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Abstract: In machining processes, the self-excited vibration between the cutting tool 
and the workpiece is an important issue that can result in undesirable effects, for 
example, poor quality of the final surface, low dimensional accuracy, breakage of the 
tool, and excessive noise. To anticipate this problem, statistical features of the 
vibration signal, such as mean, variance, and standard deviation, have been extracted 
from online measurements. The synthesis criterion (SC), which is based on the 
standard deviation (STD) and the one-step autocorrelation function (OSAF), has been 
employed to detect quickly the threshold of chatter vibration. In this article, flexible 
workpieces with varying cutting depths have been selected to detect online chatter 
vibrations during milling operations. In order to collect an analog vibration signal, an 
STM32 card has been selected with a sampling rate up to 20 kSPS. A high-bandwidth, 
lightweight film piezoelectric sensor is attached to the workpiece. Unlike other 
sensors, such as load cells or acceleration sensors, the film piezoelectric sensors do 
not alter the dynamics of the system. In this research, cost-effective hardware is also 
developed to capture vibration signals reliably and efficiently.  The experimental 
results confirm that the developed SC algorithm can efficiently predict the onset of 
chatter vibration as it was able to detect the onset of chatter vibrations within 0.18 sec. 
Thus, the SC algorithm can considerably enhance the milling operations of flexible 
parts. 
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1 INTRODUCTION 

Milling is a highly complex process, involving the 

periodic cutting effects of the tool’s cutting teeth on the 

workpiece. Regenerative waves are one of the most 

notable causes of self-excited or chatter vibration in 

milling, which can significantly impact the quality of the 

machined surface. Achieving a high material removal 

rate (MRR) and an acceptable surface quality are 

primary objectives of milling operations. However, as 

MRR increases, chatter vibrations tend to occur, 

necessitating the use of lower MRR and lower cutting 

depths to minimize undesirable interactions between 

tools and workpieces, as noted by Tlusty [1-2].  

Dynamic vibrations play a crucial role in the cutting 

process due to the fluctuation of the dynamic cutting 

force and the flexibility of the tool and workpiece. Also, 

a stability lobe diagram has been developed to assist in 

the selection of stable cutting parameters [3-4]. In recent 

years, numerous research studies have been conducted 

with the aim of acquiring signals of chatter during the 

milling process. A range of sensors and signals have 

been employed for chatter detection, including cutting 

forces [5-6], vibration signals [7-9], servo current [10], 

sound [11-15], and acoustic emission [9]. 

Due to the complex non-linear characteristics of chatter 

during the machining process, several methods have 

been proposed for online chatter recognition in three 

distinct domains: frequency, time, and time-frequency. 

In this regard, a novel approach for online chatter 

detection based on the development of artificial neural 

networks was suggested by [11], [16-20]. Specifically, 

different schemes of the Self-organizing map (SOM) 

neural network, recursive neural network (RNN), and 

convolutional neural network (CNN) were utilized for 

representing the occurrence of chatter through signal 

feature processing and deep learning. While intelligent 

control systems proved to be effective for monitoring 

and recognizing chatter, the robustness, accuracy, and 

response rate of the neural network were heavily 

dependent on continuous self-learning, training, and 

testing processes [21]. 

In [22], a novel coherence function about the 

acceleration of the tool in the x direction and an audio 

signal chatter detection method was proposed for turning 

operations, which was evaluated for its ability to detect 

chatter in the early stages of machining in the frequency 

domain. The experimental findings indicate that this 

method was sensitive to the onset of chatter. However, 

this method was not entirely independent of the 

machining parameters, and therefore, the optimal 

threshold for chatter detection may need to be updated 

by adjusting the mentioned parameters. Besides, an on-

line dependent chatter detection method in milling was 

investigated [23], and a discrete comb filtering method 

was suggested to isolate the chatter frequency. 

