… , D.   

n

j=1

 

        ∑ λjyrj − ko λo + S
4     ≥ (y ro + β)                            r = 1,… , s.   

n

j=1
 

         ∑ λj
n

j=1
+ ∑ (δj

′ − δj
′′)

n

j=1
≥ 1 + ε 

              ko
′  λo − S

1 ≥ 0 

              ko
′ δj

′ − S2 ≥ 0 

             ko
′ δj

′′ − S3 ≥ 0 

             ko λo − S
4 ≥ 0 

             0 ≤ α ≤ ko
′  

             0 ≤ β ≤ ko 

soi ≤ tiM       i = 1 ,… ,m. 

           ∑ ti
m

i=1
≤ m− 1; 

tiϵ{0.1}           i = 1 , … ,m. 

        S1, S2, S3, S4 ≥ 0 

             λj, δj
′, δj

′′ ≥ 0                                            j = 1, … , n. 

(34) 
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Model (34) is a linear programming problem and has a stability region that maintains returns 

to scale classification of DMUo.   In the last case, if DMUo has CRS, then both increasing and 

decreasing outputs can change its returns to scale classification. We propose model (35) and 

model (36) for sensitivity analysis of its returns to scale classification. 

 

 Max   α1 + β1 

  s. t:                     

   ∑ (λj + (δj
′ − δj

′′)) xij + (ko
′  λo − S

1) + (ko
′ δj

′ − S2) − (ko
′ δj

′′ − S3) + soi
n

j=1

= θ∗(xio + α
1)                                                          i = 1 ,… ,m. 

   ∑ (δj
′ − δj

′′)zdj ≥ 0                                                                         d = 1, … , D.   
n

j=1
 

   ∑λjyrj + ko λo − S
4     ≥ (y ro + β

1)                                                r = 1,… , s.   

n

j=1

 

   ∑ λj
n

j=1
+ ∑ (δj

′ − δj
′′)

n

j=1
= 1 

              ko
′  λo − S

1 ≥ 0 

              ko
′ δj

′ − S2 ≥ 0 

             ko
′ δj

′′ − S3 ≥ 0 

             ko λo − S
4 ≥ 0 

   0 ≤ α1 ≤ kp
′ = max

j
{max

i
{|xij − xio|}} 

      0 ≤ β1 ≤ ko = max
j
{max

r
{|yrj − yrp|}} 

    soi ≤ tiM       i = 1 ,… ,m. 

    ∑ ti
m

i=1
≤ m− 1; 

   Tiϵ{0.1}           i = 1 , … ,m. 

      S1, S2, S3, S4 ≥ 0 

       λj, δj
′, δj

′′ ≥ 0                                            j = 1, … , n. 

(35) 

Max   α2 + β2 

      s. t:                  

∑ (λj + (δj
′ − δj

′′)) xij − (ko
′  λo − S

1) − (ko
′ δj

′ − S2) + (ko
′ δj

′′ − S3) + soi
n

j=1

= θ∗(xio − α
2)                                                                   i = 1, … ,m. 

         ∑ (δj
′ − δj

′′)zdj ≥ 0                                                                     d = 1,… , D.   
n

j=1
 

         ∑ λjyrj − ko λo + S
4     ≥ (y ro + β

2)                                       r = 1,… , s.   
n

j=1
 

         ∑ λj
n

j=1
+ ∑ (δj

′ − δj
′′)

n

j=1
= 1 

              ko
′  λo − S

1 ≥ 0 

              ko
′ δj

′ − S2 ≥ 0 

             ko
′ δj

′′ − S3 ≥ 0 

             ko λo − S
4 ≥ 0 

0 ≤ α2 ≤   kp
′ = min

j
{max

i
{|xij − xio|}} 

0 ≤ β2 ≤ kp = {min
r
{|yro|}} 

soi ≤ tiM                            i = 1 , … ,m. 

∑ ti
m
i=1 ≤ m− 1;   

tiϵ{0.1}                                i = 1 , … ,m. 

