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Abstract: Due to the variable stiffness through their length, their resistance against 
buckling, damping characteristics due to the friction between their chains, and their 
small solid length, volute springs are widely used in applications where other 
mechanisms cannot be employed to provide variable spring stiffness. Meanwhile, 
the complexities of equations, governing their dramatic non-linear behavior caused 
the designers to use experimental equations, as well as some simplifications. 
Therefore, no research has been reported yet that aims to simultaneously optimize 
the evaluation criteria of these springs (i.e. their weight and energy conservation 
capacity) considering their strength, stiffness and natural frequency. In this article 
providing the governing equations for mechanical behaviors of volute springs, the 
problem of optimized design for this type of springs are addressed as an optimization 
problem with its constraints, taking into account the aforementioned goals and 
considerations. To find a set of Pareto front, an improved version of a multi-
objective genetic algorithm is employed, performance of which has been improved, 
adding a migration operator to a classical NSGA II algorithm. To indicate the 
proposed method efficiency, a volute spring used in a suspension system of a 
military motorcar was modeled, and its design was optimized. The results show that 
the functional performance of the designed volute spring, such as minimizing the 
spring mass and maximizing the stored energy while maintaining design limitations 
such as dimensions, strength and critical frequency, has been significantly improved. 
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1 INTRODUCTION 

Volute springs were first widely used in an industrial 

scale, in suspension systems of lightweight tanks during 

the world war II [1]. However, their application was 

changed after the war, and they were widely used in 

various other applications [2]. This kind of springs has 

considerable benefits, including low-volume (in the 

solid-state), ease of manufacturing, damping 

characteristics due to the friction between the chains, 

lateral stability, as well as variable spring stiffness (the 

non-linear nature of the force-displacement graph) [3]. 

with the ever-increasing demand for building the future 

generation suspension systems that can use volute 

springs that have less mass and more stored energy, 
there is an urgent need for developing volute springs that 

respect the systems’ constraints. However, less mass and 

stored energy are more than the minimum requirements 

of each filter for suspension and control purposes, and it 

is desirable to design a spring that meets the desired 

performance characteristics of the system. 
 In recent years, a lot of researches addressed the design, 

as well as the improvement of volute springs’ design 

methods [4-6]. As well, some studies considered the 

residual stresses and fatigue strength in these springs [7]. 

Furthermore, some practitioners considered novel 

applications of these springs, including the transmission 

of the command system mechanical signals to the 

Electronic Control Unit (ECU) in cars [8-9]. 

In [10], the performance of three nonlinear compliant 

orthoplanar springs, namely, bi-leg, quad-leg and pent-

leg designs are compared to study the vibration mode 

interaction effect for widening the operational 

bandwidth of piezoelectric vibration energy harvester. 

All the designs have three or more vibration modes 

below 150 Hz with the addition of multiple masses. 

On the other hand, some studies have been done to 

design springs having a similar function to volute 

springs, lacking some of their drawbacks [11-12]. 

Despite the importance of optimal volute spring design, 

spring design with increasing stiffness or spring design 

with lesser mass are examined separately in a review of 

the subject literature. This gap between these issues has 

motivated multi-objective optimization with 

performance assurance. 

In this paper, the specifications of a volute spring used 

in a military motorcar have been considered as a case 

study [1]. The range of the spring design parameters is 

also considered according to a range of parameters for 

the same spring so that the comparison between the 

optimized spring parameters and the original spring 

could be significant. The purpose of optimization is to 

find a spring that meets the primary design requirements 

and meanwhile, characterizing a lower mass and a more 

stored energy compared to the original spring. Reducing 

the mass and increasing the amount of stored energy in 

the spring (which is usually associated with an increase 

in the stiffness), the spring critical frequency also 

increases. In this article, by adding the migration 

operator to the NSGA (II) algorithm, the set of non-

defeating Parto responses will be improved. 

2 VOLUTE SPRING MODELING 

A number of equations and figures provided in this 

section, were borrowed from reference [3] which are 

mentioned here by citation. Given the spring geometry 

in “Fig. 1ˮ, the spring coil radius follows: 
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Where, θ is the coil angle, which is measured relative to 

the external radius. n is the number of the spring active 

chains. Β is obtained as follows: 
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Fig. 1 Lateral cross-section and transverse cross-section of 

a volute spring. 

