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Abstract: The present study investigates the deformation of FGM plates under  blast load. 
Hamilton's principle is used to obtain the dynamic Equations. The two constituent phases, 
ceramic and metal, vary across the wall thickness according to a prescribed power law. 
Boundary conditions are assumed to be Simply Supported (SS). The type of explosive 
loading considered is a free in-air spherical air burst and creates a spherical shock wave that 
travels radially outward in all directions. For the pressure time of the explosion loading, 
Friedlander’s exponential relation has been used. In order to determine the response 
analytically, the stress potential field function is considered. Using the Galerkin method, 
the final Equations are obtained as nonlinear and nonhomogeneous second-order 
differential Equations.  The effect of temperature including thermal stress resultants and 
different parameters on the dynamic response have been investigated. Results have been 
compared with references and validated. Results showed that the amplitude of the center 
point deflection of the FGM plate is less than the pure metal plates when exposed to blast 
load, by increasing the volumetric index percentage of FGM, center point deflection is 
increased and in the FGM plates, deformation of symmetrical plates is smaller than the 
asymmetric plates. Also by applying the damping coefficient of the FGM plates, the 
amplitude of center point deflection is reduced, and by increasing the aspect ratio of the 
FGM plate, its center point deflection against explosion waves is reduced and by 
considering the effects of thermal resultant forces and moments, center point deflection is 
increased. 
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1 INTRODUCTION 

Increasing the knowledge of scientific and industrial 

communities always has been a factor in improving 

technology and achieving superior technology. In this 

regard, the use of new materials to achieve specific 

functional properties always have been a consideration 

of engineering researchers. Functionally graded 

Material (FGM) is a kind of modern material that has 

been widely used in recent years. Extensive research has 

been conducted to produce the FGM in order to resist 

high temperature and thermal shock for use in the body 

of spacecraft and nuclear power plants. FGMs are a kind 

of composite materials that are heterogeneous in terms 

of infrastructure, and the volume fraction of its 

constituent material is a function of the spatial position 

in each body, so that, in accordance with volume 

fraction, the other mechanical properties are also 

exhibiting continually gradual changes along the 

thickness from one plane to another. This feature of 

these materials not only increases their resistance to 

mechanical loadings but also makes them tolerable in 

extreme temperature gradient environments. The 

common type of this material is the combination of 

ceramic and metal, in which case it has a metal face and 

the other face is ceramic, and mechanical properties 

change continually from metal to ceramic through the 

thickness [1].   
Recently, more attention has been paid to the design and 

development of explosion-resistant structures. As in 

most countries, extensive studies have been done on the 

reaction of structures, buildings, facilities, and 

equipment against explosions caused by explosive 

materials. Therefore, considering the remarkable 

characteristics of FGM materials of ceramic-metal based 

combination, in carrying loads such as explosion and 

penetration, investigating and understanding the 

behavior and response of these materials under various 

dynamic loads such as the explosion wave has been 

attractive to the researchers. 
So far, extensive research has been done to study the 

mechanical effects of explosion on plates made of FGM 

materials, which can be mentioned below. Turkmen and 

Mecitoglu [2] compared the results of experimental tests 

and numerical solutions with the finite element method 

for a composite plate with reinforced layers under 

explosive load, and the effect of reinforcements and 

applied load on the dynamic response of the plate has 

been studied. Chi and Chung [3] have studied the 

mechanical behaviour of an elastic rectangular plate 

supported on the FGM bed exposed to transversal 

loading with SS boundary conditions. Alibeigloo [4] has 

studied the three-dimensional thermoelastic analysis of 

FGM rectangular plates with small deformation on SS 

boundary conditions. In this study, the thermoelastic 

properties of the plate change with exponential function 

in the thickness direction. Tung and Duc [5] studied the 

nonlinear analysis of stability for functionally graded 

plates under mechanical and thermal loads. Hause [6] 

has investigated the deflection of the functionally graded 

plates under the influence of the explosion theoretically. 

The theory of classic plates (CPT) has been used and 

plates have been exposed to a Friedlander exponential 

explosive loading. Aksoylar et al. [7] investigated the 

nonlinear transient analysis of FGM and FML composite 

plates under non-destructive explosive loads using 

experimental and FE methods. 

 Sreenivas et al. [8] studied and investigated the transient 

dynamic response of functionally graded materials. 

Goudarzi and Zamani [9] have investigated the 

maximum deflection of circular plates under the effect 

of uniform and nonuniform shock waves due to 

explosion by experimental and numerical analysis. 

