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Abstract 

In this paper, we enumerate the parameter matrices of all perfect 3-colorings of the cubical graph 𝑄3. We also 

present some basic results for a cubic connected graph of order8. It has a wide range of applications in agriculture 

production and banking systems.  
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Introduction 

 

The concept of a perfect m-coloring plays an 

important role in graph theory, algebraic 

combinatorics, and coding theory (completely 

regular codes). The concept has been referred to 

as "equitable partition" in the literature too (see 

[8]).  

The existence of completely regular codes in 

graphs is a historical problem in mathematics. 

Completely regular codes are a generalization of 

perfect codes. In 1973, Delsarte conjectured the 

non-existence of nontrivial perfect codes in 

Johnson graphs. Therefore, some effort has been 

made on enumerating the parameter matrices of 

some Johnson graphs, including J(6,3), J(7,3), 

J(8,3), J(8,4), and J(v, 3) (v  odd) (see [2, 3, 

7]).  

Fon-Der-Flass enumerated the parameter 

matrices (perfect 2-colorings) of n-dimensional 

hypercube Qn for n < 24. He also obtained 

some constructions and a necessary condition 

for the existence of perfect 2-colorings of the n-

dimensional cube with a given parameter matrix 

(see [4, 5, 6]). 

Some results for the existence of perfect 2-

colorings in generalized Petersen graphs are 

presented ([1]).  

In this article, we enumerate the parameter 

matrices of all perfect 3-colorings ofQ3. 

 

Definition and Concepts 

In this section, we give some basic definitions 

and concepts.  

 

Definition .1 The Hypercube graph Qn has 

vertices, respectively, edges given by  
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 V(Qn) = {x = (x1, ⋯ , xn): xi ∈

ℤ2},                                      

E(Qn) =

{xy:  x  and  y  differinpreciselyonecoordinate}

.  

 The graph Q3 is called the cubical graph. It is 

clear that the cubical graph is a 3-regular 

connected graph.  

  

Definition  .2 For a graph G and an integer m, a 

mapping T: V(G) → {1, ⋯ , m} is called a 

perfect m-coloring with matrix A =

(aij)i,j∈{1,⋯,m}, if it is subjective, and for all i, j, 

for every vertex of color i, the number of its 

neighbors of color j is equal to aij. The matrix A 

is called the parameter matrix of a perfect 

coloring. In the case m = 3, we call the first 

color white, the second color black, and the third 

color red. In this paper, we generally show a 

parameter matrix by  

 A = [
a b c
d e f
g h i

]. 

 

  

Remark .3 in this paper, we consider all perfect 

3-colorings, up to renaming the colors; i.e, we 

identify the perfect 3-coloring with the matrices  

 [
a c b
g i h
d f e

] , [
e d f
b a c
h g i

],                       

[
e f d
h i g
b c a

] , [
i h g
f e d
c b a

] , [
i g h
c a b
f d e

],  

Obtained by switching the colors with the 

original coloring.  

   

Perfect 3-colorings of a cubic connected 

graph of order 𝟖 

 

This section presents some results concerning 

the necessary conditions for the existence of 

perfect 3-colorings of a cubic connected graph 

of order 8 with a given parameter matrix 

A = [
a b c
d e f
g h i

].  

The simplest necessary condition for the 

existence of perfect 3-colorings of a cubic 

connected graph with the matrix [
a b c
d e f
g h i

] is  

 a + b + c = d + e + f = g + h + i =

3. 

Also, it is clear that we cannot have b = c = 0, 

d = f = 0, or g = h = 0, since the graph is 

connected. In addition, we have b = 0, c = 0, 

f = 0 if d = 0, g = 0, h = 0, respectively. 

The next proposition gives a formula for 

calculating the number of white, black and red 

vertices in a perfect 3-coloring.  

 

Proposition .1 Let T be a perfect 3-coloring of a 

graph G with the matrix  A = [
a b c
d e f
g h i

]. 

