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ABSTRACT 

As the main achievement of the modern portfolio theory, portfolio diversification 

based on risk and return has attracted the attention of many researchers. The Mar-

kowitz mean-variance problem is a convex quadratic problem turned into a 

mixed-integer quadratic programming problem when incorporating cardinality 

constraints. Due to the high number of stocks in a market, this problem becomes 

an NP-hard problem. In this paper, a metaheuristic approach is proposed to solve 

the portfolio optimization problem with cardinality constraints using the differen-

tial evolution algorithm, while it is also intended to improve the solutions generat-

ed by the algorithm developed. In addition, variance, value-at-risk, and condition-

al value-at-risk are assessed as risk measures. Candidate models are solved for 50 

top stocks introduced by the Tehran Stock Exchange by considering the cardinali-

ty constraints of not more than five stocks within the portfolio and 24 trading 

periods. Finally, the obtained results are compared with the results of genetic 

algorithm. The results show that the proposed method has reached the optimal 

solution in a shorter time. 

 

1 Introduction 

Diversification of investment options is an effective method introduced in modern portfolio theory to 

reduce risk. Markowitz proposed a quantitative approach to create attractiveness and investment di-

versity in different firm stocks [1]. He introduced the mean-variance model and used variance as a 

criterion to assess economic risk [2]. In this approach, the correlation among several stocks was con-

sidered besides the characteristics of a stock. Although the use of variance as a risk measure has been 

a cornerstone in the history of the portfolio theory, some alternative measures such as variance with 

skewness [3], semi-variance [4], mean absolute deviation [5], Max-Min model [6], value-at-risk [7], 

and conditional value-at-risk [8] have been proposed as portfolio optimization models in the finance 
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literature. Each of these measures can show different efficiencies from itself with respect to the target 

market.  

On the other hand, Markowitz’s traditional portfolio optimization model fails to represent the com-

plexities of real-world problems faced by decision-makers. These complexities appear as constraints 

such as boundary constraints, cardinality constraints, transaction costs, and transaction lots. Uncon-

strained portfolio optimization is an ordinary convex quadratic programming problem that can effec-

tively be solved by exact methods such as linear and quadratic programming. Many researchers pre-

sented an extensive study on various issues of portfolio optimization, such as historical evolution and 

the use of exact methods. Nevertheless, as demonstrated by [9], this problem is converted into a 

mixed-integer quadratic programming problem with high dimensions and consequently an NP-hard 

problem when practical constraints such as cardinality constraints are added to the problem. There-

fore, researchers paid particular attention to developing approximate methods such as metaheuristic 

algorithms. Metaheuristic methods aim to resolve shortcomings of classic optimization methods and 

ensure better results by comprehensive random search [10]. This research focuses on using a metaheu-

ristic difference evolutionary algorithm to solve a realistic version of the portfolio optimization prob-

lem by assessing a set of stocks presented in the Tehran Stock Exchange. The research is intended to 

respond to the question of whether the optimal portfolio is obtained by solving the model using in-

formation predicted by metaheuristic models considering constraints on the number of assets within 

the portfolio, the number of desirable assets to be included in the portfolio, and floor and ceiling con-

straints for each asset. In addition, variance measures, value-at-risk, and conditional value-at-risk are 

assessed as risk factors for the portfolio optimization model. 

The rest of the paper is organized as follows. Section 2 reviews the literature on portfolio optimization 

problems based on risk measures and solution approaches. In section 3, the model formulation and 

solution approach are described. Section 4 presents the methodology along with data and the analysis 

process. The results and analyses are presented in Section 5. Finally, Section 6 concludes the paper. 

 

2 Literature Review 
2.1 Risk Measure in the Portfolio Optimization Model 
The purpose of solving portfolio optimization is to determine the weights for a set of assets within the 

portfolio to meet a specific return level for the investor besides minimizing the portfolio’s risk. In the 

Markowitz mean-variance model, the risk of a portfolio is measured by the variance of the stock 

price. Despite its wide applications, this approach may lead to an inadequate forecast of portfolios 

regarding the asymmetric return distribution because this model assumes that the expected return has 

an asymmetric multivariate normal distribution. Therefore, Markowitz proposed a model based on 

semi-variance appropriate to deal with asymmetric distribution of return. Researchers suggested an-

other approach by considering skewness in the mean-variance model in order to be able to describe 

the characteristics of the return distribution. Positive skewness of the portfolio return reduces negative 

aspects of risks and is desirable for investors. The mean-variance model includes a quadratic objective 

function with linear constraints. Konno and Yamazaki proposed the mean absolute deviation of stock 

return in all periods as an alternative risk measure to overcome problems caused by the quadratic 

structure of the mean-variance model. Their model calculates the covariance matrix with a low com-

putational burden, and it can easily be updated when new data are added. In addition, risk modeling 

based on absolute deviation converts the model to a linear parametric programming model and makes 

portfolio optimization simpler. Nevertheless, according to the analysis conducted by [11], although 

the estimation error of both mean-variance model and mean-absolute deviation is high when dealing 
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with small samples and aggressive investors, the mean-variance model presents a lower estimation 

error for small samples and conservative investors. Value-at-risk, introduced by Jorion [12], is a risk 

measure describing the potential maximum loss (minimum return) for a portfolio based on profit and 

loss distribution in a target horizon. Despite positive features such as considering the return distribu-

tion, this measure suffers from undesirable mathematical properties such as lack of additivity and 

convexity. To resolve this problem, Rockefeller and Uryasev [8] introduced conditional value-at-risk 

to reduce excessive loss risks based on value-at-risk, which indicated an asymmetric risk measure. 

