
Int.  J.   Advanced Design and Manufacturing Technology, 2024, Vol. 17, No. 2, pp. 15-21 

DOI:          10.30486/ADMT.2024.873765                           ISSN: 2252-0406                                           https://admt.isfahan.iau.ir 

 

Research paper  

COPYRIGHTS 

© 2024 by the authors. Licensee Islamic Azad University Isfahan Branch. This article is an open access article distributed under the 

terms and conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) 

(https://creativecommons.org/licenses/by/4.0/) 

  

Jump Phenomenon Analysis in 

Vehicle and Chaos Control of 

Active Suspension System via 

Extended Pyragas Algorithm 

Yavar Nourollahi Golouje, Mahdi Abtahi *  
Department of Mechanical Engineering, Faculty of Industrial and 

Mechanical Engineering, Qazvin Branch, Islamic Azad University, 

Qazvin, Iran 

E-mail: y.noorallahi@advmco.ir, m.abtahi61@gmail.com 

*Corresponding author  

Received: 9 August 2022, Revised: 22 January 2023, Accepted: 12 February 2023 

 

Abstract: In this paper, the nonlinear phenomenon including hump and chaos 

analysis along with chaos control of an active suspension in vehicles has been 

studied. The unstable periodic orbits of the system are stabilized using the novel 

developed delay feedback control algorithm based on the fuzzy sliding mode system. 

The chaotic Equations of motions are derived via Newton-Euler relations then, the 

nonlinear phenomenon such as jump and chaos in the vehicle dynamics has been 

confirmed using forcing frequency method. The results of the forcing frequency 

demonstrate the changes in system behaviour from the periodic to the irregular 

chaotic responses. In order to eliminate the chaotic responses in the vertical 

dynamics of the vehicle, a new fuzzy sliding delay feedback control algorithm is 

designed on the active suspension. The controller gain of the sliding feedback 

control is online estimated via fuzzy logic causing to rejection of the chattering 

phenomenon in the sliding mode algorithm besides the improvement in the 

responses of the feedback system. Simulation results of the control system depict a 

reduction of settling time and energy consumption along with eliminating the 

overshoots and chaotic vibrations. 
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1 INTRODUCTION 

Nonlinear phenomena including jump, quasi-periodic, 

and chaos can occur in the heave motion of vehicles. 

Therefore, some oscillations in the suspension system 

are returned to this nonlinear phenomenon. Most 

algorithms in chaos control are designed on the basis of 

stabilization of unstable orbits that require a complex 

solution of unstable orbits. Pyragas controller based on 

the delay feedback control can control the chaotic 

system without solving the complex orbits [1-4].  

Many papers have been recently published about the 

chaotic dynamics and chaos control of suspension 

systems. The chaotic dynamics and control of vehicles 

under the unevenness of the road surface are investigated 

using numerical and analytical procedures [5-7]. The 

effect of damping coefficients and the passengers on the 

chaotic dynamic behavior are considered via the 

bifurcation diagrams in the vertical model of vehicles 

under the excitation force of the road surface [8-11]. 

Pyragas method based on delay feedback control has 

been used in chaotic systems because of the simple 

structure and good performance [12]. Zhang et al 

controlled the chaotic lateral dynamic in an active 

steering system using the adaptive time delay feedback 

method which led to the reduction of bounce vibrations 

[13-15].  

In this research, the jump and chaotic responses in heave 

motion are studied and controlled using the delay 

feedback control algorithm developed by the fuzzy 

sliding mode system. The nonlinear jump phenomenon 

and chaos are analyzed via the forcing frequency 

diagrams. In order to stabilize the chaotic dynamical 

system, the Pyragas method is integrated with a new 

sliding mode algorithm which fuzzy inference system 

extends the sliding delay feedback. In this novel 

controller, by online calculation of the controller’s 

coefficient in the developed Pyragas control system 

based on the sliding mode, the appropriate value of the 

control gain was estimated via the fuzzy system that the 

chattering phenomenon caused by the sliding mode 

behaviour around the sliding surface can be eliminated. 

The simulation results of the feedback system 

demonstrate the control of the suspension system 

without chaos. 

2 MATHEMATICAL MODELING 

The model of vertical motion is shown in “Fig. 1” that 

the body has two state variables consisting of the vertical 

displacement 𝑥𝑏 and rotation θ. The rotation around the 

longitudinal axis of the body and the rotation 

perpendicular to the passageway can be eliminated due 

to their small effects. The tire model with nonlinear 

damping and springs is modeled as unsprung masses. 

The front and rear actuators' forces are uf and ur in the 

active suspension system. 

 

 
Fig. 1 Vertical model with active suspension.  

