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Abstract: In this research, we investigate and compare the natural frequencies of 
simple beams and their mass and stiffness matrices of the two methods: classic shape 
functions and real shape functions. To this end, we solve the beam motion Equation 
and apply boundary conditions. This article shows that the coefficients of the real 
shape functions, and consequently, the real shape functions, become harmonic and 
hyperbolic and also, they are dependent on the natural frequency value of the element. 
As a result, the real mass and the real stiffness matrix of each element are also 
dependent on the element frequency.  The frequency values obtained from these two 
methods are compared with the exact frequency values of two simple beam types with 
different support conditions. In this way, we determine which method leads to more 
accurate and acceptable frequencies for these beams. Based on the obtained results, 
the percentage of frequency error obtained by the classical method is relatively high 
in the sample beams. Hence, the natural frequency value of the beams studied using 
exact shape functions shows a small error compared to the classical method in terms 
of the exact frequency value of these beams. It is of note that the frequency error 
obtained from the classical method is greater in the elements with a higher natural 
frequency. Overall, obtaining the exact natural frequency of an element will result in 
accurate dynamic responses and more appropriate analyses and designs.  
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1 INTRODUCTION 

Since the emergence of structural science, one of the 

most important concerns of engineers, experts, and 

researchers in designing, analyzing, and constructing 

structures has been upgrading resistance and safety to 

natural and man-made disasters to protect human lives 

and property. It is possible to achieve accuracy and 

quality in the steps mentioned above. A structure itself 

is composed of a set of smaller elements (e.g., beams, 

columns, and plates) with different loading, frequency, 

analysis, and design methods. These elements 

complement one structure, and the failure of one of these 

components can affect the other elements.  Observing 

psychological safety of people residing in a structure 

requires creating a safer structure in which all elements 

are carefully analyzed, designed, and executed. Each 

element can achieve a more accurate dynamic response 

by obtaining more exact shape functions and, 

consequently, more accurate natural frequencies. In this 

study, we investigate and compare the natural frequency 

values of a simple beam with a high-frequency element 

under different support conditions based on simple and 

real shape functions. We also introduce some other 

elements of high natural frequency obtained by 

experimental or theoretical research. 

In a study on the free vibrations of reinforced sheets, 

Rahbar and Abdollah [1] investigated the vibrations of 

rectangular reinforced sheets. The main purpose of the 

paper is to investigate the various functions that describe 

the shape of sheet modes reinforced in ship structures. In 

the following, they have introduced the geometrical 

properties, modeled by ANSYS software, of the 

reinforcing sheets of a bulk ship. The natural frequency 

of its first mode is about 50 Hz and has shown that with 

increasing sheet length, the natural frequencies of the 

dominant modes decrease. Azimi-Zawareie [2] has done 

a detailed dynamic analysis of truss structures, and has 

obtained the vibrational properties of truss-like 

structures using classical formulations for a truss 

element based on an inaccurate, and sometimes 

inadequate, linear displacement function in a number of 

frequencies and shapes of vibrational states, which can 

be seen in the reference. In this study, these glitches were 

resolved by using a precise element formulation 

methodology that utilizes the precise displacement 

function of the elements. 
Rana [3] has studied the dynamic analysis of the fixed-

end beams in theoretical and experimental methods and 

compared their results with each other. The beams 

investigated by the features mentioned in this paper 

show a significant natural frequency of about 70 Hz for 

dominant modes. Satpathy and Dash [4] carried out 

research on the dynamic analysis of the cantilever beam. 

First, the Equation of motion of this beam is formulated 

and its natural frequencies are obtained using ANSYS 

software and experimental method. This beam also has 

a high natural frequency. Sawant [5] studies the 

vibrations of a free beam in both theoretical and 

experimental methods. The investigated model of the 

beam is assumed to be linear and all properties along the 

beam are the same. The steel beam is thin, its dimensions 

are on millimeter scale, and its other characteristics have 

been clearly mentioned in the reference. These types of 

beams can be considered as part of the high frequency 

elements due to their natural frequency value. 