A novel synthetic criterion (SC) for early chatter 

recognition proposed by [11], integrates standard 

deviation (STD) and one-step autocorrelation function 

(OSAF) for the online recognition of chatter vibrations. 

Furthermore, this paper presents a revised fast algorithm 

for OSAF that significantly improves the computational 

efficiency compared to the original SC algorithm, 

thereby saving valuable time for online suppression of 

chatter vibrations. The experimental setup involved the 

acquisition of vibration signals through two 

accelerometers mounted on the spindle house, thus 

enabling the validation and verification of the proposed 

SC method. 

The work presented in this paper proposes a synthetic 

criterion (SC) for online chatter recognition. When the 

SC integrates standard deviation (STD) and One-Step 

Autocorrelation Function (OSAF), it results in an 

enhanced sensitivity and accuracy of chatter recognition 

compared to the traditional method [11]. The application 

of the SC method is a significant improvement in the 

detection of chatter vibrations during machining 

operations. The vibrations are captured by light 

weighted piezoelectric sensors that are mounted on 

workpieces of varying sizes. Unlike other sensors, they 

are distinguished by their ability to capture the vibration 

signals without altering the dynamics of the vibrating 

system. Additionally, these sensors are characterized by 

a high bandwidth and cost-effectiveness, making them a 

suitable choice for data collection purposes.  

2 MODELING 

Chatter vibrations are commonly observed when a 

machining process transitions from a stable stage to an 

unstable one. These signal vibrations involve three 

distinct stages: the stable stage, the transition stage, and 

the unstable stage [11]. While vibrations are negligible 

during the stable stage, they become more pronounced 

in the chatter stage. Therefore, the transition stage is 

particularly important for identifying chatter. Two 

changes occur in the transition stage: an increase in 

amplitude in the time domain and a shift in the dominant 

frequency band in the frequency domain, which lead to 

chatter vibrations.  

This paper employs a synthesis criterion (SC) to identify 

chatter vibrations, which is based on the integration of 

the standard deviation (STD) and the one-step auto 

correlation function (OSAF), which will be described. 

1.1. Standard Deviation (STD) 

One of the characteristics of a signal is STD which 

provides insight into the trend of increasing signal 

amplitude in the frequency domain. This feature is 

defined by the following Equation: 
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σ = √
∑ (𝑥𝑖−�̅�)2𝑁

𝑖=1

𝑁−1
                                                                (1) 

 

Where, 𝑥𝑖 is the sampled data, �̅� is defined as the average 

data and 𝑁 is the number of samples. 

1.2. One-Step Auto Correlation Function (OSAF) 

For processing random signals, OSAF is a beneficial 

method. It also defines the interdependence of a signal 

at one particular moment on the same signal at a 

different moment, within the time domain. If the 

sampling interval for chatter vibration is selected 

correctly, the OSAF can detect changes in the dominant 

frequency. A simple harmonic signal is defined by: 

 

𝑥𝑖(𝑡) = 𝐴𝑖 𝑠𝑖𝑛(2𝜋𝑓𝑖𝑡 + 𝜃𝑖)                                                      (2) 

 

Where, 𝜃𝑖 is considered to be a random variable. The 

expression of the OSAF according to the autocorrelation 

function is represented as follows: 

 

𝜌1𝑖 = 𝑐𝑜𝑠 2𝜋𝑓𝑖∆                                                         (3) 

 

The sampling interval (∆) is determined based on the 

Nyquist frequency 𝑓𝑛 = 1/(2∆). Additionally, 𝑓𝑖 

increases as 𝜌1𝑖 decreases. Harmonic vibration signals 

can be represented by the following: 

 

𝑥(𝑡) = ∑ 𝑥𝑖(𝑡)𝑛
𝑖=1 = ∑ 𝐴𝑖 𝑠𝑖𝑛(2𝜋𝑓𝑖𝑡 + 𝜃𝑖)

𝑛
𝑖=1                (4) 

