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1 INTRODUCTION 

One of the most essential control modes in flight systems 

is the attitude control of the flight system. That is, the 

more stable is the attitude control system's performance, 

the more reliable the flight control system will be Euler 

angles and angular velocities. Nowadays, due to the 

unique features of the unmanned flight systems, their 

low maintenance costs as well as their high performance, 

they have received more attention. The autonomous 

helicopter flight system is used at different centers due 

to the specific flight characteristics and flight superiority 

in specific maneuvers, including side-to-side movement, 

backward, hover mode, etc. Examples include geology, 

aerial imaging, emergency and medical services, and so 

on. Different research has been done on helicopter 

control, but less research has been done on attitude 

control and also attitude control tracking, especial focus 

on of the attitude control with the selection of the 

proposed technique (PLPV) and PCA algorithm. In this 

study, it has been attempted to apply a novel method of 

attitude control with nonlinear modeling and PCA 

algorithm, which comparatively performs tracking. Both 

of the investigated methods show excellent stability. 

Based on the attitude control issue for Autonomous 

Helicopter, we review the related works and examine the 

tracking and techniques used. Regarding attitude 

control, the following studies can be referred: robust 

control with the neural network [1], control using 

nonlinear dynamics in [2], In [3], the fuzzy control is 

studied with the use of gain scheduler; a nonlinear 

mathematical model of the helicopter with fuzzy logic is 

used in [4]. In [5], the adaptive PID for attitude control 

is investigated, and in [6], adaptive attitude control is 

mentioned. The following is a brief, overview of the 

articles dealing with status control tracking Including 

[7]. In this reference, the robust control in attitude 

control tracking is investigated in two modes: one of 

them is the full–state feedback, and the other is the 

output state feedback form. In [8], the robust nonlinear 

control for a laboratory helicopter  attached to a desk is 

investigated using output feedback that relies solely on 

position sensors and the design is based on the Lyapunov 

function. Attitude control tracking with an adaptive 

approach and considering uncertainty parameters can be 

seen in [9]. In [10], Attitude Control of the Autonomous 

Helicopter (A.C.A.H) tracking in the adaptive form has 

been analyzed with the exception that it considers dead 

zones of the actuator. The design is based on adaptive 

fuzzy control with the application of external 

disturbances. [11] applies A.C.A.H tracking with the 

geometric structure approach with the description that 

the investigative procedure is implemented in two 

situations. However, a bout helicopter research with 

focusing on the linear parameter varying can be referred 

to the following references mention. In [12], trajectory 

tracking of nonlinear unmanned rotorcraft based on 

Polytopic modeling, and in [13], velocity control of 

nonlinear unmanned rotorcraft using Polytopic 

modelling, is presented. Also, as mentioned earlier in 

[14], the attitude control of an unmanned helicopter by 

Fuzzy Gain-Scheduler is done. A Polytopic Linear 

Parameter Varying (LPV) system with Takagi–Sugeno 

has been expanded. This design is based on the Polytopic 

model and is one of the good works. But the change is 

expressed as a set of only maximum four rules. This 

concept can be expressed as follows; the nonlinear 

model is approximated by a TS-fuzzy model, which 

boils down to convex combination of linear sub models. 

Although, the aim of the research in this direction has 

not been achieved. But some LPV models were 

investigated for quadrotors before. Some references are 

about using LPV models in UAVs, which can be briefly 

mentioned. In [15], Robust LPV attitude control of a 

quadrotor unmanned with state constraints and input 

saturation and wind disturbance has been studied. In this 

reference, the control scheme was based on L2-gain 

notion of the H-Infinity norm, Polytopic representation 

of saturation function, and ellipsoids as invariant sets 

have been analyzed. Although the designed model 

approach has a more favorable output response 

compared to the nonlinear approach,  the performance of 

the closed loop system of the Euler angles does not fully 

meet the ultimate goal. The first approach uses the 

angular velocities and the flap angle modes, and the 

second approach uses the inherent damping in helicopter 

dynamics. Also, for further investigation, you can refer 

to [16-17]. One of the scenarios has been compared, this 

scenario is introduced in [18]. In [18], a robust control 

system is designed based on method and is evaluated in 

real flight tests. The states and inputs considered for 

inner loop in this research are two cyclic inputs, two 

angular velocities, Euler angles, and also the main rotor 

flapping angles. The strength of this article is the use of 

experimental results on a testbed in order to evaluate 

control system performance, but the proposed linear 

robust control system can be improved with more novel 

control algorithms. After this section, a nonlinear model 

and LPV designed model and then PCA model fit to an 

LPV model are introduced, respectively. Then, different 

scenarios are presented in two modes: without 

approximate and with approximate external disturbance 

and without disturbance. The simulated results are 

compared with each other, and finally, the conclusion is 

presented. 