            S1, S2, S3, S4 ≥ 0 

             λj, δj
′, δj

′′ ≥ 0                                            j = 1, … , n. 

(36) 

The decrease or increase of the input of α; 0 ≤ α ≤ α∗ = min {α1. α2 }; and the decrease or increase 

of the output of β; 0 ≤ β ≤   β∗ = min {β1. β2 }; keeps the classification of DMUo. 
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4 Illustrative Example 

4.1 Case of Virtual Data 

In this section, we will apply a set of synthetic data to demonstrate the proposed method in section 3 

which was proposed by Sarparast et al. [28] for the first time. Table 1 shows the data of 10 two-stage 

DMUs with single input, single intermediate value and single final output. 

 

Sarparast et al. [28] appraised 10 DMUs by model (7); the efficiency scores of DMUs under model (7) 

can be found in the second column of the Table 2. E = {1,2,4,10} is a set of index efficient DMUs. The 

third and fourth columns show min and max u0
*
 + v0

* that (u0
*, v0

*) is an optimal solution obtained from 

model (7) to evaluate the score efficiency of DMUs. According to theorem 1 and the third and fourth 

columns,  it can be said that DMU1 has CRS. DMU4 has DRS, DMU10 has IRS and DMU2. The fifth col-

umn shows returns to scale classification of the efficient DMUs  based on Sarparast et al. [28]. 

In the evaluation of DMUs in model (6), DMU1 is efficient, and its efficiency score is equal to 1. 

Model (6) is one of the constant returns to scale models that assesses two-stage networks. The sixth 

column of the Table 2 shows scores of efficiency of two-stage network system under model (6). 

 

The seventh and eighth columns of Table 2 show min and max 1λ∗ + 1δ*
 where (θ∗, λ∗, γ∗) is an opti-

mal solution obtained from model (6). The returns to scale of the classification of the DMUs accord-

ing to theorem 2 can be found in the following Table. The results in the fifth and ninth columns indi-

cate that both methods produce the same results. To investigate the sensitivity analysis classification 

RTS of DMUs, we apply models (28), (33), (35) and (36). DMU2, DMU4, DMU5, DMU7 and DMU8 

have DRS; therefore, we use model (34) to determine appropriate reduction in the inputs and outputs 

so that these DMUs are still DRS. DMU3, DMU6, DMU9, DMU10 and DMU8 have DRS, so we use 

model (31) to recognize perfect enhancement of the inputs and outputs so that these DMUs are still 

IRS. Table 3 shows values of α∗ and β∗ obtained from models (28), (33), (35) and (36). 

 

Table 1: A Set of Synthetic Data for Ten Two-Stage DMUs 

DMU 1 2 3 4 5 6 7 8 9 10 

Input for stage 1 (x) 2.5 4 5.5 8 11 6.5 9 4 5 2 

Intermediate measure(z) 3.5 5.5 6.5 8 6 4.5 8 5.5 4 2 

Final output(y) 7 10 5.5 13 9 7 8 9 6 1 

 Table 2: Results Table Corresponding To Artificial Data 

 
𝜃𝑝

∗ 

(7) 

Maxu0
*+v0

* 

(7) 

Min u0
*+v0

* 

(7) 
RTS 

𝜃𝑝
∗ 

(6) 

Max 1λ∗ + 1δ∗ 

(6) 