 
The original algorithm of OSAF for this condition is as 

follows: 

 

𝜌1 =
∑ 𝐴𝑖

2 𝑐𝑜𝑠(2𝜋𝑓𝑖∆)𝑛
𝑖=1

∑ 𝐴𝑖
2𝑛

𝑖=1

=
∑ 𝐴𝑖

2𝜌1𝑖
𝑛
𝑖=1

∑ 𝐴𝑖
2𝑛

𝑖=1

                                         (5) 

 

In this Equation, 𝐴𝑖
2 is replaced by 𝑆(𝑓𝑖) ,the power 

spectrum, in ith frequency (𝑓𝑖). So, the following 

Equation will be obtained: 

 

𝜌1 =
∑ 𝑆(𝑓𝑖) 𝑐𝑜𝑠(2𝜋𝑓𝑖∆)𝑛

𝑖=1

∑ 𝑆(𝑓𝑖)𝑛
𝑖=1

                                                       (6) 

 

According to the aforementioned Equation, the original 

algorithm of OSAF has a monotonic relationship 

between 𝜌1 and the dominant frequency band [11]. 

1.3. The Fast Algorithm of OSAF  
To calculate OSAF in “Eq. (6)”, the power spectrum 

function 𝑆(𝑓𝑖) should be calculated using the discrete 

fourier transform (DFT) method. Therefore, to improve 

the computational efficiently, a fast algorithm for OSAF 

was introduced in [11], which can detect vibration 

signals online. Fast OSAF calculates the required time 

series directly as follows: 

 

𝜌1 =
𝑁𝐶−𝐴2

𝑁𝐵−𝐴2                                                                         (7) 

 
A, B, and C parameters are: 

 

𝐴 = ∑ 𝑥𝑖
𝑁
𝑖=1 , 𝐵 = ∑ 𝑥𝑖

2𝑁
𝑖=1 , 𝐶 = ∑ 𝑥𝑖

𝑁
𝑖=1 𝑥𝑖−1                   (8) 

 

In this research, N refers to experimental samples that 

have been acquired at each sliding window. 

Furthermore, the computational efficiency of OSAF was 

improved by implementing “Eq. (7)”, which 

outperforms “Eq.  (6)”. 

1.4. Synthesis Criterion (SC) 
The STD is a value that indicates the magnitude of 

variations in a signal in the time domain. On the other 

hand, the OSAF is a feature that captures the changes in 

the dominant frequency band of the vibration signal. By 

combining these two functions, the SC is generated [11], 

obtained as follows: 

 

𝑆𝐶 =
𝜎

�̅�
 (1 + 2𝐸)                                               (9) 

 

Where, 𝜎 is the mean of STD of all sections calculated 

in the stable stage, 𝜎/𝜎 is the ratio of instantaneous STD 

and the mean of the total standard deviation. E is a sign 

function: 

 

𝐸 = 𝑠𝑔𝑛(𝜌1 − �̅�1 − 1.96 𝜎𝜌1)                                             (10) 

 

In this Equation, (�̅�1) is also considered as the mean of 

OSAF calculation in the stable stage, 𝜎𝜌1 is the STD 

of 𝜌1 and the scaling factor 1.96. This scaling factor 

represents the quantile of 97.5% confidence interval, a 

number commonly used for statistical calculation, from 

a normal distribution. If: 

 

𝜌1 < �̅�1 + 1.96 𝜎𝜌1 → 𝐸 = −1   

and 

 𝜌1 > �̅�1 + 1.96 𝜎𝜌1 → 𝐸 = +1, 

then 

SC can be described as follows: 

 

𝑆𝐶 = {

1.5𝜎/𝜎    , 𝐸 = −1,
2𝜎/𝜎    , 𝐸 = 0,
3𝜎/𝜎   , 𝐸 = 1.