Duong and Duc [10] considered the evaluation of the 

elastic properties and thermal expansion coefficient of 

composites reinforced by randomly distributed spherical 

particles with negative Poisson ratios. Duc et al. [11] 

presented the nonlinear dynamic response and vibration 

of imperfect shear deformable functionally graded plates 

subjected to blast and thermal loads. Duc et al. [12] 

presented the nonlinear dynamic and vibration of the S-

FGM shallow spherical shells resting on elastic 

foundations including temperature effects. Cong et al. 

[13] investigated the nonlinear vibration and dynamic 

response of ES-FGM plates using third-order shear 

deformation theory (TSDT).  

Hajlaoui et al. [14] presented the nonlinear dynamics 

analysis of FGM shell structures with a higher order 

shear strain enhanced solid-shell element. Tong et al. 

[15] studied the thermo-mechanical buckling and post-

buckling of cylindrical shells with functionally graded 

coatings reinforced by stringers. Duc et al. [16] 

presented the nonlinear dynamic response of 

functionally graded porous plates on elastic foundations 

subjected to thermal and mechanical loads. Cong and 

Duc [17] studied analytical solutions for the nonlinear 

dynamic response of ES-FGM plates under blast load. 

Kim et al. [18] studied the nonlinear vibration and 

dynamic buckling of eccentrically oblique stiffened 

FGM plates resting on elastic foundations in a thermal 

environment. Duc et al. [19] presented the free vibration 

and nonlinear dynamic response of imperfect 

nanocomposite FG-CNTRC double-curved shallow 

shells in a thermal environment. 
The main goal of this paper is to calculate the dynamic 

response of FGM plates under explosive load by 

considering the thermal forces and moments. Studying 

the effect of thermal forces and moments on the response 

of FGM plate is one of the innovations and advantages 

of this research that less has been studied in the previous 

research and the literature. Also, the effect of the 
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damping coefficient, power law index of FGM plate, 

aspect ratio (L1/L2) of FGM plate, and symmetric and 

asymmetric FGM plate on dynamic response have been 

investigated. 

2 GOVERNING EQUATIONS 

2.1. Mechanical Properties of FGM Material 

As shown in “Fig. 1ˮ, a rectangular FGM plate with 

dimensions L1  and, L2 and thickness h is in Cartesian 

coordinates, so that the origin of the coordinate system 

(x, y, z) is located at the middle surface of the plate. 

 

 
Fig. 1 Geometric characteristic of FG plate.  

 

If Vm and Vc are the volume fractions of ceramic and 

metal in the FGM, respectively, then the relation of each 

mechanical property related to the volume fractions will 

be as follows [20]: 

 
( )  ( )  ( )f m m c cP z P V z PV z= +  (1) 

 

As Pm and Pc are, respectively, metal and ceramic 

properties in the FGM, therefore, with respect to the 

above relations, the properties of a FGM material such 

as modulus of elasticity, linear coefficient of expansion, 

shear modulus, or density can be obtained as: 

 

( )( ) - ( )f c m c mP z P P V z P= +  (2) 
 

Two cases for grading and gradual changes of ceramic 

and metal phases along the thickness of FG plates can be 

considered: 

Symmetrical case: The ceramic and metal phase 

elements are changed symmetrically in the thickness 

direction of plate, so that both outer surfaces of the plate 

are completely ceramic and the middle surface of the 

plate is full metal. In this case, the volume fractions of 

ceramic VC(z) is expressed in the form of Equation (3) 

[6]: 

( ) ( )1 sgn 1- sgn-
( )  

2 2
2 2

N N

c

z zz z
V z

h h

    +   
   = +   
         

 
(3) 

 

In the above Equation, N is the volumetric percentage 

index of the material FGM, h is the thickness of the plate 

and z is the coordinates perpendicular to the middle 

surface along the thickness direction. 

Asymmetrical case: Ceramic and metal phase elements 

change asymmetrically in the thickness direction of the 

plate, the upper surface of the plate is full ceramic and 

the bottom surface of the plate is full metal. In this case, 

as in “Fig. 1ˮ, the bottom of the plate is completely 

metallic and its upper surface is completely ceramic and 

between these two surfaces will be a combination of 

ceramic and metal. In this case, the volume fraction of 

ceramic VC(z) is expressed in the form of Equation (4) 

[6]: 

 

N

c

2z+h
V (Z)=( )  

2h
 (4) 

 

Regarding the function of FGM materials in high-

temperature environments, according to Reddy [1], the 

mechanical properties of its constituents have significant 

changes with temperature. Therefore, according to 

Equation 6, properties such as the Ef modulus of 

elasticity, the Poisson ratio f , the thermal expansion 

coefficient f , and the thermal conductivity coefficient 

Kf could be related to the temperature [1]. 