This method benefits from additivity that allows measuring portfolio risk and convexity of the condi-

tional value-at-risk that makes the optimization easier. In this paper, mean-variance, mean-VaR1, and 

mean-CVaR2 models are assessed as basic models. Table 1 represents portfolio optimization models 

based on risk measures proposed by researchers.  
 

Table 1: Portfolio Optimization Models Based on Risk Measures 

Model Author Year Structure 

Mean-variance Markowitz 1952 Quadratic 

Mean-variance with skewness Samuelson 1958 Quadratic 

Mean-semi-variance Markowitz 1959 Quadratic 

Mean-absolute deviation Konno and Yamazaki 1991 Linear 

Mean-value-at-risk Jorion 1997 Linear 

Mean-conditional value-at-risk Rockefeller and Uryasev 2000 Linear 

 

2.2 Portfolio Optimization Problem  
A literature review on the portfolio optimization problem shows approximate and exact efforts made 

to solve this problem. An unconstrained portfolio optimization problem is a quadratic programming 

problem that can be solved effectively by exact methods such as linear and quadratic methods. Never-

theless, as Bienstock [9] has shown, this problem is converted into a mixed-integer quadratic pro-

gramming problem when practical constraints such as cardinality constraints are added to the prob-

lem. Therefore, researchers are developing approximate methods such as machine learning and me-

taheuristic algorithms. As an evolution of computational learning theory, among the artificial intelli-

gence methods, machine learning algorithms such as artificial neural networks [13] and k-means clus-

tering [14] have been less frequently applied in the literature, compared with metaheuristic algorithms 

which are based on either single-solution or population-based methods. Heuristic algorithms based on 

single-solution methods, such as simulated annealing algorithm [15], tabu-search algorithms [16], and 

greedy randomized adaptive search procedure (GRASP) [17], basically try to improve a single solu-

tion during the implementation. Although working on a single solution cannot use several search 

points, the algorithm is extremely fast because a solution improves numerously. On the other hand, 

population-based heuristic algorithms, which work on several solutions during the algorithm itera-

tions, have been more frequently applied in portfolio optimization. Population-based algorithms can 

be categorized into two groups, namely evolutionary algorithms and swarm intelligence algorithms. 

Inspired by natural evolution, evolutionary algorithms evolve a population of chromosomes over time 

using selection, crossover, and mutation strategies to achieve better solutions. Various evolutionary 

algorithms have extensively been used to solve portfolio optimization problems. Although the concept 

of evolutionary algorithms was introduced in the mid-1970s, the first application of this approach to 

solve assets portfolio optimization problems was related to Chang et al. [18] at the beginning of this 

century. Ehrgott et al. [19] proposed a model for the mean-variance portfolio optimization problem 
                                                                        
1 Mean – Value-at-risk 
2 Mean – Conditional value-at-risk 
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and designed three algorithms, namely genetic algorithm, tabu search, and simulated annealing algo-

rithm, to solve the model. The genetic algorithm provided better results in terms of utility and stand-

ard deviation. Lin and Liu [20] presented a model for the mean-variance portfolio optimization prob-

lem with minimum transactions and used the genetic algorithm to solve the model. The results indi-

cated that the genetic algorithm could provide near-optimal solutions in a reasonable and short time. 

Mishra et al. [21] suggested using multi-objective bacteria foraging optimization for mean-variance 

assets portfolio optimization problem with boundary and cardinality constraints and compared the 

proposed algorithm with three multi-objective evolutionary algorithms concluding the superiority of 

the proposed approach over others. Yin et al. [22] proposed particle swarm optimization for portfolio 

optimization based on a heterogeneous multiple population strategy using the Markowitz mean-

variance portfolio selection model. Their computational results demonstrated that the proposed algo-

rithm performed powerfully, particularly for large-scale problems. Macedo et al. [23] compared two 

multi-objective evolutionary algorithms in terms of high volume performance index and technical 

analysis-based strategies. Their results indicated that NSGA-II outperforms SPEA-II. Kalayci et al. 

[24] cardinality constrained portfolio optimization using an artificial bee colony algorithm. Their 

study demonstrated the high efficiency of the artificial bee colony algorithm compared with other 

algorithms. Kalayci et al. [25] proposed a hybrid algorithm combining ant colony and genetic algo-

rithms for cardinality constrained portfolio optimization and assessed the model for five reference 

datasets. Yuen et al. [26]formulated the portfolio optimization problem using market index-tracking 

with cardinality constraints and solved the proposed model using a metaheuristic approach. Soroush et 

al. [27] evaluated the portfolio optimization problem using a teaching-learning-based optimization 

(TLBO) algorithm based on the mean-variance model and conditional value-at-risk model. The results 

indicated that TLBO performs better than other algorithms to find the efficient frontier and portfolio 

optimization. Tehrani et al. [2] assessed the portfolio optimization problem using the krill herd me-

taheuristic algorithm based on the mean-variance and mean-semi-variance models and expected 

downfalls. The results of their study indicated that the krill herd algorithm performs more satisfactori-

ly in finding efficient frontier and portfolio optimization compared with conventional algorithms. 

 

3 Portfolio Optimization with Cardinality Constraint 

The general portfolio optimization model is defined as follows. 