Tatar [6] defines the dynamic behavior of a frame with 

conical members and obtains and compares the 

eigenvalues and natural frequencies of its modes using 

the finite element method and experiment. The 

geometrical properties of this frame are mentioned in 

this research. The natural frequency of this frame is high. 
AL and Kumawat [7] have investigated the natural 

frequencies of aluminum beams. The effect of crack 

formation on the natural frequency value of the beam is 

tested in their paper. The beam models studied also have 

a relatively high natural frequency. Chao and Dong [8] 

have investigated the natural frequency of an integrated 

beam and a joint beam with a shear connection in which 

both beams have been hammered by vibration. The 

natural frequency of the dominant modes of both beams 

indicates that the frequency of the integrated beam is 

greater in all modes than the joint beam, and both are 

high frequency values. Delhez [9] has studied the modal 

analysis of pre-stressed steel strip in numerical and 

experimental methods and compared the natural 

frequency value in two ways. Model specifications and 

experimental conditions are fully described in their 

paper. The pre-stressed steel strip has a high natural 

frequency. Esfandiari et al. [10] examined the natural 

frequency of the concrete beam model. In their paper, 

natural frequencies of normal concrete beams and those 

with different failure rates and loads are investigated and 

compared. This type of beam also has a high natural 

frequency. Beams that have been loaded or damaged 

have a lower natural frequency. 
Gandomkar et al. [11] have investigated the frequency 

profile of a composite steel plate profile system with a 

board. These panels are used as a flooring system and 

the purpose of obtaining their frequency range is to 

determine whether they are suitable for human use or 

not. The physical characteristics of the models, the 

thickness, and distance of the screws are fully stated in 

the reference. 
Joubaneh et al. [12] investigated the vibration of 

sandwich beams with different boundary conditions. 

The geometrical parameters and characteristics of the 

beams are given in their article. The natural frequencies 

of these beams were obtained and compared with 

analytical and experimental methods under several 
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boundary conditions, geometries, and different physical 

properties. According to the study, these types of beams 

also showed a naturally high frequency. Other high 

frequency elements include a composite beam. 

Composite materials are used in many industrial and 

commercial aspects such as aircraft, ships, vehicles, etc. 

In an article by Krishnaraju et al. [13], a sample 

composite beam made of natural fiber was tested and its 

natural frequency was measured. Test conditions and 

sample specifications are stated in the reference.  

Trišović [14] analyzed the dynamic behavior of an 

electric motor shaft. Shaft modeling is considered as a 

beam element. The natural frequency values of the first 

few modes are obtained and have a high frequency. One 

of the best ways to detect a fault in a system is to check 

the natural frequencies of the system, which can be 

easily and accurately measured. This method is used for 

simple and failure elements that can be modeled 

theoretically. Yang et al. [15] investigated the frequency 

value for cracked or failed beam elements. This paper 

examines the theory of failure detection by the beam 

element frequency method. 

As a result of this research, it was found that by 

increasing partial crack length, the rate of first mode 

frequency increases. In [16], an efficient and scalable 

approach was introduced for simulating inhomogeneous 

and non-linear elastic objects. In this work, the applied 

numerical coarsening approach consists of optimizing 

non-conforming and matrix-valued shape functions to 

allow for predictive simulation of heterogeneous 

materials with non-linear constitutive laws, even on 

coarse grids. Hence, it allows saving orders of 

magnitude in computational time compared to 

traditional finite element computations. Also, in this 

work, crucial geometric and physical properties such as 

the partition of unity and exact reproduction of 

representative fine displacements were considered to 

avoid using discontinuous Galerkin methods. The results 

showed that this method could simulate inhomogeneous 

and non-linear materials (with no parameter tuning) 

significantly better than previous approaches that 

homogenize the constitutive model. 

In [17], a new model based on the Finite Element (FE) 

model and real healthy state was presented for damage 

detection of mechanical systems in the presence of 

uncertainties such as modeling errors, measurement 

errors, varying loading conditions, and environmental 

noises. Another point to consider in this paper is 

designing a developed Deep Convolutional Neural 

Network (DCNN) with training interference and 

customized architecture to learn the features. In 

addition, the proposed DCNN was trained using raw 

frequency data of the FE model and real healthy state 

and finally tested using the raw frequency data of the real 

system. The proposed DCNN could directly learn the 

features from raw frequency data of the FE model and 

real healthy state. As a result, it could discover the 

damage-sensitive features for damage detection of a real 

system. In this method, only dynamic responses of a real 

healthy system were used to update the FE model and 

minimize errors. The efficiency of the proposed method 

was validated using the experimental beam structure. 