 

( ) ( ) ( ) ( )
2

,   
2

-

N

f c m m

Z h
P Z T P T P T P T

h

+ 
= + 

 
  

 (5) 

2.2.The Fundamental Equation of FGM Plate 

2.2.1. Displacement components 

According to the classical theory of plates, the 

displacement field is as follows [21]: 

 

( ) ( )

( ) ( ) ( )

0

0 0

u = u x, y, t z x, y, t

v = v x, y, t - z x, y, t w = w

 - 

x y, t, ,

x

y




 (6) 

 

In the above relations u0 and v0, respectively, represent 

the displacements of the middle surface in thex and y 

directions, and w0 is the transverse displacement along 

the z direction. Also, the functions ψx and ψy are 

rotations of the middle surface around x and y axes, 

respectively, and are as follows: 

 

0 0,x y

w w

x y
 

 
= =

 
 (7) 

2.2.2. Nonlinear strain- displacement relations 

The nonlinear relations of Von-Karman between strain 

and displacement at any point in the thickness of the 

plate at distance z from the middle surface according to 

x 

y 

z 

h 

ceramic 

metal 
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the strains and curvatures of the middle surface are as 

follows [22]: 

 
0 0

0

+ z , + z

+ z , = 0

xx xx x yy yy y

xy xy xy zz xz yz

     

     

= =

= = =
 (8) 

 

In the above relations 
0

xx , 0

yy and 0

xy , are the strain 

of the middle surface and κx, κy and κxy are the curvatures 

of the middle surface, which are related to the 

displacement components u, v, w as follows: 

 
22
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2
0

2

2 2

2

1 1
,
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xx yy

x
xy x
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 
 

     
= + = +   
      
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= + + = − = −
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  
= − = − = − − = −
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(9) 

 

According to Hooke's law, the stress-strain relations are 

defined by the following Equation: 

 

( )

( )
11 12

12 22

66

0 ,

0 ,
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 
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=
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=
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(10) 

 

In the above relations, which include mechanical and 

thermal strains, α is the thermal expansion coefficient 

and Qij are the elements of the stiffness matrix, which 

are functions of the plate thickness and temperature; 

their relations are as follows: 

 

( )

( )

( )

( )

( )

( )( )

11 22 122 2

66
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(11) 

2.2.3. The Force and moment resultants   

The vector of forces N and moments M caused by 

stresses in unit length are expressed in terms of strain 

components as follows [21]: 

/2 /2

/2 /2

. , .z.

xx xx xx xxh h

yy yy yy yy

h h

xy xy xy xy

N M

N dz M dz

N M
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       
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= =       
       
       

 
 
(12) 

 

By replacing stress relations from the above Equations, 

we can find the forces and moment resultants in terms of 

the following matrix strain: 

   
   

0

6 1 6 16 6

-

-

T

T

A BN N

B DM M k


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    
=    

    

 (13) 

 

In the above relations NT and MT, are the thermal forces 

and moments resultants, matrices A, B, and D are the 

extensional, coupling, and bending stiffness matrices, 

respectively, and they are as follows: 

 

( ) ( ) ( ) ( )

( ) ( )

( )
( )
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11 22 11 22 11 22 1 2 32
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






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(14) 

 

In the above relations, the values of E1, E2, and E3 are 

based on Young's modulus Em, Ecm, the thickness of 

plate (h), and volumetric percentage index (N) for two 

cases of FGM plate (symmetric and asymmetric) as 

follows [5-6]: 

 

Asymmetric 

 

( ) ( )

( ) ( ) ( )
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3
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2 2 2

1 1 1
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N
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(15) 

 

Symmetric 

 

( )

1 2

3

3

1
1 , 0

1

1 1

12 4 3

cm
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E E h E
N

E E h
N

 
= + = 
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(16) 

 

Therefore, by replacing the stresses (Equation. (10)) and 

the strains (Equation (8)) and the effective Young's 

modulus in Equations (12), the resultant forces and 

moments are obtained as follows: 

 

𝑁𝑥𝑥 =
𝐸1

1 − 𝑣2
(𝜀𝑥𝑥

0 + 𝑣𝜀𝑦𝑦
0 )

+
𝐸2

1 − 𝑣2
(𝑘𝑥 + 𝑣𝑘𝑦)

−
𝜙𝑚

1 − 𝑣
 

(17) 
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𝑁𝑦𝑦 =
𝐸1

1 − 𝑣2
(𝜀𝑦𝑦

0 + 𝑣𝜀𝑥𝑥
0 )

+
𝐸2

1 − 𝑣2
(𝑘𝑦 + 𝑣𝑘𝑥)