Min 1λ∗ + 1δ∗ 

(6) 
RTS 

DMU1 1.0000 1.6429 -0.3810 CRS 1.0000 1.0000 1.0000 CRS 

DMU2 1.0000 -0.2420 -0.0001 DRS 0.8929 1.4286 1.4286 DRS 

DMU3 0.4808 -0.1670 -0.2230 - 0.3571 0.7857 0.7857 IRS 

DMU4 1.0000 -0.7540 -2.0000 DRS 0.5804 1.8571 1.8571 DRS 

DMU5 0.6042 -0.0001 -0.0001 - 0.2922 1.2857 1.2857 DRS 

DMU6 0.4930 -0.2040 -0.6150 - 0.3846 0.9999 0.9999 IRS 

DMU7 0.5208 -0.0001 -0.0001 - 0.1190 1.1429 1.1429 DRS 

DMU8 0.8788 -0.2420 -0.7270 - 0.0893 1.2857 1.2857 DRS 

DMU9 0.5270 0.1760 0.1760 - 0.0893 0.8571 0.8571 IRS 

DMU10 1.0000 2.8750 2.8750 IRS 0.1786 0.1429 0.1429 IRS 
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For example, DMU1 has CRS. For increasment or decreasment in the inputs and outputs as well as α 

and β;  0 ≤ α ≤ α∗ = 3.214and 0 ≤ β ≤ β∗ = 7.000; DMU1 still has CRS. Or DMU10 has IRS, thus 

increase in the inputs and outputs as well as α and β; 0 ≤ α ≤ α∗ = 7.000 and 0 ≤ β ≤ β∗ = 7.037; 

DMU10  is also IRS. A similar interpretation can be found for DMU2. 
 

4.2 Case of the Iranian Insurance Industry 

If organizations aim to determine their current situation and survive and progress in today’s competitive 

world, they should constantly evaluate their performance against that of other companies, identify their 

strengths and weaknesses, and improve their operations. In today’s insurance industry, competition has 

become more stringent given the entry of numerous private sector companies. The longevity of enter-

prises will depend on high performance and competitiveness.  

Insurance companies play a role in a society’s economy, advancing the growth and development of an 

entire economic complex in a country by maintaining national wealth, compensating for economic 

losses, and guaranteeing large investments and their development. Development has been one of the 

main visions of the Islamic Republic of Iran, where the insurance industry enjoys favorable support 

expected to significantly contribute to goal achievement in the country. The primary mission of Iran’s 

insurance industry is to eliminate uncertainty—a function that is particularly apparent in any social 

group and even the national economy in the region. The elimination of uncertainty can positively influ-

ence job security and the consistency of earnings, enhance quality of life, preserve national wealth, and 

ensure investment development. Such industry should, therefore, invest in a premium environment 

where insurance can be effectively received—an environment that can promote and increase capital 

growth, and, ultimately, national production. These issues have always revolved around the level of an 

insurance company’s performance, and whether insurance companies are at a stage wherein they gen-

erate returns of scale from production. In other words, there is a need to determine at what stage insur-

ance companies are in the medium-term expense landscape, and whether they can increase the value by 

maintaining existing facilities. Scientific methods of minimizing the errors caused using mental judg-

ment can facilitate the identification of companies’ positions with respect to one another and, conse-

quently, give rise to appropriate solutions that strengthen the position of each institution. In this regard, 

the measurement of efficiency has been an important management issue. The economic unit strategies 

that strengthen companies identify advantages and shortcomings, eliminate defects, and enhance the 

strengths of an entire unit. The process that underlies insurance generally involves two stages. The first is 

marketing activity, which entails guaranteeing marketability and the capacity to attract premium-earning 

portfolios and the use of intermediary systems, agencies, and legal advisers. The second stage is concerned 

with profitability, which stems from surplus assets and liabilities. In this stage, the residual resources of 

an institution are invested in financial markets for the purpose of earning appropriate returns. In the first 

Table 3: Table of Classification of Returns to Scale in Artificial Intelligence in The New Method 