Time data, several manual features from time and 

frequency data, and two intelligent methods were used 

as comparison criteria. The results revealed that the 

proposed method can learn the features from raw 

frequency data and achieve higher accuracy than other 

comparative methods. 

Adhikari et al. [18] investigated the Free and forced 

bending vibration of damped nonlocal nano-beams 

resting on an elastic foundation. In this article, two types 

of nonlocal damping models, namely, strain-rate-

dependent viscous damping and velocity-dependent 

viscous damping have considered. They have developed 

a frequency-dependent dynamic finite element method 

to obtain the forced vibration response. Also, in this 

work frequency-adaptive complex-valued shape 

functions have used for the derivation of the dynamic 

stiffness matrix. It is shown that there are six unique 

coefficients which define the general dynamic stiffness 

matrix. It is proved that the general dynamic stiffness 

matrix reduces to the well-known special cases under 

different conditions. The stiffness and mass matrices of 

the nonlocal beam has been achieved using the 

conventional finite element method. Then, The Results 

from the dynamic finite element method and the 

conventional finite element method have been 

compared. Explicit closed-form expressions of the 

dynamic response for both the cases have been obtained 

and the role of crucial system parameters such as, the 

damping factors, the nonlocal parameter and the 

foundation stiffness have been investigated. 

In a study by Corrêa et al. [19] the focus has been applied 

on the G/XFEM for free vibration analysis of thin and 

thick curved beam models. In this research the accuracy 

of frequencies values, the convergence to reach them, 

and the frequency spectrum are some of the points it has 

been discussed. Also, four examples have been carried 

out and the results are compared with standard FEM, the 

p-Fourier Method and analytical solutions. 

In another paper, a closed-form dynamic stiffness (DS) 

formulation is proposed for exact transverse free 

vibration analysis of tapered and/or functionally graded 

beams based on Euler–Bernoulli theory [20]. Among the 

important points of this work is focusing on both the DS 

formulation and the solution technique. The authors 

point out that their work innovations can be effective in 

making exact and highly efficient modal analysis 

possible for a wide range of tapered and/or functionally 

graded beams, without resorting to series solution, 

numerical integrations or refined mesh discretization. 
They have also shown by their method that the results 
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for a particular case show excellent correspondence with 

the published results. 

Banerjee and Ananthapuvirajah [21] have proposed an 

accurate dynamic stiffness matrix for a beam by 

integrating Rayleigh-Love theory for longitudinal 

vibration into Timoshenko theory for bending vibration. 

In this work in the formulation, Rayleigh-Love theory 

considers transvers inertia in longitudinal vibration, 

while Timoshenko beam theory considers the effects of 

shear deformation and rotating inertia in bending 

vibration. Then the dynamic stiffness matrix has been 

developed by solving the governing differential 

Equations of motion in free vibration of a Rayleigh-Love 

bar and a Timoshenko beam and imposing the boundary 

conditions for displacements and forces. Next two 

dynamic stiffness theories are combined using a unified 

notation. Also some of the computed results for some 

elements as a case study by this method have been 

compared with published ones.    

All of the above research points to the importance of 

having the exact frequencies, shape functions and 

achieve more accurate dynamic analysis of one or more 

elements. In this research, we are going to achieve a 

more accurate frequency of this element by using the 

real shape functions of simple beams, and mass and 

stiffness matrices. 

2 INTRODUCING MASS AND STIFFNESS 

MATRICES OF BERNOULLI BEAM USING 

CLASSICAL SHAPE FUNCTIONS 

In this section, we introduce the classical shape 

functions of a Bernoulli beam obtained using the 

Bernoulli principle of “Eq. (1)”. Then, the classical mass 

and stiffness matrices are obtained using the classical 

shape functions and the concepts of kinetic, strain, and 

flexural energy. 

 

 
(1) 

 

In this study, we do not consider the effect of stability. 

In other words, the properties of buckling and stability 

are not considered on the element’s stiffness. This 

assumption is because the high-frequency elements 

considered in this study are that of the mass effect on 

these elements and are negligible compared to their 

stiffness, knowing that it is the mass that causes buckling 

in the elements. Therefore, we put (𝑃(𝑥) = 0) in “Eq. 

(1)”.  

In the following, the classical shape functions of the 

Bernoulli beam are obtained using “Eq. (1)”. Figure 1 

shows the six shape functions of the axial, across, and 

rotational motions of this beam. 

