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1 INTRODUCTION 

Surface roughness of machined parts plays an extremely 

important role in manufacturing industry and is a crucial 

factor in the assessment of the machining performance. A 

reasonably high surface quality is industrially demanded 

for better fatigue strength, higher corrosion resistant and 

improved tribological properties. However, excessively 

high surface quality results more production cost [1]. One 

of the most applicable finishing processes in industry is 

hard turning. Hard turning is a cost-effective alternative to 

conventional finishing processes such as grinding. 

Reduction of manufacturing costs and time, comparable 

surface quality and elimination of environmentally 

harmful coolant are among influential factors that made 

hard turning an extremely preferred choice over grinding 

in many industrial applications [2]. One of the most 

challenging tasks that must be considered in hard turning 

is high wear rate of cutting tool. The wear of a cutting tool 

affects the surface quality of the finished product 

negatively [3].  

In traditional CNC machining systems, the cutting 

parameters are programmed offline and according to 

handbooks or part programmer’s experience. Therefore, in 

order to prevent any damage to cutting tool or work piece 

quality, the selected parameters are set extremely 

conservatively with no provisions for online adjustment. 

As a result, optimal production condition cannot be 

achieved. To ensure the effectiveness of machining 

process and decrease the cost of machining, selection of 

cutting parameters should be done in real-time and 

according to real condition of cutting tool. Therefore, an 

intelligent–based control system, which regulates cutting 

parameters based on sensory measurement in real-time to 

achieve optimal machining criteria is inevitably essential 

[4]. For that matter, adaptive control systems with the 

ability of online adjustment of cutting parameters in 

optimal fashion were proposed. 

Adaptive control systems are divided into the following 

groups: Geometric Adaptive Control (GAC), Adaptive 

Control with Constraints (ACC), and Adaptive Control 

with Optimization (ACO). GAC systems maintain 

dimensional accuracy of parts by varying machining 

parameters. The main purpose of ACC systems is to 

maximize any given output characteristics, such as cutting 

force, by adjusting cutting parameters. In ACO systems, 

the adaptive controller regulates the cutting parameters to 

optimize a previously defined performance index 

subjected to specified constraints [5]. A general overview 

of an ACO system is shown in “Fig. 1”. Generally, an 

ACO system is based on four interrelated sections that are 

explained as follows : 

I. Tool Wear Monitoring (TWM) unit: One of the most 

important characteristics of ACO systems is to regulate 

cutting parameters based on real condition of cutting tool. 

The main function of TWM unit is to provide the ACO 

system with online information about real state of cutting 

tool  . 

II. Estimation unit: This unit defines the process models 

which are used to predict output characteristics of 

machining process such as surface roughness and tool 

wear.  In recent years, intelligent techniques such as 

Artificial Neural Networks (ANN) and Genetic 

Programming (GP) are widely used in modeling of 

machining processes. These models are generally 

developed from offline experiments and their inputs are 

cutting parameters such as cutting speed, feed rate and 

depth of cut [6]. 

III. Optimization unit: The main function of this unit is to 

find the optimum cutting parameters on the basis of 

previously defined performance index and specified 

constraints. Recently, numerous classical and evolutionary 

optimization algorithms have been studied in machining 

optimization problems and the successful application of 

some evolutionary algorithms such as Particle Swarm 

Optimization (PSO) have been reported. In addition to 

high accuracy, PSO offers acceptable convergence speed 

in finding optimum parameters [7]. 

IV. Interface unit: This unit takes the function of 

transmission of optimum cutting parameters to numerical 

control of machine tool. The transmission of selected 

parameters should be performed in nearly real-time [8] . 

As shown in “Fig. 1”, in each stage of optimization stage, 

tool wear value is predicted by TWM unit based on signals 

obtained from sensors. Estimation unit calculates 

machining output characteristics such as tool wear and 

surface roughness using intelligent process models and 

tool wear information. Optimization unit, on the basis of 

performance index and constraints and using intelligent 

models, finds optimum cutting parameters. Then, interface 

unit transmits the optimum cutting parameters to machine 

tool to be used in next step of machining operation [9] . 

In the field of using ACO systems in machining operations 

some research works have been reported. Chang et al. 

studied an adaptive controller in milling operation. They 

used two neural networks for modeling the machining 

process and finding optimal value for feed rate [10]. In a 

similar research, Ko and Cho adaptively optimized 

Material Removal Rate (MRR) in milling operation. They 

also used two networks for modeling of tool wear and 

finding optimal cutting parameters [11]. Ko and Kim used 

iteratively learning neural networks and genetic algorithm 

to simultaneous optimization of removal rate in milling 

process. Some constraints was imposed on surface 

integrity of machined parts [12]. Liu and Wang proposed 

an ACO system in milling process to improve the stability 

of machine tool and to enhance the effectiveness of 

machining operation. For this purpose, they considered the 

cutting force as constraint and used neural network to find 
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optimum cutting parameters. Proposed method increased 

the efficiency of operation approximately by 15% 

compared to traditional optimization systems [13]. Ivester 

and Heigel considered the effect of managerial decisions 

and measurement uncertainties in adaptive cost 

optimization of turning operation [14]. 
 