 

Where, ro and ri are the external and internal radiuses, 

respectively “Fig. 1ˮ. To calculate the stress and the 

elongation along a volute spring in practical application, 

we assume each of its elements as a usual spring having 

a rectangular cross-section and a radius of the same 
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element. Thereby, in this method, the friction between 

chains are ignored. Exceeding the load from a certain 

value, called the initial bottoming load, the external 

chains are engaged with the surface which the spring sits 

on and causes the spring to have a more stiffness. So, the 

volute spring non-linear characteristic graph tends to 

return to the bottom chains’ bottoming phenomena.  

 

 

Fig. 2 Height of the spring blade vs. length along coil, in 3 

modes: zero loading, a load lower than the initial bottoming 

load, and a load exceeding initial bottoming load [3]. 

 

An approximation for the elongation in each spring 

active chain having a rectangular cross-section, where 

the longer edge is parallel to the spring axis, and the 

cross-section length to width ratio is more than 2.7, is as 

follows [3]:  
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Where: 

P = the exerted force to the spring,  

h = the sheet thickness, 

b = the sheet width,  

G = the metal stiffness moduli, 

R = the spring coil radius 

 

So, for an element of a volute spring having a small 

angle dθ, the differential change in the spring elongation 

is obtained as follows: 
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Where, r is the spring radius, which is a function of angle 

θ. According to “Fig. 2ˮ, during the bottoming 

phenomena which is initiated from the spring external 

radius, the slope dδ/ds should be equal to the coil angle 

α. As well, since the coil angle is small in volute springs, 

we have: 
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Assuming r = ro in “Eq. (6)ˮ, the initial bottoming load, 

P1 is obtained as follows: 
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The spring elongation due to the loading is investigated 

in two various conditions: first, in a condition where the 

load is lower than the bottoming load. The second 

condition is where the load is higher than the bottoming 

load. 

 

 

Fig. 3 Spring characteristic graph. The graph shows the 

spring elongation vs. load, qualitatively. 

 

In case, where P is lower than the bottoming load, we 

have: 
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Integrating “Eq. (7)ˮ, between 0 and 2πn, yields: 
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Where, P1 is the initial bottoming load. Thereby, the 

spring elongation at the initial bottoming is obtained as: 

 

(9)                                                           
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If the spring force is higher than the initial bottoming 

load, can one consider the resulting elongation in the 

spring in two parts: the compression δ’ that is related to 

those chains, subjected to bottoming, i.e. AC section in 

“Fig. 2ˮ.  
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The other part is δ” that is related to the spring free part, 

subjected to bottoming, that is CD section in “Fig. 2ˮ. 

Assuming that the spring chains are subjected to 

bottoming with an angle of θ’ and a radius of r’, and 

given r=r’, we have: 
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Where, c’=2r’/h is the spring index for r=r’. Then, θ’ is 

obtained as follows: 
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Where, co is the spring index for r=ro. Integrating as 

follows, can one find δ’: 
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To obtain δ”, similar equations can be applied. 

Integrating “Eq. (8)ˮ between θ=θ’ and θ=2πn, we have: 
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Therefore, the total spring elongation is obtained as 

follows: 
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(14) 

The force P2 under which all spring chains are subjected 

to bottoming and the spring reaches its solid length, is 

calculated as follows: 
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When r=ro, all chains are subjected to bottoming. So, 

one can find the final bottoming load as follows: 
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The final elongation δ2 due to the force P2 can be 

calculated, assuming θ’=2πn and then integrating: 
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The resulted value is in fact the difference between the 

spring free length and its solid length. Rewriting this 

equation in terms of α, we have: 

 

(18)                                             

2

2 (1 )
2

2 (1 )
2

o

o

nr

H b

nr










= =

−

−

−

 

 

Stored energy in the spring: the energy stored in the 

spring is equal to the area under the force-displacement 

graph. In the region where the spring elastic behavior is 

linear, we simply have: 
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Where, E0-1 is the energy stored in the spring from initial 

loading until bottoming initiation (linear region on the 

graph). In the non-linear region, that is from bottoming 

initiation until the spring reaches its solid length, the 

equation governing the spring force and its elongation is 

as follows: 
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Given “Eq. (20)ˮ and calculation of the following 

integral, E1-2, that is the energy stored in the spring from 

bottoming initiation until it reaches its solid length is 

obtained. 
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Summing up E0-1 and E1-2, the energy stored in the 

spring is calculated. The other objective function is the 

spring’s mass, which can be simply obtained according 

to the spring’s geometry, as follows: 
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Stress: to calculate stresses in a volute spring, the same 

equations as the coil springs having a rectangular cross-

section are used.  

When the spring force is lower than the initial bottoming 

load, the maximum stress occurs in r=ro. In such a case, 

an approximation is as follows [3]: 
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As well, when the spring force exceeds the initial 

bottoming load, the maximum shear stress occurs in r=r’. 