2 PROBLEM STATEMENT AND PRELUDES 

In this section, it is exclusively aimed to briefly review 

the completed nonlinear dynamic model of A.H and 
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introduce some introductory science about PLPV and 

determined performance-based control method. 

2.1. A.H Model 
In general, due to the specific complexities of the 

nonlinear model of helicopters, their control 

performance is one of the notable challenges of active 

researchers in this field, which of course, these 

challenges have led to scientific advances. The modeling 

and the introduction of the complete system of rotors and 

forces and the momentum and flapping of helicopters 

can be found in various references, most notably in 
references[19-22]. In “Fig. 1ˮ , the coordinates and 

angular velocities and Euler angles and linear velocities 

are presented.   
 

 
Fig. 1 Introduced distribution of helicopter forces. 

 

The helicopter image is used from [23]. The helicopter 

has four inputs that are normalized between (1 and -1). 

In general, helicopter movement equations can be 

expressed as force, momentum, kinematic, and 

navigation equations in [21], As shown in “Fig. 1ˮ . The 

angles of the (Euler) attitude are yaw-pitch-roll, which 

the roll angle of   is in the X direction, and the yaw 

angle of   is in the Y direction and   pitch is in the Z 

direction. 
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Where, ( , , )TP x y z  represents the position and 

( , , )T

BV u v w  represents the linear velocity and 
BR  is 

the rotation matrix and it is parameterized concerning to 

the three Euler angles. This introduction

cos(.); sin(.) C S . Hence the kinematic equation 

can be obtained as follows. 

 

1

BS



 





 
 
  
 
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                                                                   (3) 

In “Eq. (3)ˮ , B  represents the vector of the angular 

velocity and 1S   is the lumped transformation matrix in 
[20], which is introduced in the “Eq. (4) ˮ . 
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In designing the control model of the attitude control 

system, external and momentum forces are 

approximated as a linear combination of control modes 

and inputs or the use of control derivatives and stability. 

The overall structure can be shown in the format by 

equations (5)- (9) in [24] .The details and values used 

are presented in “Table 1ˮ . 
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                          (6) 

 

In“Eq.(5)ˮ , , ,p q rS S S express  

, respectively. That they are the main momentums of 

helicopter inertia. In “Eq.(6)ˮ , ,ped colN N   as, pedal 

control derivative and collective control derivative are 

introduced. Also, 
rN  is indicant damping derivative for 

yaw moment in reference [24]. It is important to note 

that there is no coupling effect in the ,yz xzI I  

directions. Because in most flight systems, the X-Z 

direction will be symmetric in [21]. 
 

1 1 1

1 1 1
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( )
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The Dynamics of the main rotor are gained by 

 
T

s s
a b flapping angles in which the   value is 

constant. If we approximate “Eq. (7) ˮ ,  as “Eq. (8)ˮ . 

Also ,lat lonA A , ,lat lonB B  are reagent cross-coupled and 

control derivatives for the longitudinal flapping angle, 

control and cross-coupled derivatives for the lateral 

flapping angle, respectively. 
 

s lat lat lon lon

s lat lat lon lon

a q A D A D

b p B D B D





   

                                 (8) 
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The basic helicopter state and input vector modes are 

shown as the relation below: 

  

[ ]T

T

lat lon ped col

x x y z u v w p q r

u D D D D

  

   
           (9) 

                         
Table 1 Introduction of abbreviations and values [25]. 

symbol deal symbol deal 

,lat lonA A  12.50;141.08 ,b aL M  55.86 ,345.19 

,lat lonB B  

 
180.98, 10.29 ,a bL M  

55.86;-23.03 

 

, ,xx yy zzI I I  

0.305; 

0.684;0.787 

 

pedN ,

colN  
2095.16;256.42 

g 9.8 rN  -11.445 

 

Now one can define the design system in a new way to 

design attitude control. It means become specified a new 

state of input and state parameters as defined in “Eq. 