                                                    (11) 

1.5. Online Chatter Recognition by SC 
Establishing the threshold value of SC is a crucial step 

in online chatter recognition. The initial threshold value 

may be determined due to two essential conditions [11]: 

 

σ > 1.875𝜎                                                                                    (12) 
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𝜌1 > �̅�1 + 1.96 𝜎𝜌1                                                                    (13) 

 

By applying both conditions simultaneously chatter 

vibrations occur and the threshold is equal to the 

following expression: 

 

𝑆𝐶𝑙𝑖𝑚 = 1.875 × 3 = 5.625                                                (14) 

 

The online chatter recognition by SC is: 

 

𝑆𝐶 ≥ 𝑆𝐶𝑙𝑖𝑚                                                                                     (15) 

 

When the SC value reaches a predetermined threshold, 

an alarm is triggered using the above-mentioned “Eqs. 

(14) and (15)”.  

In order to achieve early chatter recognition and online 

control using the SC, the following procedure is 

typically followed: First, vibration signals are sampled 

in the stable stage of milling, and their parameters such 

as the A, B, and C are computed. The length of the 

sliding data section (N) and the calculation timers are 

then set by the user. In this paper, the length of data in 

sliding windows (N) is selected by trial and error to 300 

samples. Then, 𝜎, �̅�1and 𝜎𝜌1 in each window are 

calculated. When the SC value reaches its threshold, 

chatter vibrations will be reported. Finally, by adjusting 

the milling parameters, chatter vibrations could be 

avoided.  

3 THE TESTBED 

To validate the SC algorithm in identifying chatter 

vibration, milling tests with different cutting conditions 

were conducted. For this process, a 4-teeth high speed 

steel end mill with a diameter of 10 mm and a length of 

70 mm was employed. The experimental setup involved 

the utilization of two distinct flat strip workpieces with 

a width of 20, thickness of 10, and lengths of 50 mm and 

70 mm, respectively, made of aluminum alloy 7075T6. 

As shown in “Fig. 1”. 

To acquire the signals, an STM32F103C8T6 data 

acquisition card was used with a sampling rate of 20 

kHz. To receive signals in a more suitable range, the 

piezoelectric sensor with two resistors of 1 and 2 mega-

ohms in the form of a series circuit was connected. The 

sensor signal is input to pin (A0) of the stm32 card. The 

following is a schematic of the circuit of this sensor 

(“Fig. 2”): 

The acquired vibration signals were analyzed by 

MATLAB software. In all experiments, 10 mm of 

workpiece was clamped in vise. The testbed is depicted 

in “Fig. 3”. 

 

 
Fig. 1 Workpieces with lengths of 50 and 70 mm. 

 

 
Fig. 2 Schematic of the circuit. 

 

 
Fig. 3 (a): The Experimental setup, and (b): Model of the 

process. 
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4 EXPERIMENTAL TESTS 

In this experiment, vibration signals under different 

cutting depths and constant spindle speeds and feeds 

were compared to investigate chatter during milling. 

These vibration signals are captured by using a 

piezoelectric sensor mounted on the workpiece along Y 

direction. 

The workpieces should be fixed, so 10 mm of each piece 

were clamped in the milling lockdown vise. The SC for 

workpieces with a free length of 40 mm with a depth of 

1, 4, and 6 mm and a workpiece of 60 mm with 0.5,1,4 

and 6 mm, was investigated. For each section, 300 

samples were selected as a computational part. To detect 

chatter vibrations, it is necessary to calculate the 𝜎, 

�̅�1and 𝜎𝜌1 parameters of the vibration signals in the 

stable stage. 

For the workpiece of 40 mm and at axial cutting depths 

of 1, 4, and 6 mm, the vibration signal was obtained. The 

following Figures illustrate the investigation of the 

chatter signal by the SC method (“Fig. 4”). 

 

 
Fig. 4 Signal and the SC curve for the workpiece 40 mm 

and DOC: (a): 1, (b): 4 and (c): 6 mm. 