 

 
Fig. 1 Shape modes of a Bernoulli beam element. 
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(4) 

  

  
(5) 

     
(6) 

  

 
(7) 

2.1. Classic Mass Matrix for Bernoulli Beam 

By putting in the axial shape functions (𝜓1 and 𝜓2) of 

“Eqs. (2) and (5)” in relation to the axial kinetic energy, 

Eq. (8), the axial quantities of the classical mass matrix 

are formed. 

   
(8)  

For example: 

 

(9) 

  

(10) 

By putting in the across and rotational shape functions 

(𝜓2, 𝜓3, 𝜓5 and 𝜓6) of “Eqs. (3), (4), (6) and (7)” in “Eq. 

(8)”, the lateral quantities of the classical mass matrix 

are created. 

For example:   

 

 

(11) 

 

(12) 

2.2. Classic Stiffness Matrix for Bernoulli Beam 
The axial values of the stiffness matrix are obtained as 

follows from the axial strain energy “Eq. (13)”. 

0

. ' ( ) . ' ( )
L

i i jjk EA x x dx  
  

, (1,4)i j 
 

(13) 

  

By deriving 𝜓1Classic and 𝜓4Classic of “Eqs. (2) and (5)” 

and placing them in the “Eq. (13)”, the axial quantities 

of the classical stiffness matrix are formed. 

Then by applying the bending strain energy relation 

below (14) and placing the second-order derivatives of 

the classical shape functions in it, the lateral quantities 

of the classical stiffness matrix are formed. 

 

0

. " ( ) . " ( ) , (2, 3, 5, 6)
L
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(14) 

For example:  

 

 

(15) 

3 METHOD OF OBTAINING MASS AND 

STIFFNESS MATRICES OF BERNOULLI BEAM 

USING REAL SHAPE FUNCTIONS 

In this section, first, the Bernoulli beam lateral motion 

Equation is formulated using Newton’s second law, 

then, by solving this Equation and applying boundary 

conditions we obtain the real shape functions. Next, we 

obtain the mass and stiffness matrices of the beam using 

those real shape functions. 

3.1. Formulation of the Beam Motion Equation by 

Newton’s Second Law 
Figure 2 shows the free body diagram of a beam in 

length (𝑑𝑥) and Newton’s second law for dynamic 

equilibrium forces. 

 
Fig. 2 Free body diagram of a beam (Newton’s second 

law). 
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(16) 

 

We draw from “Eq. (16)”:  
 

 
 

(17) 

Newton’s second law for Moments static equilibrium: 
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(18) 

 

By placing the beam moments in “Eq. (18)” and 

simplifying and applying “Eq. (17)”, the quadratic 

Equation of lateral motion of the beam is formed as 

follows: 
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(19) 

 

In the above Equation, the definitions of 𝜂2 and 𝜆2 are: 
 

    and   
(20) 

3.2. Method of Solving the Beam Lateral Motion 

Equation 

To solve the beam motion Equation, we use the 

separation method. 
 

 
(21) 

So, by applying the separation method to Eq. (19), we 

solve it as follows: 
 

  

(22) 

  

  

(23) 

  

 

(24) 

  
Equations (22), (23) and (24) are placed into “Eq. (19)” 

and then separated into the displacement-dependent and 

time-dependent Equations, and each placed on the side 

of equality. Then, the two sides of the Equation are 

divided into 𝑌(𝑥) and make the whole Equation equal to 

𝛽4. Now, according to the above explanations, the 

Equation is transformed as follows: 
 

 

(25) 

From “Eq. (25)”, we come to two displacement and time 

dependent differential Equations. 

Time-dependent differential Equation: 
 

   
(26) 

 

Displacement-dependent differential Equation: 
 

 (27) 

 

By obtaining the roots of the displacement-dependent 

Equation, we arrive at the real shape functions. Since we 

do not consider the effect of stability in this study as 

explained in part two, that is 𝑃 = 0, the result will be 

𝜆 = 0 with respect to “Eq. (20)”. 
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(32) 

  
The obtained roots of the displacement-dependent 

differential Equation include two real roots of sinuses 

and hyperbolic cosines and two imaginary roots of the 

sinuses and cosines. 