 
DMU 1 2 3 4 5 6 7 8 9 10 

 CRS DRS IRS DRS DRS IRS DRS DRS IRS IRS 

α∗ 3.214          

β∗ 7.000          

α∗   5.500   1.500   6.000 7.000 

β∗   5.499   1.615   3.601 7.037 

α∗  2.000  7.000 7.000  7.000 7.000   

β∗  10.000  13.000 1.000  4.292 4.032   
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stage, insurance companies incur two types of expenses. The first set of expenses encompasses employee’s 

salaries and different types of expenses from daily operations. Such expenditures are called operating 

expenses (x1). The second set of expenses comprises those paid to agencies, brokers, and lawyers and 

expenses associated with the recovery of insurance services, such as damage-related expenses (funding 

for the provision of physical damages, expenses incurred by law enforcement, and health ministery ex-

penses), and expenses from net losses arising from other insurance expenses. These expenditures are re-

ferred to as insurance expenses (x2). Both expense types are considered inputs of the first stage of the 

insurance process. In this stage, an insurance company receives premiums directly from an insurer’s cus-

tomers and revenues from reinsurance, including remuneration of reliance benefits and damage remuner-

ation received from reliance insurers. As previously stated, the second stage centers on profitability, 

originating from premium insurance, and insurance payments are reduced in situations of loss and dam-

age. 

The residual resources of an institute are also invested in investment markets. Correspondingly, the 

inputs of this stage are direct written insurance (z1) and reinsurance premiums (z2) from reliance insur-

ers, which are the outputs of the first stage. The outputs of the second stage of the insurance process are 

underwriting profits (y1), profits from investment in secure exchange companies, and profits from non-

stock exchange companies (investment profit (y2)). Figure 2 illustrates the two-step production process 

of insurance companies in Iran. On the basis of evaluated research documentation, we selected six of 

the indicators of 18 Iranian private insurance companies and used the insurance industry’s salary infor-

mation obtained from the codal.ir website. The salary data extracted were those issued from March 21, 

2018 to March 20, 2019. Note that each of the 18 insurance companies have been fully involved in this 

fiscal year, and each of them was considered a DMU. Data on these units are presented in the Table 4.  

The following Table shows the descriptive characteristics of the indices that served as descriptive pa-

rameters for each index. The value of the descriptive parameters is separate for each indicator, and 

includes information on mean, minimum, maximum, and median values. The second category of infor-

mation includes distribution metrics, such as standard deviation, coefficient of variation, skidding, and 

stretching, which indicate the distribution of data around the middle axis. In the study of a statistical 

community, the value of a representative member of that community is called the central value; the 

amount of each factor is distributed around it, and each numeric criterion is called a center-oriented 

criterion. In other words, it is the criterion that represents the center of a dataset. The mean and median 

are the most common criteria for determining centrality. The mean is the most important central value 

as it is an indicator of the equilibrium point and the center-of-gravity distribution.   

 

 

 

 

 

 

Fig. 2: Production System of Private Insurance Companies in Iran 
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It also serves as a good index of data centrality. The main central index is the mean value of operating 

expenses in insurance companies; it is equal to 757,766, indicating that most data are centered around the 

point of mean value.  Dispersion parameters serve as criteria for determining the degree of dispersion of 

each parameter or the level of dispersion toward the mean of the most highly dispersed parameters. These 

parameters are the coefficient of variation (dispersion coefficient) obtained from dividing the standard 

deviation by the mean of data; this coefficient is used as one of the dispersion modalities for ensuring data 

stability and consistency. The variation coefficient for the expenses of insurance policies is equal to 1.200 

and that for the investment index is 0.67. These values indicate that the investment index exhibited higher 

stability and consistency than did the practice expense indicator in the course of this research. 

In assessing the normality of each of the indices, the histogram and a Kolmogorov–Smirnov test were 

used in SPSS software. The null and alternative hypotheses in the Kolmogorov–Smirnov test were as 

follows:  

H0: Data on the indices follow the normal distribution. 

H1: Data on the indices do not follow the normal distribution. 

The results of the normalization of the indicators are shown in Table 6. The normalization test and the 

histogram of the indicators revealed that all the indices follow the normal distribution; thus, the null 

hypothesis cannot be rejected. 