𝑚𝑎𝑥  
∑ 𝑤𝑖𝜇𝑖

𝑁
𝑖=1 −𝑅𝑓

𝑟𝑖𝑠𝑘𝑝
   

(1) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  ∑ 𝑤𝑖
𝑁
𝑖=1 = 1   (2) 

∑ 𝑧𝑖
𝑁
𝑖=1 = 𝐾   (3) 

휀𝑖𝑧𝑖 ≤ 𝑤𝑖 ≤ 𝛿𝑖𝑧𝑖  𝑖 = 1, … , 𝑁  (4) 

𝑧𝑖  𝜖 {0,1}  𝑖 = 1, … , 𝑁  (5) 

0 ≤ 𝑤𝑖 ≤ 1  𝑖 = 1, … , 𝑁  (6) 

0 ≤ 휀𝑖 ≤ 𝛿𝑖 ≤ 1  𝑖 = 1, … , 𝑁  (7) 

The description of parameters and variables of Model 1-7 is as follows: 

Parameters: 
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𝑁  : Number of available assets 

𝜇𝑖  : Expected return of asset 𝑖 
𝐾  : Number of desirable assets kept in the portfolio 

휀𝑖  : Minimum weight of asset 𝑖 in the portfolio 

𝛿𝑖  : Maximum weight of asset 𝑖 in the portfolio 

𝛼  : Probability or confidence level loss at the value-at-risk 

𝑅𝑓  : Risk-free return 

 

Variables: 

 𝑤𝑖 : The weight of asset 𝑖 
 𝑧𝑖 : A binary variable taking 1 if asset 𝑖 is in the basket and 0 otherwise 

 

Constraint (2) indicates the use of all the capital to invest in the available assets. Constraint (3) dic-

tates that the maximum number of assets within the portfolio equals the desirable amount of 𝐾. Con-

straint (4) specifies the maximum and minimum allowable amount to invest in stock 𝑖. Constraint (5) 

determines the range of investment in stock 𝑖. The objective function (1) represents the maximization 

of the Sharpe ratio, i.e., portfolio return to portfolio risk. In this paper, three different portfolio risk 

factors (𝑟𝑖𝑠𝑘𝑝) are used: Variance, Value-at-risk and conditional value-at-risk.  

Variance: Equation (8), represents the calculation of 𝑟𝑖𝑠𝑘𝑝 using the variance, which shows the same 

Markowitz mean-variance model. 

𝑟𝑖𝑠𝑘𝑝 = 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = ∑ ∑ 𝑤𝑖𝑤𝑗𝜎𝑖𝑗
𝑁
𝑗=1

𝑁
𝑖=1   (8) 

Where 𝜎𝑖𝑗 is the covariance between stock 𝑖 and 𝑗 

Value-at-risk and conditional value-at-risk: In continuous space, the conditional value-at-risk of an 

asset portfolio is calculated as Equation (9) 

𝑟𝑖𝑠𝑘𝑝 = 𝐶𝑉𝑎𝑅𝛼(𝑥) =
1

1−𝛼
∫ 𝑓(𝑥, 𝑦)𝑝(𝑦)𝑑𝑦

𝑓(𝑥,𝑦)≥𝑉𝑎𝑅𝛼(𝑥)
  (9) 

Where 𝛼 is the confidence level, 𝑓(𝑥, 𝑦) represents the loss function for portfolio 𝑥 and assets return 

𝑦, 𝑝(𝑦) denotes the probability density function for return 𝑦,  𝑉𝑎𝑅𝛼(𝑥) stands for the value-at-risk for 

portfolio 𝑥 at the confidence level 𝛼 and is calculated as 𝑉𝑎𝑅𝛼(𝑥) = min{𝜉: 𝑃𝑟[𝑓(𝑥, 𝑌) ≤ 𝜉] ≥ 𝛼}. 

Another way to calculate the conditional value-at-risk that simplifies the optimization process is to 

use the Equation (10). 

𝐶𝑉𝑎𝑅𝛼(𝑥) = 𝑉𝑎𝑅𝛼(𝑥) +
1

1−𝛼
∫ max{0, (𝑓(𝑥, 𝑦) − 𝑉𝑎𝑅𝛼(𝑥))} 𝑝(𝑦)𝑑𝑦

𝑅𝑛   (10) 

The probability level is generally chosen in the range of 0.9 to 0.99 (here we have used the probability 

level of 0.95). In the proposed method by [28] , in order to describe the probability distribution of 

returns, first a limited sample of 𝑦𝑠 (𝑠 = 1, … , 𝑆) scenarios is selected. Each 𝑦𝑠 is a 𝑛-dimensional 

vector that contains the returns of each of the n assets within the portfolio under scenario 𝑠. This in-

stance of S scenario is stored as a scenario matrix with size 𝑆 × 𝑛. The risk proxy for optimization is 

then calculated for the 𝑥 portfolio as an Equation (11). 

 𝐶𝑉𝑎𝑅𝛼(𝑥) = 𝑉𝑎𝑅𝛼(𝑥) +
1

(1−𝛼)𝑆
∑ max{0, −𝑦𝑠

𝑇𝑥 − 𝑉𝑎𝑅𝛼(𝑥)}𝑆
𝑠=1  (11) 
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The value of 𝐶𝑉𝑎𝑅𝛼(𝑥) is calculated when 𝑉𝑎𝑅𝛼(𝑥) is calculated. Loss function 𝑓(𝑥, 𝑦𝑠) = −𝑦𝑠
𝑇𝑥 is 

the portfolio loss, under scenario s. Under this definition, 𝑉𝑎𝑅𝛼(𝑥) and 𝐶𝑉𝑎𝑅𝛼(𝑥) are estimates of 

𝑉𝑎𝑅𝛼(𝑥) and 𝐶𝑉𝑎𝑅𝛼(𝑥)  based on certain scenarios. 