As a result, the real shape function of the beam is: 
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And we can say that (𝑘 = 𝜇 = 𝛽), so we have:  

 

   

(35) 

  

 
(36) 

3.3. Applying Boundary Conditions and Obtaining 

Coefficients of Real Shape Functions 

By applying boundary conditions and placing in the 

Equation of the real shape function achieved in the 

previous section, the coefficients of the real shape 

functions will be obtained. According to “Fig. 1” which 

shows the displacements and rotations under the unit 

load and unit moment at the beginning and the end of the 

element with (𝑑1, 𝑑2, … , and 𝑑6), we have: 
 

 
(37) 

  

 
(38) 

  

 

(39) 

  

 

(40) 

  

   

(41) 

As an example, for the second mode shape, we set (𝑑2 =
1) and (𝑑3, 𝑑5, 𝑑6 = 0) into (41). Then, we obtain the 

coefficients and, thereafter, the real shape functions of 

the second mode are as follows: 

 

By definition (𝛽𝐿 = 𝛼) we have: 

 

 

(42) 

By placing the coefficients obtained from the above 

relation into the real shape function, “Eq. (35)”, the real 

shape function of the second mode is created as follows. 

 

 

(43) 

 
Using the McLaurin expansion as well as the usual mathematical simplification, the coefficients of the 

second mode shape function are obtained as follows: 

 

 

 
   

(44) 

 

 

The rest of the real shape functions are obtained as above. 

 

 

3.4. Formation of Real Mass and Stiffness Matrices 

of Bernoulli Beam 

As shown in in the preceding section, the real shape 

functions depend on the natural frequency value of each 

element (𝛼 and 𝛽). Therefore, the mass and stiffness 

matrices of each element vary according to the natural 

frequency value of that element, and to obtain real and 

total mass and stiffness matrices of a frame or structure, 
one must obtain the mass and stiffness matrices of each 

assembled element.
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The real mass matrix using “Eq. (8)” is: 

 

 

(45) 

 

 

The real stiffness matrix using “Eq. (14)” is: 

 

 

(46) 

 

 

4 CASE STUDIES ON THE ACCURACY OF THE 

NATURAL FREQUENCY VALUE OBTAINED USING 

CLASSICAL AND REAL MASS AND STIFFNESS 

MATRICES 

In this section, we obtain simple beam natural frequency 

with eigenvalue analysis for different support conditions 

with classical and real mass and stiffness matrices. To 

do this, we first obtain initial frequency from classical 

mass and stiffness matrices by eigenvalue analysis and 

compare it to the exact frequency. Then, we make the 

shape functions and the real mass and stiffness matrices 

using the initial frequency, and obtain the frequency of 

the real shape functions by eigenvalue analysis, and 

accurately compare this with the exact frequency and 

frequency values obtained from classical shape 

functions. The MATHCAD 2000 software was used for 

the calculations. 

a. Simply- Supported beam  

In the following relationship the exact value of the 

natural frequency of the first mode for this beam is 

shown, which is obtained from the characteristic 

Equation method [22]. 

 

 

(47) 

 

The simply-supported beam has three degrees of 

freedom. (“Fig. 3”) 

 

 
Fig. 3 The degree of freedom of simply supported beam. 

 

We obtain the mass and stiffness matrices of this beam 

by forming the MCM and transfer matrices, and by pre-

multiplying and post-multiplying the T matrix by the 

classical mass and stiffness matrices. MCM and transfer 

matrices are formed for simply-supported beam below. 
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(48) 

 

Classic mass matrix of simply- supported beam: 

 

 

(49) 

Classic stiffness matrix of simply- supported beam: 

 

 

(50) 

Eigenvalue analysis: 

   

(51) 

 

 

(52) 

 

We obtained the eigenvalues for this beam using the 

classical matrices above. The first quantity in “Eq. (52)” 

relates to the degree of axial freedom that we do not 

consider. So, our second quantity in this matrix is the 

first eigenvalue and it is the main mode. 

By extracting the square root of the eigenvalue, we 

arrive at the natural frequency. Comparing the exact 

frequency value of “Eq. (47)” and the root of the “Eq. 

(52)” below, we obtain the value of the frequency error 

obtained by the classical method. 