(10)ˮ . 

                                             

 

 

T

atit

T

attit

x p q r

u Dlat Dlon Dped

  


                                         (10) 

2.2. The LPV generalized plant 

The general state of the nonlinear equations can be 

shown as: 

 
f x t u t t

g x t u t t





x(t) ( ( ), ( ), ( ))

y(t) ( ( ), ( ), ( ))




                                     (11) 

 

Where, ( ) , ( ) , ( ) , ( )
mm n lx t y t u t t     , are 

state variable, output, input and is a measurable 

exogenous parameter vector, called the scheduling 

parameter, respectively. That can be    called the 

parameter vector and this variable parameter is usually 

constrained to be bounded in a box like form and 

assumed to be convex and known compact subset 
m  in [26]. By introducing: 

 

 0m t t          S : ( ) ,                 (12) 

 

That  , the rates of the parameter variation, is 

expressed. Also S  is determined as the collection of 

acceptable trajectories. 

Hypothesis.1 [26] 

Let    ( ( ), ( ))x u S  that is referred as a family of 

Trimming Points (T.P) or Equilibrium Points (E.P). 
 

0  

   





f(x( ),u( ), )

y( ) g(x( ),u( ), )
                                       (13) 

 

However, we can have the nonlinear relationship 

presented in “Eq. (11)ˮ  around the trim point based on 

the Taylor series and conversion Jacobin, Linearization 

is introduced in the following form: 
 

x

u









 
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x x( )

u u( )
                                                 (14) 

 

According to Differentiation rules, it can be concluded: 
 

. .

.

x x( )

x f(x( ),u( ), ) x( )



   

  
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x
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                                    (15) 

 

In the meantime, x( )  is the phrase to be created 

Caused by the time variation in  . Now, with the 

development of linearization performance around a 

family of trim points in “Eq. (11)ˮ , it can be stated that: 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x A x t B u t

y C x t D u t
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 
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With this explanation   i i i i x ,u x( ),u( ) in [27]. 

Indeed, an LPV system based on the convex 

interpolation, that is a method of linearization, is used. 

The Polytopic systems can also be considered in the 

scope of robust control. [28] is a suitable and well-

founded article in this field as well as [29], expressing 

the concept of LPV, a Polytopic system is expressed as 

follows: 
 

1

( ( )) ( ( ))
( )

( ( )) ( ( ))

N
i i

i

i i i

A B A t B t
t

C D C t D t

 


 

   
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                       (18) 

 

The Polytopic term comes from the fact that the vector 

( )t  evolves over the unit simplex, which is a Polytope 

(A form in n-dimensional geometry corresponding to a 

polygon or polyhedron), by: 
 

1

( ( ) ( ) 1, ( ) 0
N

i i i
i

i

col t t t   


 
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 

                                   (19) 

 

In which,    is clearly a set of Polytope vertices. 
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In the above expression, the term   is the convex hull 

and [ ]hull  value coincides with  [30]. So in summary, 

it can be said that Polytopic systems are verily 

distributed in robust analysis and robust control. 

2.3. Grid-based LPV Methodology 

The following form is provided for a PLPV model [31]. 

In this paper, writers are fond in the grid based LPV 

methodology for the angular velocities and Euler angles 

of A.H using model by “Eq. (11) and (16)ˮ , and are 

presented as the following relationship. The variation 

condition for the model designed for angular velocities

 , ,p q r and Euler angles  ,   is  1 , ( 6 ), 

respectively. 
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Which in “Eq. (21)ˮ , the parameters are introduced as 

bellow. All of the unspecified parameters presented in 

“Eq. (21)ˮ  and not brought in “Eq. (22)ˮ  are equal to 

zero. The same vertices of the Polytopic model are 

made. In “Fig. 2ˮ , Algorithm Design and the overall 

structure of the controller model are provided. 

 

 

 

( , ) 18522 6

( , ) 18522 3

*

*

plpvi m n

plpvi m n

A

B








                                       (23) 

 

 
Fig. 2 Algorithm Design of the controller model. 