3.1 Model Solution Based on Differential Evolution Algorithm 

The differential evolution algorithm is an optimization algorithm, firstly introduced by Storn and 

Price [29]. They demonstrated that this algorithm was well able to optimize non-linear non-

differentiable functions, and the algorithm was proven as a powerful and fast approach to optimization 

in continuous spaces.  

 

Fig.1: Flowchart of the Differential Evolution Algorithm [30] 

 

The differential evolution algorithm was proposed to cover the main shortcoming of the genetic algo-

rithm, i.e., the lack of a local search. The main difference between genetic algorithms and the differ-

ential evolution algorithm is their selection operators. In the selection operator of the genetic algo-

rithm, the chance for a solution to be selected as a parent depends on its fitness value, but in the dif-

ferential evolution algorithm, all solutions have an equal chance of being selected, i.e., their chance 

does not depend on their fitness. In this algorithm, after a new solution is generated by mutation and 

crossover operators, it is compared with the previous solution and replaced if it is a better solution. In 

contrast to other algorithms, in the differential evolution algorithm, the mutation operator is firstly 

performed, and then, the crossover operator applies to produce a new generation. No specific distribu-

tion is used to apply the mutation operator, and the mutation step length is determined in terms of 

distance between current members. Figure 1 represents the flowchart of the differential evolution al-

gorithm. 

To solve the portfolio optimization model by considering the cardinality constraints using the differ-

ential evolution algorithm, we first define the chromosomes that represent each of the problem solu-

tions. The chromosomes of each solution are defined as follows. 
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𝑤1  𝑤2 … 𝑤𝑁  𝑧1  𝑧1 … 𝑧𝑁  

Fig.2: Chromosomes for the Differential Evolution Algorithm for the Portfolio Optimization Problem 

After generating a new solution (solutions of the initial population after applying mutation and cross-

over operators), a feasible solution may be produced. Particularly, due to the presence of cardinality 

constraints and the necessity for the presence of a specific number of stocks within the portfolio, each 

new solution requires to be corrected to determine new weights of stocks. In this case, first, assets 

having the least weight exit the portfolio to improve the portfolio (adaptation with the predetermined 

desired number of stocks). Then, the remained maximum weight is allocated to the rest of the stocks 

within the portfolio until the number of stocks within the portfolio achieves a predetermined desired 

amount. Figure 3 describes the pseudocode for this procedure. 

Inputs : N, K, S, W   
Outputs : Wr   
    
Parameters    
N  : Number of assets  
K  : Number of assets within the portfolio  
S  : A set of index assets  
W  : The set of weights entered into the correction process  
wi

r  : The weight of asset i entered into the correction process, i ∈ S  
Wr  : Set of weights after correction  
zi  : Binary variable, i ∈ S  
 

Process 

   

Start    
  Until ∑ zi

N
i=1 = K, repeat the following process.  

  If ∑ zi
N
i=1 > K,  

  wi = 0 and zi = 0 for assets having the minimum wi.  
  If ∑ zi

N
i=1 < K,  

  zi = 1 for assets out of the portfolio.  
  CS = ∑ wi

N
i=1   i ∈ S (Total weight of assets within the portfolio)  

  FP = 1 − εK (Maximum weight that can be assigned to assets within the portfo-

lio) 
 

  wi
r = εzi + wizi

FP

CS
,   ∀ i ∈ W, ∀ i ∈ Wr   

End    
Fig.3: Pseudocode for the Correction of Generated Solutions 

 

 

4 Methodology  

In this research, the top 50 stocks in the Tehran Stock Exchange (introduced by the Tehran Stock Ex-

change) are considered as the candidate stocks to assess the model. 𝐾, the number of desired assets 

allowed to be held within the portfolio, is considered 5. Also, 휀𝑖 and 𝛿𝑖 are set to 0 and 1, respectively. 
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The model is assessed based on a moving time window of 24 months ending on 24 September 2021. 

The number of data in the sample for the model optimization is 250 days. After optimizing and de-

termining the portfolio stocks and their corresponding weights, these stocks, along with their weights, 

are held for one month, and associated returns, risks, and Sharpe ratios are calculated. To evaluate the 

differential evolution algorithm, this algorithm is compared with the genetic algorithm. Also, Wilcox-

on nonparametric test was used to evaluate the statistical differences between the results of different 

methods. We used MATLAB 2021 for coding the models and the execution system has a core i7 CPU 

(9th generation) with 16 gb of RAM. Details of the code are provided in the Appendix B. The parame-

ters used in DE algorithm, as suggested by [31], are presented as follows: 