−
𝜙𝑚

1 − 𝑣
 

𝑁𝑥𝑦 =
𝐸1

2(1 + 𝑣)
𝛾𝑥𝑦

0 +
𝐸2

1 + 𝑣
𝑘𝑥𝑦 

 

𝑀𝑥𝑥 =
𝐸2

1 − 𝑣2
(𝜀𝑥𝑥

0 + 𝑣𝜀𝑦𝑦
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               +
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(𝑘𝑥 + 𝑣𝑘𝑦) −

𝜙𝑏
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𝑀𝑦𝑦 =
𝐸2
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(𝜀𝑦𝑦

0 + 𝑣𝜀𝑥𝑥
0 ) 

              +
𝐸3

1 − 𝑣2
(𝑘𝑦 + 𝑣𝑘𝑥) −

𝜙𝑏

1 − 𝑣
 

𝑀𝑥𝑦 =
𝐸2

2(1 + 𝑣)
𝛾𝑥𝑦

0 +
𝐸3

1 + 𝑣
𝑘𝑥𝑦 

 
 

In the above relations, the parameters m and b are as 

follows: 

 
(𝜙𝑚, 𝜙𝑏)

= ∫ [𝐸𝑚 + 𝐸𝑐𝑚 (
2𝑧 + ℎ

2ℎ
)

𝑁

] [𝛼𝑚

+ℎ/2

−ℎ/2

+ 𝛼𝑐𝑚 (
2𝑧 + ℎ

2ℎ
)

𝑁

] Δ𝑇(1, 𝑧)𝑑𝑧 

(18) 

 

Also, the thermal force and moment resultants (NT and 

MT) are defined as follows: 
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
 

(19) 

 

Where, T is the increase of temperature relative to the 

reference temperature T0 (without thermal strain) is as 

follows: 

 

( ) 0T T z T = −  
(20) 

 

2.3. Equations of Motion of the Plate 

The dynamic Equations of motion of the plate and its 

boundary conditions are extracted from Hamilton's 

principle, which are defined as four boundary conditions 

at the edges of the plate and three equilibrium Equations 

as follows [1], [6]: 

 

2 2 22
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2 2 2

2 2

0 0
0 0 02

0 , 0

 2 + 

2 2

xy yy xyxx

xy yyxx
xx

xy yy

N N NN

x y y x

M M wM
N

x x y y x

w w
N N P w I w

x y y


  
+ = + =

   

  
+ + +

    

 
+ + − =

  

 
(21) 

 

Where, P (x, y, t) is the distribution of external force on 

the upper surface of the plate (z = + h / 2) and μ is the 

coefficient of viscous damping per unit area of the plate. 

Also, I0 is the inertial of the plate in the z-direction, and 

is defined as follows: 

 

( )
/2

0

/2

  

h

h

I dzz
+

−

= 
 

(22) 

 

Where 𝜌(𝑧) is the density of the plate. 

2.4. Boundary Condition 

The boundary condition of the plate is defined as 

follows: 

At x=0 and x= L1: 

 
* 0

0 0 0 , -xx xx xx xxw v M N N N= = = = =  (23) 
 

At y=0 and y= L2: 

 
* 0

0 0 0 , -yy yy yy yyw v M N N N= = = = =  (24) 

2.5. Extraction of The Equation of FGM Plate 

Deflection 

In order to establish the first two Equations of motion 

(Equations (21)), the function of the potential stress field 

 is considered as follows [6]: 

 

, , ,, ,xx yy yy xx xy xyN N N  = = = −  (25) 
 

Moreover, the third Equation (Equation (21)) can be 

obtained in terms of the two unknown parameters of the 

stress field () and the transverse displacement (w0). For 

this purpose, by applying inverse algebraic operations on 

Equation (13), it can be written as follows: 

 

 
(26) 

As shown in Equation 26, the matrices shown are as 

follows: 

 

     

         
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,

,
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   = = −   

   = − = −   

 
(27) 

 

   
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T
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A B N N

M M B D





       −       =   
               
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By substituting the above relations, in the third Equation 

of motion of the plate and simplifying, the first fourth-

order governing Equation is obtained with respect to two 

unknown parameters of the stress field (φ) and 

transverse displacement (w0) [6]: 
 

( )4

0 , 0, , 0, , 0,

2 22
0 0 0

1

2

2

xx yy xy xy yy xx

T T

D w w w w

E
I w cw P N M

E

   − − + +

 
+ = −  + 

 

 (28) 

 

Where, D is a parameter defined as follows: 

 

𝐷 =
𝐸1𝐸3 − 𝐸2

2

𝐸1(1 − 𝑣2)
 (29) 

 

To solve the above Equation, we need another Equation 

including two unknown parameters mentioned above, 

which can be obtained from the compatibility conditions 

and simplification. The compatibility Equation is: 
 