 

 

(53) 

 

Percentage of frequency error of the main mode by the 

classical method compared to the exact value (47): 

 

 

   (54) 

 

Now, using the real mass and stiffness matrix (45) and 

(46) and like the method we used to obtain the classic 

system matrix mode above, we obtain the real mass and 

stiffness matrices of this beam. The value of 𝛼, to apply 

to real shape functions, and the real mass and stiffness 

matrix for the beam mentioned above is obtained by the 

following relations: 

 

We had  and . 

 

Real mass matrix of simply- supported beam using the 

real mass matrix (45): 
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(58) 

 

Real stiffness matrix of simply- supported beam using 

the real stiffness matrix (46): 
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The eigenvalues are obtained by “Eq. (50)”: 
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(60) 

 

We obtained the eigenvalues for this beam using the real 

matrices above. The first quantity in “Eq. (60)” relates 

to the degree of axial freedom that we do not consider. 

So, our second quantity in this matrix is the first 

eigenvalue and it is the main mode.  

Natural frequency of the main mode of beam using the 

real mass and stiffness matrices: 
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(61) 

 

Comparing the frequency value obtained, using the real 

shape functions above, with the exact value of the 

natural frequency of this beam, that is, “Eq. (47)” the 

percentage of frequency error of the main mode is 

obtained.  
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(62) 

b. Clamped (Fixed - Ended) Beam 
The only difference for this beam is that it cannot be 

solved by considering it as an element because it lacks 

any degree of freedom; therefore, as shown in “Fig. 4”, 

we divide this beam in two equal parts 𝐿 2⁄  in length. 
Now, each part has three degrees of freedom. So, we 

have a transfer, mass and stiffness matrices, for each part 

of the beam. In order to obtain the mass and stiffness 

matrices of the whole beam in classical and real state, 

we must assemble the mass and stiffness matrices 

obtained from the two parts of the beam that were 

formed using the transfer matrix of each part. 

 

 
Fig. 4 The degree of freedom of fixed - ended beam. 

 
For the remaining steps in case study (b), we follow the 

same procedure as in case study (a). 

In the following, the exact value relationship is shown 

for the natural frequency of the main mode of this beam, 

which is obtained from the characteristic Equation 

method [22]. 
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MCM and transfers matrices for this beam for each part 

of the beam the length of 𝐿 2⁄ : 
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classic mass matrix: 
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Classic stiffness matrix of fixed-ended beam: 
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 
 
  
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(66) 

 

By Eigenvalue analysis: 
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 4

 4
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.
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6720
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m L
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m L
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m L



 
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(67) 

4
516.92 22.736

main mode (F-F)classic 4( )

EI EI

mLm L
  


 

 

Percentage of frequency error of the main mode from the 

value obtained by the classic method (67) compared to 

the exact value (63):  
 

Classic(F-F)

22.736 22.373
1.621%

22.373
e


 

 
(68) 

 

The value of  to put in matrices (45) and (46) and the 

real mass and stiffness formation matrices of this beam 

are obtained as described in case (a). 

By putting the exact frequency value of the “Eq. (63)” 

into the “Eq. (55)” the value of 𝛼 is 4.77. Only half of 

the beam was considered in this case, thus, the value of 

𝛼 is: 

4.77
2.38

2
  

 
 

By pre-multiplying and post-multiplying, the T matrices 

(64) by the real mass and stiffness matrices, we obtain 

the mass and stiffness matrices of this beam. Real mass 

and stiffness matrices of fixed-fixed beam: 
 

2

3
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(69) 

  

3

18

2
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2

Assembled (Real, F-F)
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(70) 

By Eigenvalue analysis: 
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(71) 

 

Percentage of frequency error of the main mode from the 

value obtained by the real method (71) compared to the 

exact value (63): 
 

Real(F-F)

22.374 22.373
.002%

22.373
e


 

 
(72) 

5 FINDINGS AND DISCUSSION 

As observed, the coefficients and real shape functions, 

and consequently, the real mass and real stiffness 

matrices are obtained by solving the beam motion 

Equation. It is shown that the real shape functions are 

very different from the classic shape functions, so the 

mass and stiffness matrices obtained from them are also 

different. As shown in “Figs. 7 and 8”, the difference 

between classical and real shape functions is that the real 

shape functions are dependent on the element natural 

frequency (𝛼 and 𝛽) addition to the geometrical 

properties. In this paper, the beam element is considered 

and case studies are performed on two simple beams 

with different support conditions.  
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In both case studies, it was found that the accuracy of the 

natural frequency obtained using real shape functions is 

much higher than that of the natural frequency obtained 

using classical shape functions (“Table 1”). So, with this 

achievement we can obtain more accurate responses, 

designs, analyses, and ultimately, better structural 

implementation against natural and human hazards by 

using more accurate natural frequencies in the dynamic 

analysis. 