 

Table 4 : Initial Data Related to Insurance Companies (Million USD) 
Investment 

profit (Y2) 

Underwriting 

profit (Y1) 

reinsurance pre-

miums(z2) 

Direct written 

premiums (z1) 

Insurance 

expenses (x2) 

Operation 

expenses (x1) 

Insurance 

Companies 

518163 517615 544178 3652253 3181379 3652253 Novin 

168853 49919 656401 1526227 2829462 1526227 Mihan 

796590 1718410 2881842 18878990 19564048 1287314 Alborz 

1641675 2323425 4208193 27654591 28339909 2237186 Asia 

314728 641361 164535 6057551 5322443 372099 Dey 

1263308 422171 1147305 8260670 1761364 586118 Karafarin 

88433 130016 163513 1575029 1318596 182788 Taavon 

1240129 2342862 3078337 21922773 19483046 2092653 Dana 

610140 388424 211880 10163083 10702943 452251 Kosar 

960720 525344 835892 3663625 2894189 477743 Ma 

1174096 142510 703319 3645680 4199581 397058 Mellat 

542876 23989 21217 434200 292713 98878 Tejarateno 

26354 29 7 95 10 13.406 Khavarmianeh 

577331 1330169 269287 17535105 15795614 1091593 Parsian 

554935 677213 530469 5098701 3288248 289446 Saman 

252932 354632 345447 1936888 1721734 289491 Sarmad 

510929 602678 1024836 7971127 7067361 643706 Razi 

1633872 935380 1316439 11388798 8423501 857454 Pasargad 
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Table 5: Statistical Analysis of Data on Insurance Companies 

Statistics 
X1 X2 Z1 Z2 Y1 Y2 

Mean 
757766 7823810 8689008 1032878 741678 726935 

Median 
531931 3743915 5578126 600290 521480 566133 

Maximize 
3652253 28339909 27654591 4208193 2342862 1641675 

Minimal 
13 10 95 7 29 26354 

Standard deviation 
917307 7857235 7862301 1151705 714329 486579 

Skewness 
1.72 1.39 1.14 1.74 1.31 0.56 

Stretching  
3.03 1.16 0.428 2.34 0.8 0.668 - 

Number of 

observations 
18 18 18 18 18 18 

 

 

The results of efficiency score of insurance companies using the above-mentioned models are listed in 

the Table 7. The efficiency of companies in the returns to scale variable in classical and two-stage net-

works has been investigated. The second column indicates the name of the insured companies studied 

at the given time interval.  In the third column, the efficiency score of insurance companies with the 

classic method of data envelopment analysis (i.e. without regard to middleware) is provided only with the 

initial inputs and final outputs. The performance score obtained from the model (4) shows that Alborz, 

Karafarin, Mellat, Tejarateno, Khavarmianeh, Saman and Pasargad Insurance Companies are efficient, 

and other companies are inefficient. The fourth and fifth columns show the the efficiency of the DMUs 

without taking the next level into consideration. This amount was obtained from model (4) for each 

step. The first step (Marketing), refers to such insurance companies as Alborz, Asia, Khavarmianeh, 

Parsian and Saman. The other units are not efficient. The second step not only contains the insurance 

companies, such as Asia, Dana, Ma, Mellat, Khavarmianeh and Parsian which were active in both steps 

but also includes the other companies such as Dey, Tejarateno, Sarmad and Pasargad which are more 

successful in the process of investment and efficient, subsequently. The comparison of the second col-

umn with the third and fourth columns show that those companies which were efficient in the model (7) 

may be inefficient in one of the first or second steps or in both. For example, Tejaraeno , as an insurance 

company, is inefficient in the first step, but it has the efficiency of one in the classic model (4). It is not 

logical, and this incompatibility is caused by ignoring the middle products, not affecting the appropriate 

resources. The sixth and seventh columns list the efficiency obtained from the degree of the effect of 

each step on another one. The insurance companies such as Mihan, Albarz, Asia, Karafarin, Dana, 

Kosar, Khavarmianeh, Parsian and Saman are all efficient, but the insurance companies of Ma and Mel-

lat had the efficiency of one, where they were not under the influence of the second level. In the second 

step, the only insurance companies which are still efficient are Mihan, Asia, Dana, Khavarmianeh and 