 

Nonlinear spring and damper suspension relations are 

as follows [16]: 

 

(1) 

3 3
1 2 1 b 0 2 b 0

3 3
1 2 1 b 0 2 b 0

F K X K X K (x x ) K (x x )s

d d
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dt dt
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Where, k and c are the stiffness and dampers coefficient, 

X0 is the displacement of the input excitation from the 

road surface that is expressed by Xfd=Asin(2πft) and 

Xrd=Asin(2πft+α) for the front and rear tires, where A is 

the amplitude, f is the frequency of the excitation force 

and α represents the time delay between the 

displacement applied by the road surface affecting the 

front and rear tires. Also, vehicle tires are modeled with 

nonlinear spring and viscous damper, and the 

mathematical relationship for tire spring force equals 

fs=ksζs and ftc=ctζ�̇�t as tire damper force. By applying the 

Newton-Euler laws, the vehicle motion Equations are as 

follows: 

 

(2) 
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Where 
bf1 f sf1 fd

x x    , 

bf 2 b sf 2 f f
x x l sin      , and that 

sf
  are the static 
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length variations of the suspension springs in tires. The 

simulation parameters' numerical values are shown in 

“Table 1”. 

 
Table 1 Values of parameters in the numerical solutions 

Value System parameters 

1180 kg bM 
2kg m 633.6 J 

50 kg fM 

45 kg rM 

36952 N/m f2K 

30130 N/m  r2K 

140000 N/m r1K f1,K 

500 kg/s 

360kg/s 

10kg/s 

 f2C 

r2C 

r1C ,f1C 

1.123 m fl 

1.377 m rl 

3 JUMP ANALYSIS 

After simulation of the system based on the values of 

parameters in “Table 1” and the input excitation of the 

road surface as A=0.08m and phase α=π/9 rad, the 

responses show the occurrence of chaos in the system, 

which the forcing frequency diagrams is used to prove 

the nonlinear vibrations. The natural frequencies of the 

system are calculated as
1 1.0750Hz,nf  

2 1.8234Hz,nf  

3 9.4976Hz,nf  and 
4 9.8139Hznf  that f=10823Hz is the 

dominant frequency of the system. In order to verify the 

values of the natural frequencies, the results obtained in 

this research were compared with the results of reference 

[10] in “Table 2”, the results of the comparisons showed 

that the natural frequencies obtained in this research are 

in the same range as the reference that clearly indicated 

the correctness of the calculations. 

 
Table 2 Comparison of the results of natural frequencies 

obtained with reference [10] 

n4f n3f n2f n1f Comparison 

9.8139 

Hz 

9.4976 

Hz 

1.823 

Hz 

1.0750 

Hz 

Natural 

Frequency 

9.26 

Hz 
9.08 Hz 1.80 Hz 1.28 Hz 

Natural 

Frequency 

in Ref [10] 

 

The values of the vehicle speed, taking into account the 

reference [6] and the values of the first and second 

natural frequency and the jump frequency [f=1.075, 

1.8234, 3.6] Hz are equal to [v=13.93, 23.63, 46.66] 

km/h.  

The dynamic analysis of the frequency control 

parameter of the road surface excitation force is shown 

in the graphs of “Fig. 2”, which includes the maximum 

absolute value of the displacement of the state variables 

according to the frequency control parameter of the road 

surface excitation force, which indicates different 

behaviors in the responses of the system with increasing 

and decreasing frequency of the driving force. The range 

of increasing and decreasing frequency, for example, in 

the frequency range 1Hz<f< 6Hz and in parts of the 

frequency range 3Hz<f<5Hz, we see the behavior of 

frequency jumping. 

 

 

 

 

 
Fig. 2 Frequency response of system. 

 

 

4 CHAOS CONTROL  

Sliding-Pyragas controllers based on the delay feedback 

control are used to stabilize the unstable orbits which is 

estimated by a time-delay state variable. The feedback is 

the difference between the state and its time delay , and 
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the delay time constant is estimated as the periodic of 

orbits. The main advantage of this method is no need to 

calculate the orbits. Therefore, the control input signal is 

derived as u(t)=k[y(t-)-y(t)] that k is control gain [3]. 

The Pyragas algorithm is a linear feedback to stabilize 

unstable orbits. If the dynamic system is defined as: 

 
(n)x f (t, x) g(t, x)u   (6) 

 

Where, x is the state vector, u is the control input signal, 

f and g are uncertain functions, and in u=0, the system 

has chaotic behavior [17]. For this reason, at first, the 

delay state is defined. It is x(t) x(t T)  . It is obvious 

that the delay state should meet the following: 

 
(n)x f (t T, x) g(t T, x)u   

 
(7) 

 

Where, u u(t T)  . The dynamics of the error system is 

obtained by distinguishing between two Equations (6) 

and (7) as follows: 

 
(n) (n)x x f (t, x) f (t T, x) g(t, x)u g(t T, x)u      

 
(8) 

 

Where, e x x   the error and the differential Equation 

of the error system are expressed as follows: 

 
(n)e f (t, e x) f (t T, x) g(t, e x)u g(t T, x)u       

 
(9) 

 

Therefore, the stability of orbits in a chaotic system 

according to Equation (8) leads to the stabilization of the 

error dynamics (9) that in order to increase the speed of 

convergence of the system to its stable fixed points, due 

to the uncertainties of the system, the robust control 

strategy based on the sliding mode has been used with 

definition of the sliding surface as follows [17]: 

 
t tn 1

(i 1)
i i

i 1 T T

S e (s)ds e (s)ds






 
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 
 

    (10) 