The size of population : 10 times the number of assets 

Lower bound of the scale factor (𝛽𝑚𝑖𝑛) : 0.2 

Upper bound of the scale factor (𝛽𝑚𝑎𝑥) : 0.8 

Crossover probability : 0.8 

Mutation factor : 0.3 

Stop condition : The objective function being unchanged for 100 itera-

tions 

5 Results 

Figure 4 shows the return trend of the compared models over 24 periods. As seen, no model has dom-

inance in all periods. A worth noting point is that the change in return for the conditional value-at-

risk-based model is more than that for the variance-based model. The average return, standard devia-

tion, and the Sharpe ratio for the 24 periods are compared in Figure 5. As seen, based on Figure 5, the 

most prioritized portfolio optimization models are mean-variance, mean-value-at-risk, and mean-

conditional value-at-risk models, respectively (Appendix A represents the results for mean-variance, 

mean-value-at-risk, and mean-conditional value-at-risk separately). Although the figure shows evi-

dence of differences between Sharp ratios, the differences do not appear to be noticeable. Therefore, 

Wilcoxon nonparametric test was used to evaluate the significance of this difference. ranksum tests 

the null hypothesis that data in two samples examined are samples from continuous distributions with 

equal medians, against the alternative that they are not. Table 2 presents the results of the Wilcoxon 

test [32] to evaluate the differences between the Sharp ratios of the models. As can be seen, given the 

p-value, the null hypothesis is not rejected and despite the difference between the return and risk of 

the models, there is no significant difference in the Sharp ratio between each model pair.   

 

Fig 4: Comparison of the Return Trend for Models Studied 
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Fig5: Comparison of Average Return, Standard Deviation, and Sharpe Ratio for Studied Models 
 

Table 2: Wilcoxon Test Results for Comparison between Portfolio Optimization Models 
Models Ranksum Z stat P-value Result 

Mean-variance & mean-value-at-risk 566 -0.44 0.65 
There is no significant difference between 

two models 

Mean-variance & mean-conditional-value-

at-risk 
575 -0.25 0.79 

There is no significant difference between 

two models 

Mean-value-at-risk & mean-conditional-

value-at-risk 
600 0.23 0.81 

There is no significant difference between 

two models 

 

Table 3 presents the results of the Wilcoxon test to evaluate the significant difference between the 

Sharp ratio results for the DE and GA algorithms. As can be seen, given the p-values, there is no sig-

nificant difference between the results of the two algorithms in all portfolio optimization models. Ta-

ble 4 shows the execution time of DE and GA algorithms to achieve the optimal solution. As can be 

seen, in general, the average solution time for DE algorithm was less than GA algorithm and it per-

formed better in similar hardware conditions. 

Table 3: Wilcoxon Test Results for Comparison Between Genetic Algorithm and Differential Evolution Algorithm 

Models ranksum Z stat p-value result 

Mean-variance 575 -0.258 0.797 
There is no significant difference between two 

models 

Mean-value-at-risk 580 -0.155 0.877 
There is no significant difference between two 

models 

Mean-conditional-value-at-risk 576 -0.237 0.813 
There is no significant difference between two 

models 

 

Table 4: Execution Time of Evolutionary Algorithms 

Model DE GA 

Mean-Variance 774.827 855.096 

Mean-VaR 4390.979 7683.507 

Mean-CVaR 5605.566 8718.386 

 

6 Conclusion 

In this paper, a new approach to solving the portfolio optimization model by considering the cardinali-

ty constraints using the differential evolution model is presented. In order to evaluate, the proposed 
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approach to solve models mean-variance, mean-VaR and mean-CVaR is considered. evaluation data 

included the top 50 stocks of the Tehran Stock Exchange. Also, the results obtained from the pro-

posed approach are compared with the results obtained from the genetic algorithm. Based on the re-

sults, there is no significant difference in the optimal Sharp ratios in the three models of the portfolio 

optimized under evaluation. Also, no significant difference was observed in the optimal values of the 

objective function obtained from the GA and DE algorithms, but the average solution time for the DE 

algorithm is less than the GA model. The results of this research can be helpful in improving the in-

vestment process for small and large stockholders in the Iranian capital market. Future research may 

develop the comparison domain and solution approach. Other modeling methods for the assets return, 

such as autoregressive models, artificial intelligence-based models such as artificial neural networks, 

and in-depth networks, such as LSTM, can be used in future research. Furthermore, using other me-

taheuristic models such as ant colony and genetic algorithm and comparing these models can be an 

alternative direction for future research. 

 

Appendix A 

Results of mean-variance model 

 

Table 5: Results of Return, Risk, and Sharpe Ratio for the Mean-Variance Model 

Period 1 2 3 4 5 6 7 8 9 10 11 12 

Return -0.08 0.14 -0.15 -0.77 -0.03 -0.37 -0.165 -0.246 -0.14 0.314 0.237 0.422 

Risk 0.015 0.01 0.016 0.01 0.013 0.023 0.025 0.014 0.018 0.015 0.022 0.023 

Sharpe ratio -5.67 16.1 -9.51 -7.35 -2.207 -15.94 -6.557 -17.68 -7.89 20.62 10.84 17.97 

Period 13 14 15 16 17 18 19 20 21 22 23 24 

Return 0.189 0.13 0.023 0.003 0.098 0.014 0.225 0.229 -0.04 0.024 -0.315 -0.05 

Risk 0.021 0.02 0.007 0.011 0.009 0.012 0.013 0.02 0.01 0.01 0.017 0.025 

Sharpe ratio 9.036 7.69 3.355 0.24 10.47 1.138 17.28 11.303 -3.41 2.537 -18.37 -2.13 
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Fig 6: Changes in the Objective Function and Optimal Solutions in Different Iterations of the Differential Evo-

lution Algorithm for the Mean-Variance Model 

 