  

    1.  If b, c, f ≠ 0, then  

 |W| =
|V(G)|
b

d
+1+

c

g

, |B| =
|V(G)|
d

b
+1+

f

h

, |R| =

|V(G)|
h

f
+1+

g

c

. 

  

    2.  If b = 0, then  

 |W| =
|V(G)|

c

g
+1+

ch

fg

, |B| =
|V(G)|

f

h
+1+

fg

ch

, |R| =

|V(G)|
h

f
+1+

g

c

. 

  

    3.  If c = 0, then  
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 |W| =

|V(G)|
b

d
+1+

bf

dh

, |B| =
|V(G)|
d

b
+1+

f

h

, |R| =

|V(G)|
h

f
+1+

dh

bf

. 

  

    4.  If f = 0, then  

 |W| =
|V(G)|
b

d
+1+

c

g

, |B| =
|V(G)|

d

b
+1+

cd

bg

, |R| =

|V(G)|
g

c
+1+

bg

cd

. 

 

Proof. (1): Consider the 3-partite graph obtained 

by removing the edges uv such that u and v are 

the same color. By counting the number of 

edges between parts, we can easily obtain 

|W|b = |B|d, |W|c = |R|g, and |B|f = |R|h. 

Now, we can conclude the desired result from 

|W| + |B| + |R| = |V(G)|. 

The proof of (2), (3), (4) is similar to (1).  

In this section, without any restrictions on 

generality, we assume|W| ≤ |B| ≤ |R|. 

In the next Lemma, under the condition|W| =

1, we enumerate all matrices that can be a 

parameter matrix for a cubic connected graph.  

 

Lemma  .2 Let G be a cubic connected graph. If 

T is a perfect 3-coloring with the matrixA, 

and|W| = 1, then A should be one of the 

following matrices,  

 A1 = [
0 3 0
1 1 1
0 1 2

] , A2 = [
0 3 0
1 0 2
0 1 2

] , A3 =

[
0 3 0
1 0 2
0 2 1

] , A4 = [
0 0 3
0 1 2
1 1 1

] , A5 =

[
0 0 3
0 0 3
1 1 1

] , A6 = [
0 0 3
0 0 3
1 2 0

] , A7 =

[
0 1 2
1 1 1
1 1 1

] , A8 = [
0 2 1
1 0 2
1 1 1

] , A9 =

[
0 1 2
1 2 0
1 0 2

] , A10 = [
0 1 2
1 0 2
1 1 1

] , A11 =

[
0 1 2
1 0 2
1 2 0

].                             

 

Proof. Let A = [
a b c
d e f
g h i

] be a parameter 

matrix with|W| = 1. Consider the white vertex. 

It is clear that none of its adjacent vertices are 

white; i.e, a = 0. Therefore, we have two cases 

below.   

    1.  The adjacent vertices of the white vertex 

are the same color. 

If they are black, then b = 3 and c = 0. From 

c = 0, we get g = 0. Also, since the graph is 

connected, f, h ≠ 0. Hence, we obtain the 

following matrices:  

 

[
0 3 0
1 1 1
0 1 2

] , [
0 3 0
1 0 2
0 1 2

] , [
0 3 0
1 0 2
0 2 1

] , [
0 3 0
1 1 1
0 2 1

] , [
0 3 0
1 0 2
0 3 0

] , [
0 3 0
1 1 1
0 3 0

].  

 If the adjacent vertices of the white vertex are 

red, then c = 3, and b = 0. From b = 0, we 

get d = 0. Also, since the graph is connected, 

f, h ≠ 0. Hence, we obtain the following 

matrices:  

 

[
0 0 3
0 1 2
1 1 1

] , [
0 0 3
0 1 2
1 2 0

] , [
0 0 3
0 2 1
1 1 1

] , [
0 0 3
0 2 1
1 2 0

] , [
0 0 3
0 0 3
1 1 1

] , [
0 0 3
0 0 3
1 2 0

].  