Saman. The eighth column indicates the overall efficiency score of the two-stage network of each unit 

which is the score of efficiency of the middle products, in contrast to the second column. The results show 

   Table 6: One-Sample Kolmogorov–Smirnov Test 

   X1   X2  Z1  Z2  Y1  Y2 

No 18 18 18  18  18  18 

Kolmogorov-Smirnov Z 0.957 0.935 0.738  0.997  1.062  0.824 

Asymp. Sig. 0.318 0.346 0.647  0.296  0.209  0.504 
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that Asia, Dana, Khavarmianeh and Saman companies are efficient units. It is obvious that those units 

which are efficient in this model, have the ability of marketing and investment. So, as a conclusion, the 

measured efficiency resulted from the twosteps method is logical, and it describes individuals’ expectation 

about the physical relation of the whole process and its two sub-processes. 

 
Table7: Efficiency Score of Insurance Companies under Models 

θp
overal∗ 

Model (7) 

θ∗2p 

Model (7) 

θ1p 

Model(7) 

θ∗p 

Model(4) 

θ∗p 

Model(4) 

θ∗p 

Model (4) 

Insurance 

Companies 
DMUp 

0.3849 0.3849 0.4456 0.9714 0.4456 0.7300 Novin DMU01 

0.0377 0.0377 1.0000 0.2225 1.0000 0.0700 Mihan DMU02 

0.8245 0.8245 1.0000 0.8271 1.0000 1.0000 Alborz DMU03 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Asia DMU04 

0.7413 0.7413 0.9821 1.0000 0.9821 0.7400 Dey DMU05 

0.7372 0.7372 1.0000 0.7372 1.0000 1.0000 Karafarin DMU06 

0.2930 0.2930 0.5430 0.5691 0.5430 0.4600 Taavon DMU07 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Dana DMU08 

0.4051 0.4051 1.0000 0.7125 1.0000 0.5130 Kosar DMU09 

0.7298 0.7298 0.8628 1.0000 1.0000 0.9500 Ma DMU10 

0.8531 0.8531 0.8308 1.0000 1.0000 1.0000 Mellat DMU11 

0.3163 0.3163 0.3163 1.0000 0.3163 1.0000 Tejarateno DMU12 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Khavarmianeh DMU13 

0.7125 0.7125 1.0000 1.0000 1.0000 0.8400 Parsian DMU14 

1.0000 1.0000 1.0000 1.0000 1.0000 1 0000 .  Saman DMU15 

0.5142 0.5142 0.5892 1.0000 0.5892 0.9500 Sarmad DMU16 

0.4306 0.4306 0.8063 0.5483 0.8063 0.4100 Razi DMU17 

0.9126 0.9126 0.9126 1.0000 0.9126 1.0000 Pasargad DMU18 

 

In Table 8, both the maximum and minimum amount of u0
*+v0

* is measured in efficient units and  

(u∗, w∗, v∗, u0
∗ , v0

∗) are the optimum responses of the two-step network DEA model (7). Therefore, based 

on the theorem 1, it is obvious that the efficient unit of Khavarmineh has constant returns to scale. It 

means that there is no difference between the efficiency of the production of the small or large units. 

Dana, Asia and Saman insurance companies are the units which have decreasing returns to scale. The 

choice of the larger amount means that the products will be produced more expensively 

 

Table 8: Analysis of The Returns to Scale and The Sensitivity of Classification of Returns to The Scale of Effi-

cient Units by The Classic Method . 