𝜀_(𝑥𝑥, 𝑦𝑦)^0 + 𝜀_(𝑦𝑦, 𝑥𝑥)^0
− 𝛾_(𝑥𝑦, 𝑥𝑦)^0
= 𝑤_(0, 𝑥𝑦)^2
− 𝑤_(0, 𝑥𝑥) 𝑤_(0, 𝑦𝑦)                

 

(33) 

 

 

By substituting the strains from relation 17 and the 

function field of stress potential (relations 25) in 

Equation (30), the second fourth-order governing 

Equation, including two unknown parameters of the 

stress field (φ) and the transverse displacement (w0) is 

obtained as follows: 

 

∇4𝜙 = 𝐸1(𝑤0,𝑥𝑦 − 𝑤0,𝑥𝑥𝑤0,𝑦𝑦)

− (1 − 𝑣)∇2𝑁𝑇 

 

(31) 

 
 

Thus, two Equations 28 and 31 are the basic governing 

Equations, including the terms of thermal force and 

moment resultants to obtain the general dynamic 

response of the FGM plates under the external 

excitation. 

3 SOLVING EQUATION OF FGM PLATES BY 

CONSIDERING THERMAL TERMS 

In order to solve the governing Equations in general, 

taking into account the boundary conditions, the 

unknown parameters of w0 and  are assumed to be in 

the form of sinusoid functions as follows [6]: 

 

𝑤0(𝑥, 𝑦, 𝑡) = 𝑤𝑚𝑛(𝑡). 𝑆𝑖𝑛𝜆𝑚𝑥. 𝑆𝑖𝑛𝜇𝑛𝑦 (32) 

( ) ( ) ( )

( ) ( )

m

m

* 2 * 2

, , 2 x 2

2 x 2

1 1

2 2

mn mn n

mn n mn m n

xx yy

x y t A t Cos B t Cos y

C t Cos Cos y D t Sin xSin y

N y N x

  

   

= + +

+

+ +

 
(33) 

 

Where: 

 

𝜇𝑛 =
𝑛𝜋

𝐿2

                 ,               𝜆𝑚 =
𝑚𝜋

𝐿1

 (34) 

 

In Equation (32), ( )mnw t  is the maximum deflection of 

the FGM plates, and m, n = 1, 2, 3, ..., represent the 

number of half waves along the axes x and y, 

respectively. 

Also, thermal force and moment resultants are assumed 

to be in the form of the following functions: 

 
T T

mn m n

T T

mn m n

N N Sin xSin y

M M Sin xSin y

 

 

=

=

 
(35) 

 

Where, 𝑁𝑚𝑛
𝑇  and  𝑀𝑚𝑛

𝑇  from relation 19 are obtained as 

follows:  

 

𝑁𝑥𝑥
𝑇 = 𝑁𝑦𝑦

𝑇

=
ℎ∆𝑇

1 − 𝜈(𝑇)
[
𝐸𝑐𝑚(𝑇)𝛼𝑐𝑚(𝑇)

2𝑁 + 1

+
𝐸𝑐𝑚(𝑇)𝛼𝑚() + 𝐸𝑚(𝑇)𝛼𝑐𝑚(𝑇)

𝑁 + 1

+ 𝐸𝑚(𝑇)𝛼𝑚(𝑇)] 

(36) 

 
2 1

( ) ( )
1 ( ) 2 2

1 1 1
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4 2 2 2 2

1 1
( ) ( )

1 2 2

0

T T

xx yy cm cm
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h T
M M E T T

T N

E T T
N N N

E T T
N N

N M








  
= = − − 

− +

  
+ −  

+ + +  

 
+ −  

+ + 

= =

 

(37) 

By substituting Equation (32), (33) and (35) into (31), 

the coefficients of  𝐴𝑚𝑛, 𝐵𝑚𝑛 , 𝐶𝑚𝑛  and 𝐷𝑚𝑛  are 

obtained as follows: 

 
2 2 2 2

1 1

2 2

2 2

( ) ( )
( ) , ( )

32 32

((1 )
( ) 0 , ( )

( )

mn n mn m

mn mn

m n

T

mn

mn mn

m n

E w t E w t
A t B t

N
C t D t

 

 



 

= =

−
= =

+

 (38) 
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Therefore, by replacing these coefficients in relation 33, 

the function  is obtained as follows: 

 

( )
( ) ( )

( )

( )

2 2 2 2

1 1

m2 2

2 2

* 2 * 2

, , 2 x .
32 32

1
2

1 1

2 2

mn n mn m

m n

T

mn

n m n

m n

xx yy

E w t E w t
x y t Cos

N
Cos y Sin xSin y

N y N x

 
 