 

 

Finally, by using Remark 2.3 and the fact 

that|W| ≤ |B| ≤ |R|, it is obvious that there are 

only six matrices in (1), as shown byA1, A2, A3, 

A4, A5, and A6.  

    2.  The adjacent vertices of the white vertex 

are different colors. 

It immediately gives thatb, c ≠ 0. Also, it can 

be seen thatd = g = 1. An easy computation, 
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as in (1), shows that there are only five matrices 

that can be a parameter matrix in this case, as 

shown byA7, A8, A9, A10, and A11.  

  

 We now present two lemmas which can be used 

to reach our goal.  

Lemma  .3 Let G be a cubic connected graph of 

order8. If T is a perfect 3-coloring with the 

matrixA, and|W| = |B| = 2,|R| = 4, then A 

should be one of the following matrices  

 [
0 1 2
1 0 2
1 1 1

] , [
1 0 2
0 1 2
1 1 1

] , [
2 1 0
1 0 2
0 1 2

].  

  

Proof. First, suppose that b, c ≠ 0. As |W| = 2, 

by Proposition 3.1, it follows that 
b

d
+

c

g
= 3. 

From b + c ≤ 3, we have b = 2, c = g = d =

1, or c = 2, b = g = d = 1. If b = 2, 

c = g = d = 1, we get a contradiction of 

|B| = 2. If c = 2, b = d = g = 1, then we 

conclude from |B| = 2 and |R| = 4 that h = 1 

and f = 2. Therefore, A = [
0 1 2
1 0 2
1 1 1

] or 

A = [
0 1 2
1 2 0
1 0 2

]. 

Second, suppose that b = 0 and, in 

consequence, d = 0. As |R| = 4, by 

Proposition 3.1, it follows that 
g

c
+

h

f
= 1. 

Therefore, c = f = 2, g = h = 1, or c = f =

3, h = 2, 

g = 1, or c = f = 3, g = 2, h = 1. If c = f =

2 and g = h = 1, then A = [
1 0 2
0 1 2
1 1 1

]. In 

the other two cases, we get a contradiction of 

|B| = 2. 

Third, suppose that c = 0 and, in consequence, 

g = 0. As |B| = 2, by Proposition 3.1, it 

follows that 
d

b
+

f

h
= 3. Therefore d = 2, 

b = f = h = 1, or f = 2, b = h = d = 1. If 

d = 2, b = f = h = 1, then we get a 

contradiction of |R| = 4. If f = 2, and b = h =

d = 1, then A = [
2 1 0
1 0 2
0 1 2

]. 

Finally, note that the matrix [
0 1 2
1 2 0
1 0 2

] is the 

same as the matrix [
2 1 0
1 0 2
0 1 2

] up to renaming 

the colors by Remark 2.3.  

  

Lemma .4  Let G be a cubic connected graph of 

order 8. If T is a perfect 3-coloring with the 

matrix A, and |W| = 2, and |B| = |R| = 3, 

then A should be one of the following matrices  

 [
0 3 0
2 0 1
0 1 2

].  

  

Proof. First, suppose that b, c ≠ 0. As |W| = 2, 

by Proposition 3.1, it follows that 
b

d
+

c

g
= 3. 

From b + c ≤ 3, we get b = 2, c = g = d =

1, or c = 2, b = g = d = 1. If b = 2, and 

c = g = d = 1, we get a contradiction of 

|B| = 3. If c = 2 and b = d = g = 1, then, 

from Proposition 3.1, we have f = 2, and h =

3, which is a contradiction of g + h ≤ 3. 

Second, suppose that b = 0 and, in 

consequence, d = 0. As |R| = 3, by 

Proposition 3.1, it follows that 
g

c
+

h

f
=

5

3
. 