 
During milling tests, the maximum SC values were 

found to be 2.5, 3.2, and 4.2 for cutting depths of 1 mm, 

4 mm, and 6 mm, respectively. Notably, all three SC 

values were found to be less than the threshold value, 

indicating stable signals based on the SC method. 

However, increasing the free length of the workpiece 

resulted in higher levels of chatter vibration. To identify 

the most stable signal using the SC method for a 60 mm 

workpiece, two cutting depths of 0.5 mm and 1 mm were 

utilized, with the corresponding SC values presented in 

“Fig. 5”. 

During the conducted milling tests, it was observed that 

the vibration signal remained stable at cutting depths of 

0.5 mm and 1 mm.  

 

 
Fig. 5 The comparison of stability by SC method between 

DOC: (a): 0.5 and (b): 1 mm for the workpiece 40 mm. 

 
Figure 6 presents the vibration signals for cutting depths 

of 0.5 mm, 4 mm, and 6 mm, as depicted using the STD 

and the OSAF diagrams in the time domain. 

Specifically, “Fig. 6 (a)” demonstrates a signal with a 

cutting depth of 0.5 that remains in a steady state, with 

minor fluctuations observed throughout the milling 

process, with different peak-to-peak ranging between 

140 and 900 integer values. 

During this process, the vibration signal exhibited 

significant fluctuations at cutting depths of 4 mm and 6 

mm, as evidenced by the STD diagram. Specifically, at 

a cutting depth of 4 mm, the peak-to-peak fluctuations 

in “Fig. 6 (d)” remained less than 1008 integer values 

before 0.17 seconds. However, after this point, the 

difference increased to approximately 2920 integer 

values. Similarly, at a cutting depth of 6 mm in “Fig. 6 

(g)”, the maximum difference was 2213 integer values 

before 0.1 seconds, with this difference significantly 

increasing to 3050 integer values. In the STD diagram, 

the fluctuations observed at a cutting depth of 0.5 mm in 

“Fig. 6 (b)” remained within a narrow range, with a 

peak-to-peak value of approximately 56.2 around a 

mean value of 200. However, “Figs. 6 (e) and (h)”, 

which demonstrate STD at cutting depths of 4 mm and 6 

mm, the mean value increased sharply after 0.25 seconds 

and 0.15 seconds, respectively, reaching values of 764 

and 954, respectively. Similarly, in the OSAF diagram, 

the amplitude widened at cutting depths of 4 mm and 6 

mm, as shown in Figs 6 (f) and (i). They evidenced peaks 

in 0.14, and 0.06 seconds which reached 0.904 and 0.986 

respectively. The signal, in turn, fluctuated around 0.4 
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and 0.65, respectively, at the end of the domain. 

Conversely, at the cutting depth of 0.5 mm, the OSAF 

diagram exhibited limited fluctuations around 0.94, 

within a range of approximately 0.0806, as depicted in 

“Fig. 6 (c)”. 

 

 
Fig. 6 The vibration time domain curve, STD, and OSAF curves. (Left) DOC 0.5 mm, (Middle) DOC 4 mm, (Right) DOC 6 

mm. 

 
 

So, this method is utilized for chatter detection at cutting 

depths of 4 mm and 6 mm. As depicted in “Figs 7 and 

8”, in these two depths of cut, chatter vibrations were 

observed. Specifically, a sharp increase in the SC was 

noted at the beginning of the 4 mm cutting depth, in “Fig. 

7 (b)” with a maximum value of approximately 6.67 

reached more than the SC threshold, being reached by 

1.3 seconds.  

The SC curve subsequently fluctuated around its 

threshold value for the remainder of the recorded time. 

Similarly, the SC curve for a cutting depth of 6 mm, as 

shown in “Fig. 8 (b)”, exhibited an initial increase within 

the first 0.15 seconds, with the value exceeding the 

threshold range of 𝑆𝐶𝑙𝑖𝑚 of 7.5 to 8.8. 