 

 
Fig. 1 Adaptive control with optimization scheme [4]. 

 

Abellan et al. studied an ACO methodology in 

optimization of face milling operation. They defined a 

desirability function based on tool life, surface roughness 

and MRR. They used three intelligent models to predict 

tool wear, surface quality and tool life. The proposed 

technique improved the desirability function 10% 

compared to traditional optimization techniques [15]. 

Silva et al. investigated an ACO technique to adaptive 

optimization of production cost in hard milling operation. 

They utilized a dynamometer for online TWM during 

milling process. The results showed that not only the 

production cost reduced about 13% compared to 

traditional optimization method, but also parts with 

acceptable surface quality was produced [4]. 

Chandrasekaran et al. studied fuzzy set-based strategy to 

real-time optimization in turning process. In proposed 

method, flank wear was measured off-line in each 

machining pass. Based on measured wear values and 

defined production cost, new cutting parameters were 

calculated [16]. Coppel et al. proposed an ACO system for 

optimization of micro milling operation subjected to 

permissible surface quality. They used dynamometer for 

online wear monitoring of cutting tool. They also 

investigated the efficiency of various evolutionary 

optimization algorithms in their research and proposed 

PSO algorithm for its accuracy and convergence speed [8]. 

Despite previously performed wide research in the field of 

application of ACO systems in machining operations, no 

comprehensive work has been reported about the industrial 

application of ACO techniques in turning operations 

investigating the impact of tool wear on surface roughness. 

This shortage is more sensible in hard turning operations 

that are being used widely in manufacturing industry. On 

the other hand, referring to the discussed literature, the 

majority of them used production cost or MRR as 

performance index, while the uniformity of surface 

roughness is another important index of machining, which 

must be considered thoroughly. Another dominant issue of 
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these commonly performed researches, which makes them 

economically unjustifiable, is the use of expensive sensory 

system in TWM unit. Due to the drawbacks of performed 

investigations, there is a great need to devise a low-cost 

and efficient ACO strategy in hard turning considering the 

uniformity of machined surface roughness. The present 

research proposed an online ACO method for production 

of parts with uniform surface roughness in hard turning of 

AISI D2 based on real condition of cutting tool. The 

constraints of optimization were limitations on surface 

quality and cutting parameters. Tool flank wear is 

predicted using wavelet packet transform of tool vibration 

signals and neural network. The proposed method 

regulates feed rate during turning process to produce parts 

with uniform surface roughness . 

The paper is organized as follows: Section 2 explains the 

proposed ACO procedure. Experimental setup is presented 

in section 3. In section 4, results of experiments are 

described and discussed, and section 5 presents 

conclusions of the research. 

2 PROPOSED METHODOLOGY 

2.1. Modeling and Optimization Techniques 

In order to predict surface roughness and tool flank wear, 

predictive models should be used in estimation unit. For 

this purpose, two intelligent techniques were selected 

included GP for predicting tool flank wear and ANN for 

estimating surface roughness. Moreover, the 

optimization of process to achieve uniform surface 

roughness was performed using PSO algorithm. 

2.1.1. Genetic programming 

Genetic Programming (GP) is an evolutionary 

computational method that operates on a set of numbers 

and functions to optimize complicated problems using 

computer programs consisting of various functions and 

terminals [17]. The process of genetic programming 

starts with creation of initial population or members. 

Then, by means of genetic operators such as crossover 

and mutation, new population is generated and takes the 

place of current population. The fitness value of created 

population is assessed to find the probable results that 

solve the problem with minimum error [18]. In this 

research, to predict the value of flank wear in various 

times of machining, a genetic equation was developed 

according to “Eq. 1”.  

 

𝑉𝐵𝑖+1 = 𝐹(𝑣, 𝑓, ∆𝑡, 𝑉𝐵𝑖)                                               (1) 

 

In this equation, v is cutting speed and f is feed rate. VBi 

and VBi+1 are current tool flank wear and tool flank wear 

after ∆t seconds of machining respectively. The 

parameters used to perform genetic programming are 

given in “Table 1ˮ. 