Therefore, c = 3, g = 2, h = f = 1, or f = 3, 

h = 2, c = g = 1. If c = 3, g = 2, and 

h = f = 1, then A = [
0 0 3
0 2 1
2 1 0

]. In the other 

case, we get a contradiction of |W| = 2. 
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 Third, suppose that c = 0 and, in consequence, 

g = 0. As |B| = 3, by Proposition 3.1, it 

follows that 
d

b
+

f

h
=

5

3
. Therefore, h = 3, f =

2, b = d = 1, or b = 3, d = 2, f = h = 1. If 

h = 3, f = 2, and b = d = 1, then we get a 

contradiction of |W| = 2. If b = 3, d = 2, and 

f = h = 1, then A = [
0 3 0
2 0 1
0 1 2

]. 

Finally, note that the matrix [
0 0 3
0 2 1
2 1 0

] is the 

same as the matrix [
0 3 0
2 0 1
0 1 2

] up to renaming 

the colors, by Remark 2.3.  

 

  Perfect 3-colorings of the cubical graph 

 In this section, we enumerate the parameter 

matrices of all perfect 3-colorings of the cubical 

graph Q3.  

Theorem .1  There are no perfect 3-colorings 

with the matrix [
2 1 0
1 0 2
0 1 2

] for the cubical 

graph.  

  

Proof. Contrary to our claim, suppose that T is a 

perfect 3-coloring with the matrix [
2 1 0
1 0 2
0 1 2

] 

for the cubical graph. without any restrictions on 

generality, suppose that T((000)) = 2. 

Therefore, again without any restrictions on 

generality, suppose that T((100)) =

T((001)) = 3 and T((010)) = 1. From 

T((100)) = T((001)) = 3, we can easily see 

that T((110)) = T((011)) = T((101)) = 3 

which is a contradiction of T((010)) = 1.  

  

Theorem .2 There are no perfect 3-colorings 

with the matrices [
0 3 0
2 0 1
0 1 2

] for the cubical 

graph.  

  

Proof. Contrary to our claim, suppose that T is a 

perfect 3-coloring with the matrix [
0 3 0
2 0 1
0 1 2

] 

for the cubical graph. Without any restrictions 

on generality, suppose that T((000)) = 1. It 

gives T((100)) = T((001)) = T((010)) =

2. Therefore, two of the vertices (110), (011) 

or (101) are white which is a contradiction.  

 

Theorem .3 The cubical graph Q3 has perfect 3-

colorings only with the matrices 

[
0 1 2
1 0 2
1 1 1

] , [
1 0 2
0 1 2
1 1 1

].  

  

Proof. As it has been shown in section 3, only 

the matrices listed in Lemmas 3.2, 3.3, 3.4 can 

be parameter matrices. By using Proposition 3.1 

and easy computation, it can be easily seen that 

there are no perfect 3-colorings with the matrices 

listed in Lemma 3.2 for the cubical graph. 

Hence, from Theorem 4.1 and Theorem 4.2, it 

suffices to show that there are perfect 3-

colorings with the matrices 

[
0 1 2
1 0 2
1 1 1

] , [
1 0 2
0 1 2
1 1 1

]. Consider two 

mappings T1 and T2 as follows,  

 T1((001)) = T1((011)) = 1, T1((100)) =

T1((110)) = 2, 

T1((000)) = T1((010)) = T1((101)) =

T1((111)) = 3,        

 and  
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 T2((000)) = T2((111)) = 1, T2((010)) =

T2((101)) = 2, 

 

T2((100)) = T2((001)) = T2((110)) =

T2((011)) = 3.        

 It is clear that T1 and T2 are perfect 3-colorings 

with the matrices [
1 0 2
0 1 2
1 1 1

] , [
0 1 2
1 0 2
1 1 1

], 

respectively.  

It is known that enumerating parameter matrices 

of the cubical graph has a wide range of 

applications in agriculture production and its 

development and banking systems. 
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