 
Fig. 7 The signal and the SC curve for the workpiece 60 

mm and DOC: (a): 0.5 and (b): 4 mm. 
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Fig. 8 Signal and the SC curve for the workpiece 60 mm 

and DOC: (a): 0.5 and (b): 6 mm. 

 

Figure 9 showcases the Discrete Fourier Transforms 

(DFTs) of the vibration signals obtained from the free 

length workpiece measuring 40 mm in length and 

subjected to cutting depths of 1, 4, and 6 mm, along with 

the workpiece measuring 60 mm in length and subjected 

to cutting depths of 0.5, 1, 4, and 6 mm in “Fig. 10”. 

 

 
Fig. 9 DFT for the workpiece 40 mm. (a): DOC 1 mm, 

(b): DOC 4 mm, and (c): DOC 6 mm. 

 

 
Fig. 10 DFT for the workpiece 60 mm. (a): DOC 0.5 mm, 

(b): DOC 1 mm, (c): DOC 4 mm, and (d): DOC 6 mm. 

 
According to the findings presented in “Fig. 9”, the free-

length workpiece measuring 40 mm exhibits a dominant 

frequency of approximately 4200 Hz. Notably, this 

frequency had a significant increase in amplitude, rising 

from 9.8 at a cutting depth of 1 mm to 25.82 at a cutting 

depth of 6 mm. Similarly, the dominant frequency 

observed at a cutting depth of 6 mm in “Fig.  10”, is 

approximately 2780 Hz, with the amplitude of the 

corresponding DFTs exhibiting an upward trend, 

increasing from 1.7 to 208 as the cutting depths vary 

from 0.5 to 6 respectively. These results indicate a 

decline in the dominant frequency of the signal with 

increasing free length of the workpiece, while the energy 

of the signal is shown to be directly proportional to the 

amount of axial depth of cut.  

Figure 11 shows the milling surface of the workpiece 

with a free length of 60 mm and cutting depths of 0.5,1,4, 

and 6  mm. The machined surfaces depicted in “Figs. 11 

(a) and (b)” exhibit a smooth texture with no visible 

chatter marks, thereby indicating a stable machining 

process with cutting depths of 0.5 and 1 mm. In contrast, 

the machined surfaces illustrated in “Figs. 11 (c) and 

(d)” demonstrate evidence of chatter vibration, evident 

from the visible chatter marks present at cutting depths 

of 4 and 6 mm, respectively. These experimental 

findings are consistent with the observations obtained 

from our developed online SC method. 
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Fig. 11 Machined surface for the workpiece 60 mm. (a): 

DOC 0.5 mm, (b): DOC 1 mm, (c): DOC 4 mm, and (d): 

DOC 6 mm. 

5 CONCLUSIONS 

The primary objective of this study was to employ the 

SC method for the online detection of chatter vibrations 

during the milling process. This method involved the 

combination of the STD and the OSAF techniques. To 

validate the efficacy of the SC method, milling tests 

were designed and conducted, aimed at detecting chatter 

vibrations promptly. The SC method was proposed due 

to its robustness and high detection speed, making it a 

potent tool for the online recognition of chatter during 

the milling process. The use of the SC was essential for 

detecting chatter vibrations in the stable signal at 

different workpiece lengths. As the length of the 

workpiece increased, the cutting depth required for the 

stable signal to detect chatter decreased. Also, for 

analyzing the vibration signals, accelerometers were 

employed; however, in this paper, piezoelectric sensors 

were utilized. Owing to the lightweight of the sensor, 

there is no interference to the dynamic of the system at 

all. Additionally, the high bandwidth of these flexible 

sensors along with cost-effectiveness, make them an 

ideal choice for capturing vibration signals reliably and 

efficiently. The experimental results confirm the 

efficiency of the proposed algorithms in predicting the 

onset of chatter vibration using the developed hardware. 
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