α∗ + β∗ β∗ α∗ RTS Max u0*+v0* Min u0*+v0* DMUp 

798869 65436 144533 D -1.0400   -1.0759 DMU04 

747212 666210 81002 D -0.2948  -M DMU08 

42.45 29 13.5 C 1.0000 -0.0023 DMU13 

24044 23999 45 D -0.0916   -0.8446 DMU15 

The amounts of α∗  and   β∗ for companies of Asia, Dana and Saman obtained from model (10) show the 

maximum amount of decreasing of the outputs and inputs of these units, so the classification of returns 

to scale do not change. Khavarmianeh is a company with a constant return to scale. To reach the maxi-

mum probable changes in the amount of inputs and outputs, models (11) and (12) are used to maintain 
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the classification of returns to scale. It is shown in Table that α∗ = min{α1∗, α2∗}   and   β∗ =

min{β1∗, β2∗}  . In Table 9, the score of the efficiency of the insurance companies in constant two-step 

network model was listed whereas (θp
∗, λ∗, δ∗) is an optimal solution obtained from the model (6) for 

the unit under evaluation p th, 1λ∗ + 1δ∗  are determined and the classification of the units is recog-

nized based on the theorem 2. 

 

Table 9: Analysis The Returns to Scale and The Sensitivity of Classification of Returns to The Scale of Effi-

cient Units by The Classic Method . 

𝛃∗ 𝛂∗ 𝛂∗ + 𝛃∗ RTS 
Max 

1λ∗ + 1δ∗ 

Min 

1λ∗ + 1δ∗ 

θp
overal∗ 

model(6) 

Insurance 

Companies 
DMUp 

365224 518163 883387 D 15984/6210 15984/6210 0.0621 Novin DMU01 

168780 1490421 1659201 D 590/7099 590/7099 0.0102 Mihan DMU02 

 2163739   624452  2788191   I 0/9033 0/9033 0.2287 Alborz DMU03 

2323396 2237142 4969512 D 1/3948 1/3948 0.1876 Asia DMU04 

2949816 1326947 4276763 I 0/3533 0/3533 0.3007 Dey DMU05 

1263182 370564 1633746 I 0/1674 0/1674 0.1674 Karafarin DMU06 

1266961 1545439 2820203 I 0/0694 0/0694 0.1468 Taavon DMU07 

2342811 19483046 23428112 D 1/3863 1/3863 0.2189 Dana DMU08 

1786368 1031535 2817903 I 0/2042 0/2042 0.1471 Kosar DMU09 

1986170 680955 2667125 I 0/2624 0/2624 0.2342 Ma DMU10 

269866 467579 316145 I 0/0889 0/0889 0.0680 Mellat DMU11 

98984 542824 641808 D 8/3374 8/3374 0.0570 Tejarateno DMU12 

13 10 23 C 1/0000 1/0000   1/0000 Khavarmianeh DMU13 

2541190 11012693 3553883 I 0/7263 0/7263 0.2118 Parsian DMU14 

606760 365224 971984 D 1/4351 1/4351 0.4351 Saman DMU15 

354621 289441 644062 D 0/1759 0/1759 0.2617 Sarmad DMU16 

641709 6129878 1254687 D 0/3818 0/3818 0.1757 Razi DMU17 

1633782 857441 2491223 D 0/5658 0/5658 0.2106 Pasargad DMU18 

 

As shown in the third column of Table 9, the Khavarvianeh Insurance Company is the only efficient 

unit under Model (6). As shown in the third column of Table 9, the Middle East Insurance Company is 

the only efficient unit under Model 6. The fourth and fifth columns show the minimum and  maximum 

1λ∗ + 1δ∗ values in the optimal answer obtained from Model (6), which if both of them have a value 

greater than 1, ie the unit under evaluation has the decreasing returns to scale. If both values are less 

than 1, the unit under evaluation has the increasing returns to scale. And if, like the Khavarmianeh 

Insurance Company, the amount of time is equal to 1, or one of them is greater and the other is less than 

1, then the unit under evaluation has a constant return to scale. The sixth column of the Table shows 

that  companies such as Novin, Mihan, Asia, Dana, Tejarateno, Saman, Sarmad and Razi have decreasing 

returns to scale, and khavarmianeh is the only unit with a constant return to scale. The other units have 

increasing returns to scale. The α∗ and β∗ values shown in the eighth and ninth columns of Table 9 are 

obtained from models (28), (33), (35) and (36) according to the classification of returns to unit scale, 

which are a sTable interval for changes in the initial inputs and final outputs of the units. So that the 

classification of returns to the scale of the units under evaluation does not change. For example,Tavon  

insurance company has decreasing returns to scale, if all initial inputs reduce by 𝛼;  0 ≤ 𝛼 ≤ α∗ =

5181630 and all final outputs reduce by 𝛽;  0 ≤ 𝛽 ≤ β∗ = 16870, it still has decreasing return to scale.  