 
Table 1 Comparison of natural frequency values obtained by classical and real shape functions with exact values for two case 

studies 

Case 

Exact value of  

natural frequency 

[21] 

(Main mode) 

Natural frequency 

value by the 

classical method 

(Main mode) 

Frequency 

error 

percentage by 

classical 

method 

Natural frequency 

value by the real 

shape functions 

(Main mode) 

 

Frequency 

error 

percentage by 

real shape 

functions 

(Main mode) 

a. Simply- 

Supported 

beam 

2.
4.

EI

m L


 

10.954.
4

EI

mL  

10.987%  
9.932.

4

EI

mL  
0.632%  

b. Fixed- 

Fixed beam 
22.373.

4.

EI

m L  
4

22.74
EI

mL  
1.621%  4

22.374
EI

mL  

.002%  

 

 

In “Table 1”, for the two beams studied, the exact natural 

frequency value is compared with the natural 

frequencies obtained from the classical and real methods 

in the main mode. Also, the table presents the error 

values of the two methods. 

 

 
Fig. 5 Frequency error percentage by classical method 

(main mode). 
 

 
Fig. 6 Frequency error percentage by real shape functions 

(main mode). 

 

 

Figures 5 and 6 show a noticeable reduction in the 

percentage of natural frequency error obtained by the 

two beams studied using the exact shape functions. 

Figures 7 and 8 present the dependence of the exact 

shape functions on the natural frequency of the elements. 

Overall, the higher the natural frequency of an element, 

the greater the difference between the exact and classical 

shape functions will be. 

 

 
Fig. 7 Comparison of  the classic and real shape functions 

for the second mode with values (𝜶 = 𝜷𝑳 = 𝟏, 𝟐, 𝜷 =

√√𝒎 𝑬𝑰⁄ 𝝎), (At a value of 𝜶 = 𝟏, the real shape function is 

located exactly on the classic shape function) -scaled length. 
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Fig. 8 Comparison of real shape functions for the second 

mode with different values of 𝜶 that depend on the natural 

frequency (𝜶 = 𝜷𝑳, 𝜷 = √√𝒎 𝑬𝑰⁄ 𝝎)-scaled length. 

6 CONCLUSIONS 

1- As shown for the second mode shape functions (42) 

and (43), the coefficients of the real shape functions, and 

consequently, the real shape functions, become 

harmonic and hyperbolic. In contrast, the coefficients of 

the classical shape functions are simple. 

2- Since the real shape functions depend on the natural 

frequency value of the element, the real mass and the real 

stiffness matrix of each element are also dependent on 

the element frequency. Therefore, to form a real mass 

and stiffness matrix of a total frame or structure, it is 

necessary to separately obtain each element’s mass and 

stiffness matrices and then assemble them. 

3- From the case studies of two simple beams in Section 

4, we conclude that the main mode frequency error 

obtained by the real shape functions is approximately 

0% (“Table 1, Figs. 5 and 6”). 

4- The frequency errors obtained by the classical method 

increase in elements with a higher natural frequency. 
5- According to “Table 1”, the frequency error 

percentage obtained using the real shape functions in the 

first case study is about 17 times lower than that obtained 

by the classical method. In the second case study, the 

frequency error percentage obtained using real shape 

functions is about 800 times lower than that obtained by 

the classical method. 
6- According to “Table 1”, the accuracy of the frequency 

value obtained by the real shape functions is high. As 

can be seen from this table, the case studies can achieve 

relatively accurate natural frequency by obtaining the 

actual shape functions of each element. 

7- As can be seen, the real shape functions are seventh-

degree. Since we have four boundary conditions, the 

remaining additional degrees are adjusted and satisfied 

according to the natural frequency of the system and the 

Bernoulli beam motion Equations (“Eq. 44”). For 

elements with a natural frequency close to 0, since β 

tends to 0 and consequently α also tends to 0, the real 

shape functions will be the same as the classical shape 

functions, which means that the shape function the 

actual depends on the frequency value (“Figs. 7 and 8”). 
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