2.4. LMI Conditions 

In this part, a few LMI conditions for Hurwitz 

stabilizability is offered. In the introduction, with the 

help of the relationship defined in equation (18), the 

following general form PLPV system is considered: 

 

1

( ) ( ) ( )
N

i i

i

x t t A t


                                                     (24)  

Theorem.1 [26] 

The PLPV “Eq. (24)ˮ  is quadratically stable if and only 

if there exists a matrix P, W  so that:  

 

P P W W 0T T

i i i i
A A B B                                        (25) 

 

Proof: According to Lyapunov stability theory, the 

systems (25) exist, If and only if a matrix K and a matrix 

P>0, for the following condition have establishment. 

( )P P

for 1, 2, 3

(

4 ;

P

,

) 0

0

P 



     

 



     

T T T
i i i i i i i i

i

A B K A B K A A B B

N
  (26) 

 

Also with designation the Lyapunov Function (LF) 
TV (x(t)) = x(t) P x(t)  and a symmetric positive definite 

(SPD) matrix 0P , the time derivative of the LF is 

calculated along trajectories of system (19) propel to: 

 
T TV (x(t)) = x(t) ( ( ( )  P ( ( ))x(t)A t A t                                 (27) 

 

Letting: 

 

1

( )( P P )
N

T

i i i

i

t A A


                                                (28) 

 

As a result, it can be said that the LMI of System (28) 

could be a collection of NLMI with the explanation that: 

 
-1K=WP                                                                         (29) 

 

The value of gain control designed from the solving the 

above LMI equations are obtained for each two method 

that is provided in Appendix. 

3 PCA TECHNIQUES 

By definition ( ) ( ( )); : sE t G t G     as a 

continuous mapping function to express PLPV. The 

transformational Principal Component Analysis (PCA) 

can be shown in vector space to reduce the size of the 

data produced. In LPV systems, the number of data 

generated is often large, and its computational analysis 

is practically lengthy and difficult at some stages. The 

relation presented in equation (18) can be approximated 

by the following format based on the PCA 

approximation algorithm. 

 

( ( )) ( ) ( ( )) ( )

( ( )) ( ) ( ( )) ( )

x A E t x t B E t u t

y C E t x t D E t u t

    

    
                        (30) 

 

Refer to references [29], [32], for a more detailed 

discussion of this algorithm. The relationship introduced 

in “Eq. (30)ˮ  is an appropriate approximation of “Eq. 

(18)ˮ . We present a time frame for this subject
{1,2,3,..., }t N , which in fact, it is the producer of the 

produced l N matrix data and
 1 2 3 ....     N . In 

this introduction, the i
 matrix rows are normalized by 

i
 Affine's law for the generation of the generated data 

in the form is denoted with the mean standard deviation 

and the unit of zero with the explanation that

Transform 
LPV Equation 
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( )j

i i i  
 and 1( )j

i i i

   . See more details in 

reference [29-30]. The normalized matrix data form 

follows 

 

( )j                                                                 (31) 

Definition 1 

n d
A


    If the matrix exists with the rank r and n d , 

then TA UWV which in n d
W


   , it is a diagonal 

matrix and ,
d dn n

U V


        are orthogonal matrices. By 

explaining that 


 
 

T

n n
AA is the positive semi definite 

symmetric matrix for
T

d d
A A



 
  . Singular right vectors 

are 1 2, ,.., ; [1, ]iu u u i n and singular left vectors are

1 2, ,.., ; [1, ]jv v v j d . It is now possible to use the 

square of the singular values, which the result of their 

multiplication is (PSD). It should be noted that the 

singular values are not zero. Hence, it can be said that 
T

i iA u z that is the singular vector of TA A . The 

following equation can now be presented in [34].. 

 

2

i i iAz u                                                                           

(32) 

 

With the explanation that iz  is not necessarily a vector 

of uniqueness.       