Therefore, replacing co by c’ and using the previous 

equation, we have: 
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According to “Eq. (16)ˮ: 
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If all spring chains are subjected to the bottoming, that 

is the spring reaches its solid length, then P=P2. Thus, 

the maximum shear stress is obtained at the spring final 

bottoming: 
 

(26)                                            
23 ( 1)

0.63
2 (1 )

iP c

h
hb

b


+

=

−

 

 
Where, ci is the spring index at r=ri. Putting P2 and P1 in 

“Eq. (26)ˮ, we have: 
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3 OPTIMIZATION METHOD 

Due to the broad dimensions of search space, multi-

modal nature of the objective function, as well as 

multiple local optimums in the search space, the 

classical optimization algorithms are seriously prone to 

be entrapped in local optimums. Therefore, it is usually 

preferred to employ population optimization rather than 

classical methods, because they can find optimal 

region(s) for functions with a considerable speed and can 

approach absolute optimum(s), even in the case of non-

convex functions. These algorithms use a set of 

monitoring points in their process and do not need any 

objective function’s derivative [13-14]. In this study, 

adding an immigration operator to other common 

operators in genetic algorithm (i.e. selection, crossing-

over, and mutation), the soft mean of the utopia 

compromise point was improved up to 90% after 100 

execution efforts of the optimization code, based on the 

main and improved algorithms of NSGA II. 

 
 

Table 1 A subset of Pareto front set as a result of optimization. The basic spring specifications are highlighted blue 

b (mm) h ri 

(mm) 

n α 

(rad) 

E 

(J) 

M 

(kg) 

τ  (Mpa) 

50 4 50 5 0.025 14.889 2.96 175 

62.5 4 49 4 0.026 15.436 2.81 176.3 

59.5 4 51 4 0.027 15.410 2.77 176.3 

58 4 52 4 0.027 15.344 2.75 176.4 

56.5 4 53 4 0.028 15.233 2.72 176.2 

62.5 4 53 3.5 0.028 15.088 2.59 176.5 

55.5 4 58 3.5 0.031 14.751 2.49 176.1 

62.5 4 58 3 0.031 14.481 2.37 175.8 

61.5 4 59 3 0.031 14.326 2.37 174.6 

 

 

4 RESULTS 

A set of springs to be replaced by the basic spring, based 

on the conditions mentioned in the problem description, 

is summarized in “Table 1ˮ. As can be seen, the value 

for the mass objective function, as well as the maximum 

shear stress are located in a range similar to the range of 

corresponding one in basic springs. In “Table 1ˮ, springs 

1-5 have lower mass value and a more amount of stored 

energy compared to the basic spring. The mass and the 

stored energy for other springs in the Pareto front are 

more different from their corresponding values in the 

basic spring. However, they offer the decision-maker a 

more extensive range to select from, in his/her design 

effort.  
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Fig. 4 (a) The average amount of the stored energy for a 

single generation’s members as the generations advance 

(number of members in a single generation = 100). As can be 

seen, this objective function increases as the generations 

advance, and (b): the average value of mass for a single 

generation’s members as the generations advance (number of 

members in a single generation = 100). As can be seen, this 

objective function decreases as the generations advance. 

 
Fig. 5 The built Pareto front at the end of optimization 

(the number of members in a single generation = 100). Since 

the energy quantity is maximized, the inverse for this quantity 

is shown on the vertical axis of this graph. 

 

“Table 1ˮ lists three samples for these members. Figures 

4-6, indicate the average stored energy in springs (all 

members of a single generation), the average of the mass 

objective function, and the final Pareto front, 

respectively. As can be seen in these graphs, during the 

optimization process through various generations, the 

average value of mass decreases and the average amount 

of stored energy increases. 

5 CONCLUSION 

Providing analytical equations for designing volute 

springs in this paper, the design of these springs was 

addressed as an optimization problem with its 

constraints, in which the spring's mass and the maximum 

stored energy are considered as objectives to be 

optimized, and other design requirements, that is its 

strength and the critical frequency were taken into 

account as constraints. To find a set of Pareto optimal 

solutions, an improved NSGA II algorithm was 

employed, performance of which was improved adding 

the genetic immigration operator. This new operator can 

effectively prevent the algorithm to entrap in local 

optimums. To demonstrate the efficiency of the 

proposed approach, the design of a volute spring 

employed in a military motorcar was investigated. 

Furthermore, generating a set of non-dominated 

solutions rather than a single solution, the proposed 

approach offers the designer to choose a suitable design 

based on other criteria, such as manufacturing cost. 
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