Asia insurance company has increasing returns to scale, if all intial inputs increase by 𝛼;  0 ≤ 𝛼 ≤ α∗ =

2337142 and all final outputs increase by 𝛽;  0 ≤ 𝛽 ≤ β∗ = 2323396, it still has decreasing returns to 
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scale    The same can be said about the Khavarianeh company, if all initial inputs reduce or increase by 

𝛼;  0 ≤ 𝛼 ≤ α∗ = 10 and all final outputs reduce or increase by 𝛽;  0 ≤ 𝛽 ≤ β∗ = 13, it still has con-

stant returns to scale. 

 

5 Conclusion 

In economics, returns to scale describe what happens to long-run returns as the scale of production 

increases, when all input levels including physical capital usage are variable (able to be set by the firm). 

The concept of returns to scale arises in the context of a firm's production function. It explains the long-

run linkage of the rate of increase in output (production) relative to associated increases in the inputs 

(factors of production). In the long run, all factors of production are variable and subject to change in 

response to a given increase in production scale. While economies of scale show the effect of an in-

creased output level on unit costs, returns to scale focus only on the relation between input and output 

quantities.  There are three possible types of returns to scale: increasing returns to scale, constant returns 

to scale, and diminishing (or decreasing) returns to scale. If output increases by the same proportional 

change as all inputs change then there are constant returns to scale (CRS). If output increases by less 

than the proportional change in all inputs, there are decreasing returns to scale (DRS). If output increases 

by more than the proportional change in all inputs, there are increasing returns to scale (IRS). A firm's 

production function could exhibit different types of returns to scale in different ranges of output. Typi-

cally, there could be increasing returns at relatively low output levels, decreasing returns at relatively 

high output levels, and constant returns at some range of output levels between those extremes. In main-

stream microeconomics, the returns to scale faced by a firm are purely technologically imposed and are 

not influenced by economic decisions or by market conditions (i.e., conclusions about returns to scale 

are derived from the specific mathematical structure of the production function in isolation). Most of 

real-life production technologies are multi-stage in nature. In this article, we focused on returns to scale 

in two-phase networks, proposed a new method for sensitivity analysis of returns to scale, and presented 

a new model based on Kao and Hwang’s [8] model, and concepts presented by Sarparast et al. [28]. We 

presented the basic DEA model and the generic two-stage process and reviewedstudies conducted by 

Kao and Hwang [8] and Sarparast et al. [28] We then proceeded to introduce a new method for returns 

to scale classification and provided a new model to sensitivity analysis of returns to scale classification 

for two-stage network systems. we used datafrom  Sarparast et al’s article [28] and compared two meth-

ods.  The new method, in addition to examining the classification of returns to scale of efficient units, 

also examines the classification of returns to scale of inefficient units.  Also the method of Sarparast et 

al. [28] and the new method were examined in 18 insurance company in Iran. Each insurance company 

considered as a two-stage network. The first stage marketing activity witch utilized operating expense 

and insurance expense in order to earn direct written insurance and reinsurance premiums, and then is 

the second stage insurance company which use direct written insurance and reinsurance premiums for 

the purpose of underwriting profits and investment profit. The result of the two methods were compared. 

In classic method, only efficient DMUs have been considered for sensitivity analysis of returns to scale, 

but, in new method, returns to scale of all DMUs including efficient and inefficient DMUs can be ana-

lyzed. And this  topic helps managers make decisions about how much confusion can be created in the 

values of inputs and outputs in a way that does not change the classification of returns to the scale of 

units.   
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