                  

       (33) 

       

According to the definition 1, now Singular Value 

Decomposition (SVD) can be represented in the 

following relation: 

 

 
0 0

0 0

j T T V
U U

V





  
      

  

                 (34) 

 

If s is the answer of the effective value for , ,U V  , then 

the following approximation can be considered: 

 
j T jU V                                                            (35) 

 

Where, 
j is introduced as the appropriate 

approximation of the generated data: 
 

( ) ( ( )) (( ( ( ))

( ) ( ( ))

E t G t U G t

E t U t

 



   

 
                             (36) 

As a result: 
 

( ( )) ( ( ))
( )

( ( )) ( ( ))

( ( )) ( ( ))
( )

( ( )) ( ( ))

A E t B E t
E

C E t D E t

A t B t
E

C t D t



 


 

 
 
 
 

 
   
 

                                (37) 

 

In fact, it can be said: 
 

1

1

( ) ( ( ))

( ) ( ( ( )))T

t UE t

t UU t



 





 

 
                            (38) 

                                
Where, 1  denotes row-wise rescaling. According to 

the relation (19), it can be stated that, by these terms, 

new system PLPV to with vertex number N 2s  can 

be explained. 
 

1

1

( ( ) { ( ),..., ( )} ( )
N

N i i

i

t convex        


             

(39) 
 

The appropriate value of the approximation for the 

design can be introduced by this form in “Eq. (40) ˮ with 

the help of the relation (34) and the definition 1, if to be 

defined 
ftv  fraction of total variation in [33]. 

1
2

1

2

1

i

i
ftv l

i

i











 



                                                         (40) 

 

According to the first produced data that equals 3087, 

the SVD matrix will equal      
16 16 3087 3087 16 3087

; ;U V S
  

respectively. Also, according to the PCA approximation 

algorithm, the matrices ˆ ˆ;A B
PCA PCA

 will be as 

follows. 
 

 

 

( , ) 96 6

( , ) 96 3

ˆ *

ˆ *

PCA m n

PCA m n

A

B








                                          (41) 

4 SIMULATIONS RESULTS 

In the first part, the simulation of the results without 

approximation is performed (the steps are examined in 

both non-disturbance and external disturbance mode) 

and then it is performed by applying the same reference 

    2 2, , ( , )T T T

i i i i i i i i iz A u A u AA u u u u    
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inputs to the scenarios to simulate in the PCA 

approximation part. 

4.1. PLPV Simulation without disturbance 

In this scenario, the square inputs are applied. In this 

scenario, the determined target of the applied attitude 

control angles ( , ,   ) are (10, 20, 30) degrees 

respectively, which   is black and   is blue and    is 

red in the reference input. 
 

 
Fig. 3   Input of a square reference in the first scenario 

without Disturbance. 

 

 

 

 

Fig. 4…Attitude control tracking of the angle ( ,  , )   : 

 a, b, c  the first scenario, respectively. 

In “Fig. 4 ˮ , for part (a), discrete red line of tracking and 

continuous blue line of the reference input and part (b) 

Discrete blue line of tracking and continuous black line 

of the reference input and part (c), Discrete blue line of 

tracking and continuous black line of the reference input 

are presented. Also in “Fig. 4ˮ , as is obvious, the 

tracking condition is well done. In “Fig. 5 ˮ , the control 

inputs in the first scenario are shown. The control inputs 

, ,D D Dlat lon ped  are red, black and blue, respectively. 

 

 
Fig. 5 Control input of the first scenario. 

4.2. PLPV Simulation with disturbance 

In this section, all the modes of the pervious section with 

external disturbance are applied. For the noise 

interference, a Dryden wind model is provided in 

Simulink MATLAB based on the reference[35]. The 

selected wind velocity range is 1 m/s. In this regard,the 

different effect of wind speed is also specified in this 

scenario. “Fig. 6 ˮ  show the angular rates models of 

wind turbulence. 
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Fig. 6 Turbulence angular rates in the three body axes. 

 

Figures 7 to 9  present the attitude control tracking with 

disturbance to the system. In “ Fig. 7 ˮ , the reference 

input tracking is presented for the angle  and in “Fig. 

8”, it is presented for   and in “Fig. 9 ˮ , it is presented 

for the angle  . As is obvious, it also performs tracking 

in this mode completely. Also, “Fig. 10 ˮ  shows the 

control inputs in the scenario. 

 

 
Fig. 7 Attitude control tracking of the angle   with 

disturbance. \The continuous line of tracking and discrete line 

of the reference input. 

 

 

Fig. 8 Attitude control tracking of the angle   with 

disturbance. The continuous line of tracking and discrete line 

of the reference input. 