 


  

 

= +

−
+ +

+

+

 (39) 

 

The external excitation force on the plate is considered 

to be proportional to the transverse displacement as 

follows: 

 

( ) ( ), ,t mn m nP x y t P t Sin xSin y =  (40) 
 

In the above relation, the coefficient Pmn (t) is obtained 

by the Fourier series expansion as follows: 

 

( ) ( )
1 2

1 2 0 0

4
, ,

L L

mn t m nP t P x y t Sin xSin ydxdy
L L

 =    (41) 

 

In this research, the external load applied on the FGM 

plate is explosive load and the type of the explosive 

loading is considered as a free in-air spherical air burst. 

Such an explosion creates a spherical shock wave that 

travels radially outward in all directions with 

diminishing velocity. The form of the incident blast 

wave from a spherical charge is shown in “Fig. 2ˮ. 

 

 
Fig. 2 Incident pressure profile of a blast wave [23]. 

 

Where PSO is the peak overpressure above ambient 

pressure, P0 is the ambient pressure, ta is the time of 

arrival, tp is the positive phase duration of the blast wave, 

t is the time and b is the coefficient of reduction of the 

amplitude wave of the explosion which is determined by 

adjustment to a pressure curve from a blast test. The 

waveform shown in “Fig. 2ˮ is given by an expression 

known as the Friedlander Equation and is given as 

follows [6], [23]: 

( ) ( )
( ) ( )

0

1

3 2 3

1 exp

Where

172 / 114 / 108 / , /

a a

t So

p p

so

t t t t
P t P P b

t t

P Z Z Z Z R W

   − −
= − − −   

   
   

= − + =

 (42) 

 

Where, R is the standoff distance in meters and W is the 

equivalent charge weight of TNT in kilograms. By 

substituting Equation (42) in (41), Pmn(t) under the 

loading due to the explosion, it is obtained as follows: 

 

2

16 ( )
( ) , ( , ) (1,1)t

mn

P t
P t m n


= =  (43) 

 

By replacing Equation (39) and (32) in (28), and using 

the Galerkin method, the following second-order 

Equation describing the nonlinear differential governing 

Equations of FGM plates under external exaction due to 

the explosion considering the expressions of the thermal 

force and moment resultants are obtained. The main 

unknown parameter of these Equations is the Wmn(t) 

plate, which is the purpose of this research obtained as 

follows: 

 

( ) ( ) ( )

( )
( )

( ) ( )

2

0

4 4

1 2 1 3

0

2 2 2

0 1

2

16

1

mn mn mn mn

m n
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c
w t w t w t

I

E L L
w t

I

E
P t N M

I E



 

 

+ + +

+
=

  
+ + −   

  

 (44) 

 

In Equation (44), wmn(t) is the deflection of the FGM 

plate in terms of time, and the natural frequency mn is 

obtained from the following Equation: 

 

0

mn
mn

K

I
 =

 
(45) 

 

I0 is the mass moment-of-inertia of the plate and the Kmn 

is defined as follows: 

 

( )
( )

( )
2 4

1 3 2 4 2 2 2 4 4

4 2

1 1

2 2 2 2
* *

2 2

1 2

2
1

mn
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E E E
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
 



 

−
= + + +

−

 
+ 

 

 
(46) 

 

Where, ψ is the ratio of length to width of the plate 

(aspect ratio). Also, in Equation (44) the dimensionless 

damping coefficient mn could be defined as follows: 



 Int.  J.   Advanced Design and Manufacturing Technology             44 

  

0 0

2
2 mn mn mn

mnI I


 


=  →  =  (47) 

 

In order to obtain a time response of FGM plate, the 

fourth-order Ronge-Kutta code with zero initial 

conditions in the MATLAB program is used to solve 

Equation (44) which is a second-order nonlinear non-

homogeneous differential Equation. 

4 RESULTS AND DISCUSSION     

4.1. Validation 

The considered FGM plate consists of Titanium alloy Ti-

6Al-4V as a metal component and aluminum oxide as a 

ceramic component and has been restrained as simply 

supported on all edges. Its geometric and physical 

characteristics are selected in accordance with “Tables 1 

and 2ˮ [6]. Also, the number of half-waves considered 

along the axes x and y are m = n = 1, respectively. 
 