Results of mean-value-at-risk model 

Table 6: Results of Return, Risk, and Sharpe Ratio for the Mean-Value-At-Risk Model 

Period 1 2 3 4 5 6 7 8 9 10 11 12 

Return -0.06 0.21 -0.16 -0.04 0.01 -0.317 -0.08 -0.316 -0.2 0.29 0.223 0.43 

Risk 0.02 0.01 0.04 0.01 0.02 0.052 0.04 0.038 0.036 0.01 0.017 0.02 

Sharpe ratio -3.44 24.2 -4.5 -2.9 0.32 -6.13 -1.87 -8.252 -5.7 21.7 13.64 28.1 

Period 13 14 15 16 17 18 19 20 21 22 23 24 

Return 0.06 0.13 0.04 -0.04 0.1 -0.006 0.2 0.218 -0.07 0.01 -0.331 0.04 

Risk 0.02 0.02 0.01 0.02 0.01 0.016 0.02 0.036 0.018 0.01 0.033 0.02 

Sharpe ratio 3.29 7.82 5.61 -2.42 8.85 -0.349 11.5 6.118 -0.38 0.52 -10.16 1.61 
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Fig .7: Changes in the Objective Function and Optimal Solutions in Different Iterations of the Differential Evo-

lution Algorithm for the Mean-Value-At-Risk Model 

 

Results of mean-conditional value-at-risk model 

Table 7: Results of Return, Risk, and Sharpe Ratio for the Mean-Conditional Value-At-Risk Model 
Period 1 2 3 4 5 6 7 8 9 10 11 12 

Return -0.1 0.19 -0.1 -0.1 -0.1 -0.41 -0.06 -0.3 -0.2 0.22 0.185 0.48 

Risk 0.02 0.02 0.04 0.02 0.03 0.082 0.04 0.036 0.03 0.02 0.024 0.01 

Sharpe ratio -3.3 12.3 -3.2 -3.6 -0.23 -4.98 -1.49 -8.19 -7.1 11.4 7.791 35.2 

Period 13 14 15 16 17 18 19 20 21 22 23 24 

Return 0.08 0.15 0.03 -0.1 0.1 -0.02 0.18 0.2 -0.1 0.02 -0.27 0.01 

Risk 0.02 0.01 0.01 0.02 0.02 0.021 0.02 0.042 0.02 0.02 0.026 0.03 

Sharpe ratio 3.36 12.5 2.89 -3.2 5.12 -0.98 11.2 4.774 -0.3.1 1.55 -10.5 0.33 
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Fig.8: Changes in the Objective Function and Optimal Solutions in Different Iterations of the Differential Evo-

lution Algorithm for the Mean-Conditional-Value-At-Risk Model 

 

Appendix B 

DE algorithm matlab code 
clc; 
clear; 
close all; 
%% Problem Definition 
CostFunction=@(x) Sphere(x);    % Cost Function 
nVar=20;            % Number of Decision Variables 
VarSize=[1 nVar];   % Decision Variables Matrix Size 
VarMin=-5;          % Lower Bound of Decision Variables 
VarMax= 5;          % Upper Bound of Decision Variables 
%% DE Parameters 
MaxIt=1000;      % Maximum Number of Iterations 
nPop=50;        % Population Size 
beta_min=0.2;   % Lower Bound of Scaling Factor 
beta_max=0.8;   % Upper Bound of Scaling Factor 
pCR=0.2;        % Crossover Probability 
%% Initialization 
empty_individual.Position=[]; 
empty_individual.Cost=[]; 
BestSol.Cost=inf; 
pop=repmat(empty_individual,nPop,1); 
for i=1:nPop 
    pop(i).Position=unifrnd(VarMin,VarMax,VarSize); 
    pop(i).Cost=CostFunction(pop(i).Position); 
    if pop(i).Cost<BestSol.Cost 
        BestSol=pop(i); 
    end 
end 
BestCost=zeros(MaxIt,1); 
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%% DE Main Loop 
for it=1:MaxIt  
    for i=1:nPop 
        x=pop(i).Position; 
        A=randperm(nPop); 
        A(A==i)=[]; 
        a=A(1); 
        b=A(2); 
        c=A(3); 
        % Mutation 
        %beta=unifrnd(beta_min,beta_max); 
        beta=unifrnd(beta_min,beta_max,VarSize); 
        y=pop(a).Position+beta.*(pop(b).Position-pop(c).Position); 
        y = max(y, VarMin); 
  y = min(y, VarMax);  
        % Crossover 
        z=zeros(size(x)); 
        j0=randi([1 numel(x)]); 
        for j=1:numel(x) 
            if j==j0 || rand<=pCR 
                z(j)=y(j); 
            else 
                z(j)=x(j); 
            end 
        end 
         
        NewSol.Position=z; 
        NewSol.Cost=CostFunction(NewSol.Position);  
        if NewSol.Cost<pop(i).Cost 
            pop(i)=NewSol;  
            if pop(i).Cost<BestSol.Cost 
               BestSol=pop(i); 
            end 
        end  
    end 
    % Update Best Cost 
    BestCost(it)=BestSol.Cost; 
    % Show Iteration Information 
    disp(['Iteration ' num2str(it) ': Best Cost = ' num2str(BestCost(it))]); 
end 
%% Show Results 
figure; 
%plot(BestCost); 
semilogy(BestCost); 

 