 

Where i 0   and for stability of sliding mode, the system 

must be placed in S 0  that is defined 2V (1/ 2)S  as 

the Lyapunov function. Assuming g(t, x) 0  and 

simplifying the calculations, the control input u is 

extracted as follows [17]: 

 

n n
n m

n

i i

i 1

1 ˆ ˆu [ f (t, x) f (t T, x)
g (t, x)

e Ksign(S)]



    


  
 (11) 

 

Where, k in order to satisfy the Lyapunov stability 

condition of the system must be applied to the following 

inequality. 

 
n

M
i i n n

m i 1

n n M

g (t, x)
K ( 1) e f (t, x) f (t T, x)

g (t, x)

F(t, x) F(t T, x) g (t T, x) u



     

      

  (12) 

5 SIMULATION OF CONTROL SYSTEM 

The behaviour of the feedback system under the fuzzy-

sliding Pyragas controller is simulated according to “Fig. 

3”.  

 

 
Fig. 3 Block diagram of the Control system. 

 

Responses of the feedback system along with the chaotic 

open loop of state variables in active suspension are 

demonstrated in “Fig. 4“ that stat the rejection of chaos 

in the feedback responses. 
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Fig. 4 Responses of the feedback control system. 

 

The responses of the actuators in the active suspension 

under the Extended Pyragas controller are shown in 

“Fig. 5” below. 

 

 

 
Fig. 5 The front and rear actuators of active suspension. 

Power consumption of active suspension is determined 

as the following [18]: 

 

(13)         

T

0
ac

U(t) (SWS)(t) dt

P
T

  



 

 

Where, U is the control force and SWS is the suspension 

deflection of the actuator. Figure 6 shows the average 

power consumption of the Extended Pyragas controller 

for the front and rear suspension systems which is equal 

to 1.2117kW and 0.4114kW. 

 

 
(a) 

 
(b) 

Fig. 5 Power consumption of the controller system: (a): 

front suspension, and (b): rear suspension.  

 

For stability analysis of the feedback system, after 

linearization of the system around the fixed point, all of 

the eigenvalues are placed in the left hand of the 

complex plane, which depicts the stability of system.  

For robustness analysis of the controller against the 

parametric uncertainties, the inertia of the system model 

is increased as 8% of simulated values and the new 

simulation results show the appropriate performance of 

the feedback controller. Also, in order to analyze the 

structural robustness of the controller, the control system 

is applied to the Carsim model as a SUV vehicle with 27 

degrees of freedom based on “Fig. 3” that results of this 

simulation showes the entirely adaptation of responses. 

6 CONCLUSIONS 

The nonlinear vibrations of the bounce model of vehicle 

in the face of uneven road surface are investigated in this 

work and then the irregular oscillations are rejected via 

a new sliding delay feedback fuzzy controller. 

Therefore, after simulation of the open loop system, 

forcing frequency diagrams are used to analyze the jump 

phenomenon and chaos in the nonlinear dynamics, 

quasi-periodic and chaotic behavior are demonstrated in 
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the uncontrolled system relative to changing frequency. 

In order to control chaos, the delay feedback strategy is 

developed in the active suspension system. To increase 

the system's rapid stabilization, a sliding mode control is 

used in the structure of the Pyragas controller. Also, to 

eliminate the chattering phenomenon in the sliding mode 

and to online estimate the controller gain accurately, the 

fuzzy inference system is combined with the sliding 

delay feedback system. The simulation results of the 

Fuzzy SMC-Pyragas controller indicate the repid 

stabilization along with the elimination of chaos by 

reducing the settling time without any overshoot in the 

responses. Comparison of results in this research with 

respect to [19] depicts a 15% reduction at the settling 

time besides rejection of the overshoot. Also in control 

signals responses, in addition to a 26% reduction in 

actuators effort and 34% decrease in the energy 

consumption, the saturation problems in suspension 

actuators are solved. Consequently, these results are 

compared with [20] which depicts a 20% reduction in 

the settling time by the overshoot rejection, a 35% 

reduction in the amplitude of the controller input in 

suspension actuators, and 20% decrease in energy 

consumption is illustrated in the control signal. 

7 NOMENCLATURES 

α :the time delay between the road roughness 

to the front and rear tire 

 

bm :vehicle body mass 

J :vehicle body inertia 

fm :front unsprung mass 

rm :rear unsprung mass 

(t)bx bdisplacement of m: 

θ(t) bangular displacement of m: 

(tfx( fdisplacement of m: 

(t)rX rdisplacement of m: 

(t)fdx :excitation to the front tire 

(t)rdx :excitation to the rear tire 

fl :front length 

rl :rear length 

f2k :front suspension spring stiffness 

f2c :front suspension damping coefficient 

r2k :rear suspension spring stiffness 

r2c :rear suspension damping coefficient 

f1k :front tire stiffness 

f1c :front tire damping coefficient 

r1k :rear tire stiffness 

r1c :rear tire damping coefficient 

sk :stiffness of the suspension springs 

A :amplitude of the excitation force 

f :frequency of the excitation force 
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