Table 1 Geometric parameters of FGM plate   

L1 (m) L2 (m) h (m) aspect ratio(ψ)   

1 1 0.0254 1 

 
Table 2 Mechanical properties of FGM plate 

Em (GPa) Ec (GPa) m c 

105.7 320.24 0.2981 0.26 

αm (0C-1) αc (0C-1) 𝜌𝑚(
𝑘𝑔

𝑚3) 𝜌𝑐(
𝑘𝑔

𝑚3) 

6-8.7*10 6-7.1*10 4429 3750 

 

Also, the characteristics of the explosive loading wave 

in the air, the weight of the explosive, and distance of its 

center from the plate are shown in “Table 3ˮ. 
 

Table 3 Characteristics of the explosive wave loading  

Tp (s) ta (s) R (m) W (Kg) α 

0.001372 0.000408 0.766 0.7 0.5 

 

In order to verify the results, using the above Tables, in 

similar geometric conditions and similar loading, the 

results of this study are compared with the results of Ref. 

[6]. Time response of the center point deflection of FGM 

plate in terms of the explosion time without 

consideration of temperature mode for asymmetric and 

symmetrical states with a volumetric percentage index 

of N = 0.5 are shown in “Figs. 3 and 4ˮ, respectively. 

Comparison between the results of Ref. [6] and the 

present study have been presented in “Tables 4 and 5ˮ. 

This comparison shows that the error percentage 

between them is negligible which confirms the accuracy 

of the present study. 

 

 
Fig. 3 Time response of the center point deflection of 

asymmetric FGM plate with N=0.5 without thermal effects. 

 

 
Fig. 4 Time response of the center point deflection of 

symmetric FGM plate with N=0.5 without thermal effects. 

 
 

Table 4 Comparison between the results of Ref. [6] and the 

present study 

Asymmetric FGM plate 

 
Ref.[6] 

Present 

study 
Error 

Maximum deflection 

in the first 

period(cm) 

1.6 1.7 %6.25 

Time of maximum 

deflection in the first 

period(s) 

0.0046 0.0049 %6.5 
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Table 5 Comparison between the results of Ref. [6] and the 

present study 

Symmetric FGM plate 

 
Ref.[6] 

Present 

study 
Error 

Maximum 

deflection in the 

first period(cm) 

1.39 1.53 %10 

Time of maximum 

deflection  in the 

first period(s) 

0.0043 0.0044 %2.32 

4.2. Effects of Different Parameters on The Dynamic 

Response 

In this section, the results of the parametric study of the 

effect of different parameters on the time response of the 

center point deflection of the FGM plate have been 

investigated. The effect of temperatures ∆T(K) = 

(30,500,600, 700) on the nonlinear dynamic response of 

the asymmetric FGM plates with N = 0.5 is shown in 

“Fig. 5ˮ. The geometrical and mechanical properties of 

the FGM plate and the characteristics of the explosive 

wave loading are similar to the previous ones. It can be 

seen that the dynamic response amplitude increases 

when the temperature ∆T increases since the flexibility 

of the plate increases. It means that the dynamic 

response amplitude is directly proportional to the 

temperature ∆T. The results of the first period in each 

temperature are given in “Table 6ˮ. 

 

 
Fig. 5 The effect of temperature on the nonlinear response 

of the FGM plates under blast load with N=0.5. 

 

Figure 6 shows the effect of the volumetric percentage 

index N on the nonlinear dynamic response of the 

asymmetric FGM plates with N = 0, 5, 10, 50 and 

considering the effect of thermal forces and moments 

resultants. Obviously, the amplitude of the nonlinear 

dynamic response of the FGM plate is directly 

proportional to the power-law index N. At N = 0, the 

plate has a pure ceramic property and by increasing N, 

the metal property is added. In fact, by increasing N, the 

behavior of the plate becomes more flexible and the 

deflection is increased, as a result, the plate exhibits 

more geometric nonlinear effects. 

 
Table 6 The effect of temperature on the response FGM plate 

Results 

Asymmetric FGM plate with N=0.5 

Difference temperature (℃) 

700 600 500 25 

Maximum 

deflection in the 

first period(cm) 

1.92 1.79 1.71 1.67 

The time of 

Maximum 

deflection in the 

first period(s) 

0.0043 0.0047 0.0049 0.005 

 

 
Fig. 6 The effect of power-law index N on the time 

response of the center point deflection of asymmetric FGM 

plate with ∆𝑇 = +600 ℃  and without damping effect under 

blast load. 
 

 
Fig. 7 The effect of various amounts of damping on the 

time response of the center point deflection of asymmetric 

FGM plate with N=0.5. 
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Effects of various amounts of damping on the time 

response of the center point deflection of asymmetric 

FGM plate with N=0.5 and without temperature are 

shown in “Fig. 7ˮ. It can be seen that central deflections 

vs. time attenuate faster as the amount of the damping 

coefficient is increased for a fixed volume fraction of the 

constituent materials. Because damping causes waste of 

energy and reduces the deflection amplitude. 