GA algorithm matlab code 
clc; 
clear; 
close all; 
%% Problem Definition 
global NFE; 
NFE=0; 
CostFunction=@(x) Sphere(x);     % Cost Function 
nVar=5;             % Number of Decision Variables 
VarSize=[1 nVar];   % Decision Variables Matrix Size 
VarMin=-10;         % Lower Bound of Variables 
VarMax= 10;         % Upper Bound of Variables 
%% GA Parameters 
MaxIt=200;      % Maximum Number of Iterations 
nPop=100;        % Population Size 
pc=0.8;                 % Crossover Percentage 
nc=2*round(pc*nPop/2);  % Number of Offsprings (Parnets) 
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pm=0.3;                 % Mutation Percentage 
nm=round(pm*nPop);      % Number of Mutants 
gamma=0.05; 
mu=0.02;         % Mutation Rate 
ANSWER=questdlg('Choose selection method:','Genetic Algorith',... 
    'Roulette Wheel','Tournament','Random','Roulette Wheel'); 
UseRouletteWheelSelection=strcmp(ANSWER,'Roulette Wheel'); 
UseTournamentSelection=strcmp(ANSWER,'Tournament'); 
UseRandomSelection=strcmp(ANSWER,'Random'); 
if UseRouletteWheelSelection 
    beta=8;         % Selection Pressure 
end 
if UseTournamentSelection 
    TournamentSize=3;   % Tournamnet Size 
end 
pause(0.1); 
%% Initialization 
empty_individual.Position=[]; 
empty_individual.Cost=[]; 
pop=repmat(empty_individual,nPop,1); 
for i=1:nPop     
    % Initialize Position 
    pop(i).Position=unifrnd(VarMin,VarMax,VarSize); 
    % Evaluation 
    pop(i).Cost=CostFunction(pop(i).Position);     
end 
% Sort Population 
Costs=[pop.Cost]; 
[Costs, SortOrder]=sort(Costs); 
pop=pop(SortOrder); 
% Store Best Solution 
BestSol=pop(1); 
% Array to Hold Best Cost Values 
BestCost=zeros(MaxIt,1); 
% Store Cost 
WorstCost=pop(end).Cost; 
% Array to Hold Number of Function Evaluations 
nfe=zeros(MaxIt,1); 
%% Main Loop 
for it=1:MaxIt     
    % Calculate Selection Probabilities 
    P=exp(-beta*Costs/WorstCost); 
    P=P/sum(P);     
    % Crossover 
    popc=repmat(empty_individual,nc/2,2); 
    for k=1:nc/2         
        % Select Parents Indices 
        if UseRouletteWheelSelection 
            i1=RouletteWheelSelection(P); 
            i2=RouletteWheelSelection(P); 
        end 
        if UseTournamentSelection 
            i1=TournamentSelection(pop,TournamentSize); 
            i2=TournamentSelection(pop,TournamentSize); 
        end 
        if UseRandomSelection 
            i1=randi([1 nPop]); 
            i2=randi([1 nPop]); 
        end 
        % Select Parents 
        p1=pop(i1); 
        p2=pop(i2);         
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        % Apply Crossover 
        [popc(k,1).Position popc(k,2).Position]=... 
            Crossover(p1.Position,p2.Position,gamma,VarMin,VarMax);         
        % Evaluate Offsprings 
        popc(k,1).Cost=CostFunction(popc(k,1).Position); 
        popc(k,2).Cost=CostFunction(popc(k,2).Position);         
    end 
    popc=popc(:); 
     
    % Mutation 
    popm=repmat(empty_individual,nm,1); 
    for k=1:nm 
        % Select Parent 
        i=randi([1 nPop]); 
        p=pop(i); 
        % Apply Mutation 
        popm(k).Position=Mutate(p.Position,mu,VarMin,VarMax); 
        % Evaluate Mutant 
        popm(k).Cost=CostFunction(popm(k).Position); 
    end 
    % Create Merged Population 
    pop=[pop 
         popc 
         popm]; 
    % Sort Population 
    Costs=[pop.Cost]; 
    [Costs, SortOrder]=sort(Costs); 
    pop=pop(SortOrder); 
    % Update Worst Cost 
    WorstCost=max(WorstCost,pop(end).Cost); 
    % Truncation 
    pop=pop(1:nPop); 
    Costs=Costs(1:nPop); 
    % Store Best Solution Ever Found 
    BestSol=pop(1); 
    % Store Best Cost Ever Found 
    BestCost(it)=BestSol.Cost; 
    % Store NFE 
    nfe(it)=NFE; 
    % Show Iteration Information 
    disp(['Iteration ' num2str(it) ': NFE = ' num2str(nfe(it)) ', Best Cost = ' 
num2str(BestCost(it))]);     
end 
%% Results 
figure; 
semilogy(nfe,BestCost,'LineWidth',2); 
xlabel('NFE'); 
ylabel('Cost'); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 