 

 
Fig. 9 Attitude control tracking of the angle   with 

disturbance. The continuous line of tracking and the discrete 

line of the reference input. 

 
Fig. 10 Control input of the first scenario with Disturbance. 

4.3. Simulation scenario of PCA results with 

disturbance 

In this section, we have done all the simulations of the 

results of the previous section with the same defined and 

introduced scenarios with disturbance. The 

approximation value, based on the PCA model is 

presented by “Fig. 11ˮ . As can be seen in this figure, 

approximation determined it by the algorithm PCA 

about, at 72%. 

 

 
Fig. 11 Approximate percentage of PCA model. 

 

In “Fig. 12 ˮ , for part (a) continuous line of tracking and 

discrete line of the reference input and part (b) 

continuous line of tracking and discrete line of the 

reference input and part (c), continuous line of tracking 
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and the discrete line of the reference input are shown. 
Compared to “Fig.s. 7 to 9 ˮ , it is quite clear that this 

approximation has maintained its performance and 

tracking the trajectory is excellently done. This means 

that in both the PLPV method and PCA method, the 

tracking is performed well and the desired result is 

obtained. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 12   Attitude control tracking of the angle ( , , )   of 

PCA algorithm  a, b, c , respectively. 

 

In addition, “Fig. 13ˮ  shows control input. According 

to theorem one and the solution of LMI equations, the 

value of equals with gamma 2.3 and for PLPV method 

value of equals with gamma 0.601. Also, the control 

gain matrix is shown in the appendix. 
 

 
Fig. 13 Control input of the PCA scenario with 

Disturbance. 

4.4. Simulation scenario of PCA, PLPV, Robust 

control H∞ results with disturbance 

In this section, a comparison with the reference [18] that 

model is one of the strongest recent works in which 

modeling is done using robust control. Also for 

turbulence, the wind speed of the previous section is 

used. “Fig. 14 ˮ  shows a comparative presentation of 

the method introduced in the article and the method in 

[18] is presented. As it is clear, given the tracked path 

with the noise application introduced at the beginning of 

this section, the tracking function is well done. The 

abbreviation for perturbation (D), is shown in Figure  

below. 

 

 
Fig. 14 Attitude control tracking of the angle  .The 

continuous red line robust method in [18]. The continuous 

blue line: LPV method and continuous black line: PCA 

method, that  introduced in this article. 
 

This comparison properly shows a good improvement in 

tracking performance with less overshoot than the 

reference model that was reviewed, so that in the 

reference model there is a difference of about 5 degrees 

in the model. 
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5 CONCLUSIONS 

In general, attitude control is one of the most critical 

stages of stability for a flight system. For this purpose, 

in this paper, an approximation algorithm for tracking 

attitude control of a helicopter is proposed to deal with 

the increase in the number of data produced and to 

reduce computational volume. The PCA algorithm 

showed excellent performance in this study. This is 

particularly well illustrated in trajectory tracking. Also, 

in this study different scenarios were examined. In both 

cases, with approximation (PCA) and without 

approximation (PLPV), the problem of stability in 

tracking is well demonstrated. In the design of the LPV 

controller presented, both modes of investigation are the 

same. That was one of the other challenges to solve. it is 

clear that although the huge number of vertexes in 

Polytopic model (extracted from linearization of 

nonlinear helicopter dynamic model) will increase the 

model dimensions and size, this technique is an 

acceptable way to track Euler angles and will have a lot 

of functionality in wide envelope flight control system 

design. Also, in comparison with the method introduced 

in the modeled reference [18], each of the two methods 

introduced in this paper had a much more acceptable 

performance than the compared model. 

APPENDIX 

 0.0470 0.6921 -0.0883 0.0021 0.3927 -0.0764

-1.7426 0.0900 -0.0148 -0.8535 0.0038 0.0114

0.1588 0.0313 -0.0037  0.0766 0.0220 -0.0054

0.601
PLPV

PLPVK



 
 

  
 
 



0.2131  2.2974 -0.2992 -0.0055 0.7322 0.0029

-1.5043 0.1667 0.0375 -0.3364 0.0179 0.0391

-0.0992 0.1182 0.1465 -0.0220 0.0258 0.0555

2.3

K PCA

PCA


 
 

  
 
 


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