The effect of damping with a value of Δ11 = 0.1 on the 

time response of the center point deflection of symmetric 

and asymmetric FGM plate with N=0.5 is also compared 

with temperature (∆𝑇 = +600 ℃ ) and without 

temperature as shown in “Fig. 8ˮ. As can be seen, 

regardless of the thermal effects, the smaller deflection 

amplitude corresponds to the symmetric FGM 

configuration. 

 
Fig. 8 The effect of FGM configuration on the time 

response of the center point deflection of symmetric and 

asymmetric FGM plate with temperature (∆𝑇 = +600 ℃ ) 

and without temperature. 

 

Also, the effects of various amounts of damping on the 

time response of center point deflection of asymmetric 

FGM plate with N=0.5 and with temperature ∆T =
+600 ℃  are shown in “Fig. 9ˮ. It can be seen that by 

increasing the amount of the damping coefficient, the 

amplitude of the central deflections vs. time is decreased 

and damped. Because damping causes a waste of energy 

and reduces deflection in the presence of thermal effect. 

Figure 10 illustrates the effect of the aspect ratio (L1/L2) 

of the plate on the time response of the center point 

deflection of the FGM plate under blast load with N=0.5. 

It is clear that the plate fluctuation amplitude decreases 

when increasing the aspect ratio of the plate. In 

conclusion, the plate fluctuation amplitude is in inverse 

proportion to the aspect ratio of the plate. So, in similar 

conditions, by doubling the ratio of length to width of 

the plate (ψ=2), the center deflection of the plate is 

decreased by about 70%. Therefore, for optimal design, 

the use of FGM plates with a high aspect ratio leads to 

smaller deflections against blast load and consequently 

leads to lower stress values. 

 

 
Fig. 9 The effect of various amounts of damping on the 

time response of the center point deflection of asymmetric 

FGM plate with N=0.5 and temperature (∆𝑇 = +600 ℃ ). 

 

 
Fig. 10 The effect of aspect ratio (L1/L2) of asymmetric 

FGM plate on the time response of the center point deflection 

under blast load. 
 

Figure 11 shows the effect of explosive mass on the time 

response of the center point deflection of FGM plate 

under blast load. The physical and geometric 

characteristics of the plate and the characteristics of the 

explosive loading are the same as in the previous cases, 

and only the explosive mass is different. As can be seen, 

the center point deflection amplitude of FGM plate 
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increases when explosive mass is increased. Amplitude 

of deflection is directly proportional to the explosive 

mass. For example, an increase in the mass of explosives 

from 0.4 to 0.7 kg leads to an increase in the central 

deflection of the plate at the peak of the first period from 

1.41 cm to 1.69 cm, which is an increase of about 20%, 

as well as an increase the mass, reduces the occurrence 

time of the peak of the domain during the first period 

from 0.0056 seconds to 0.0044 seconds. 
 

 
Fig. 11 The effect of explosive mass on the time response 

of the center point deflection of FGM plate under blast load 

with N = 0.5. 

5 CONCLUSIONS 

In this paper, the behavior and dynamic response of 

FGM plates against blast load were investigated. The 

main purpose of the reduction of deflection and 

displacement is to reduce the stresses caused by the 

explosion waves in the plates. Various factors and 

parameters are effective in increasing or decreasing the 

deflection of the plate, including the FGM material 

percentage index (N), the aspect ratio of the plate, the 

geometric structure of the FGM plate (phase gradation) 

in terms of the symmetrical or asymmetric structure, 

weight of the explosive, the distance of the explosive 

from the plate, the damping, the effects of temperature, 

etc. In the present study, these parameters were 

investigated. Finally, the following results can be 

summarized : 

A) The amplitude of the center point deflection of the 

FGM plate is less than the pure metal plates when 

exposed to the blast load and in the FGM plates, the 

deformation of symmetrical plates is smaller than the 

asymmetric plates. 

B) By applying the damping coefficient of the FGM 

plates, the  amplitude of the center point deflection is 

reduced and damped during the explosion. 

C) By increasing the aspect ratio of the FGM plate, its 

center point deflection against explosion waves reduces. 

Therefore, the use of plates with a high aspect ratio leads 

to smaller deflection and lower stress values. 
D) By increasing the volumetric index percentage of 

FGM, the center point deflection is increased.  

E) By considering the effects of thermal resultant forces 

and moments, the center point deflection is increased 

and by increasing the temperature, the center point 

deflection of the plate is increased. 
Finally, it should be noted that the theory presented in 

this study is based on the theory of elasticity, and no 

plastic deformation or fracture is considered, and it is 

assumed that the behavior of the plate remains elastic all 

the time. 
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