Functions 

 
function [y1, y2]=Crossover(x1,x2,nAsset) 
xx1=x1(1:nAsset); 
xx2=x2(1:nAsset); 
pSinglePoint=0.1; 
pDoublePoint=0.2; 
pUniform=1-pSinglePoint-pDoublePoint; 
METHOD=RouletteWheelSelection([pSinglePoint pDoublePoint pUniform]); 
switch METHOD 
    case 1 
        [yy1, yy2]=SinglePointCrossover(xx1,xx2); 
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    case 2 
        [yy1, yy2]=DoublePointCrossover(xx1,xx2); 
 
    case 3 
        [yy1, yy2]=UniformCrossover(xx1,xx2); 
end 
xxx1=x1(nAsset+1:end); 
xxx2=x1(nAsset+1:end); 
[yyy1, yyy2]=SinglePointCrossover(xxx1,xxx2); 
y1=[yy1,yyy1]; 
y2=[yy2,yyy2]; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function y=Mutate(x,mu,nAsset,VarMin,VarMax) 
x1=x(1:nAsset); 
x2=x(nAsset+1:end); 
nVar=numel(x1); 
nmu=ceil(mu*nVar); 
j=randsample(nVar,nmu); 
sigma=0.1; 
y1=x1; 
y1(j)=x1(j)+sigma*randn(size(j))'; 
y1=max(y1,VarMin); 
y1=min(y1,VarMax); 
nVar=numel(x2); 
nmu=ceil(mu*nVar); 
j=randsample(nVar,nmu); 
y2=x2; 
y2(j)=1-x2(j); 
y=[y1,y2]; 
end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function 
[Z,PortRet,PortRisk]=ObjFunction(PortRet,PortRisk,simulatedRet,w,alpha,rf,nAsset,Variance,V
aR,CVaR,MAD,Mean,AR) 
w=w(1:nAsset); 
if Variance 
    if isinf(PortRisk) 
        PortRisk=100000000; 
    end 
    PortRisk=sqrt(w*PortRisk*w'); 
elseif VaR 
    simulatedRet=simulatedRet*w'; 
    PortRisk=-prctile(simulatedRet,1-alpha); 
elseif CVaR 
    simulatedRet=simulatedRet*w'; 
    thr=prctile(simulatedRet,1-alpha); 
    extRet=simulatedRet(simulatedRet<thr); 
    PortRisk=-mean(extRet); 
elseif MAD 
    PortRisk=mean(w.*PortRisk); 
end  
if Mean 
    PortRet=sum(PortRet*w')-rf;    
elseif AR 
    PortRet=sum(PortRet*w')-rf;    
end 
if isinf(PortRisk) 
    PortRisk=100000000; 
end 
if isinf(PortRet) 
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    PortRet=0; 
end 
if PortRisk <= 0 
    PortRisk = inf; 
end 
Z=PortRet/PortRisk; 
End 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function repairedX=repairCons(x,eps,dlt,nAsset) 
s=x(1:nAsset); 
s=max(s,eps); 
s=min(s,dlt); 
z=x(nAsset+1:end); 
idxOneAsset=find(z); 
idxZroAsset=find(z==0); 
s0=s(idxOneAsset); 
eps0=eps(idxOneAsset); 
dlt0=dlt(idxOneAsset); 
L=sum(s0); 
F=1-sum(eps0); 
w=eps0+s0*(F/L); 
badUpper=sum(w>dlt0); 
while badUpper~=0 
    R=find(w>dlt0); %bad 
    QR=w<dlt0; %good 
    L=sum(s0(QR)); 
    F=1-(sum(eps0(QR))+sum(dlt0(R))); 
    w(QR)=eps0(QR)+s0(QR)*(F/L); 
    w(R)=dlt0(R); 
    badUpper=sum(w>dlt0); 
end 
x(idxOneAsset)=w; 
x(idxZroAsset)=0; 
repairedX=x; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function 
[Z,PortRet,PortRisk]=TestFunction(PortRet,PortRisk,simulatedRet,w,alpha,rf,nAsset,Variance,
VaR,CVaR,MAD,Mean,AR) 
w=w(1:nAsset); 
if Variance 
    if isinf(PortRisk) 
        PortRisk=100000000; 
    end 
    PortRisk=sqrt(w*PortRisk*w'); 
elseif VaR 
    simulatedRet=simulatedRet*w'; 
    PortRisk=-prctile(simulatedRet,1-alpha); 
elseif CVaR 
    simulatedRet=simulatedRet*w'; 
    thr=prctile(simulatedRet,1-alpha); 
    extRet=simulatedRet(simulatedRet<thr); 
    PortRisk=-mean(extRet); 
elseif MAD 
    PortRisk=mean(w.*PortRisk); 
end  
 
PortRet=sum(PortRet*w')-rf;    
 
if isinf(PortRisk) 
    PortRisk=100000000; 
end 
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if isinf(PortRet) 
    PortRet=0; 
end 
Z=PortRet/PortRisk; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [y1 y2]=DoublePointCrossover(x1,x2) 
    nVar=numel(x1);     
    cc=randsample(nVar-1,2); 
    c1=min(cc); 
    c2=max(cc);     
    y1=[x1(1:c1) x2(c1+1:c2) x1(c2+1:end)]; 
    y2=[x2(1:c1) x1(c1+1:c2) x2(c2+1:end)]; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [y1 y2]=SinglePointCrossover(x1,x2) 
    nVar=numel(x1);     
    c=randi([1 nVar-1]);     
    y1=[x1(1:c) x2(c+1:end)]; 
    y2=[x2(1:c) x1(c+1:end)]; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [y1 y2]=UniformCrossover(x1,x2) 
    alpha=randi([0 1],size(x1));     
    y1=alpha.*x1+(1-alpha).*x2; 
    y2=alpha.*x2+(1-alpha).*x1;     
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function i=RouletteWheelSelection(P) 
    r=rand; 
    c=cumsum(P); 
    i=find(r<=c,1,'first'); 
end 
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