Table 1 GP parameters 

Population size 30 

Max. number of nods 250 

Crossover rate 0.1 

Mutation rate 0.044 

Selection method Tournament 

Stopping criteria Maximum generation of 2000 

Function set +, −,×, 1 𝑥⁄ , 𝑥2, 𝑥3, 𝑒𝑥𝑝 

2.1.2. Artificial neural networks 

Biologically inspired from human neural system, ANNs 

can learn from experimentally obtained data and then 

extract a reliable relationship between inputs and outputs 

[19]. ANNs accurately model the behavior of the system. 

As powerful universal approximating technique, they 

have the ability of learning from given patterns and 

adaptation with existing condition of any system. ANN 

is composed of large number of simple elements 

(neurons) that have compact interrelations. The 

functionality of these relations is determined during 

learning process [20]. 

Two neural networks were trained in this research. The 

first one was trained to predict surface roughness of 

produced parts. This network was a 3-layer feed-forward 

network with 10 neurons in hidden layers that was 

trained by Levenberg-Marquardt algorithm. Its inputs 

were flank wear (VBi), cutting speed (v), and feed rate 

(f). The second network was implemented in online tool 

wear monitoring. Structurally similar to the first one, it 

has 3 layers with 10 neurons in hidden layers and was 

trained by Levenberg-Marquardt algorithm. Its inputs 

were cutting speed (v), feed rate (f) and the RMSs of 

wavelet coefficient of the appropriate signals extracted 

from tool vibrations. 

2.1.3. Particle swarm optimization 

Particle Swarm Optimization (PSO) is an optimization 

algorithm imitating the social behavior of fishes and 

birds in seeking for food. This algorithm has become one 

of the most widely used optimization algorithms because 

of flexibility in integrating with other algorithms to form 

a hybrid method, handling complex objective functions, 

easy implementation and programming routine, having 

few adjustable parameters and not being stuck in local 

minima. Similar to other evolutionary optimization 

techniques, PSO is a population-based search algorithm 

in which each particle stands for population and 

represents a probable solution [21]. Particles by 

changing their positions in search space try to find the 

optimum solution. Each particle has two factors: fitness 

and velocity. The fitness value of each particle can be 

calculated by an objective function, which assumed to 

be optimized. Velocity of each particle determines the 

direction of its movement. Each particle stores its best 



Int  J   Advanced Design and Manufacturing Technology, Vol. 13/ No. 2/ June – 2020                                            5 

 

© 2020 IAU, Majlesi Branch 
 

value achieved so far called pbest. Moreover, the best 

value, which is achieved by any other individual particle 

in the group, named gbest, is shared among all particles. 

Velocity is defined for any particle based on these two 

values according to “Eq. 2”. 

 

𝑉𝑖𝑑
(𝑡+1)

= 𝑤𝑉𝑖𝑑
(𝑡)

+ 𝑐1𝑟𝑎𝑛𝑑1(𝑝𝑏𝑒𝑠𝑡 𝑖𝑑
(𝑡)

− 𝑋𝑖𝑑
(𝑡)

) +

𝑐2𝑟𝑎𝑛𝑑2(𝑔𝑏𝑒𝑠𝑡 𝑖𝑑
(𝑡)

− 𝑋𝑖𝑑
(𝑡)

)                                            (2) 

 

Where, 𝑋𝑖𝑑
(𝑡)

 and 𝑉𝑖𝑑
(𝑡)

are the position and velocity of 

particle i respectively in d dimensional space. 𝑝𝑏𝑒𝑠𝑡 𝑖𝑑
(𝑡)

 

and 𝑔𝑏𝑒𝑠𝑡 𝑖𝑑
(𝑡)

 are best position of particle and best position 

of a member in population until generation t 

respectively. w is the inertia weight factor that controls 

the dynamic of movement of particles. rand1 and rand2 

are random variables changing in the range [0 1]. c1 and 

c2 are cognitive factor and social factor respectively. 

After calculating the velocity, the particles update their 

positions using the obtained velocity according to “Eq. 

3”.  

 

𝑋𝑖𝑑
(𝑡+1)

= 𝑋𝑖𝑑
(𝑡)

+ 𝑉𝑖𝑑
(𝑡−1)

                                                 (3) 

 

This process continues until the best solution or desired 

iteration is reached [22]. The parameters used for PSO 

implementation is given in “Table 2ˮ. 
 

Table 2 PSO parameters configuration 

Population size 15 

Range of inertia weight 0.45-0.85 

Cognitive factor 2 

Social factor 2 

Stopping criteria Maximum generation of 100 

2.2. Tool Wear Measurement Strategy 

Because of gradually increasing tool wear, the 

machining process has extremely changing nature. This 

leads to remarkable changes in cutting temperature, 

forces and other disturbances. These factors extremely 

influence the optimal cutting conditions. On the other 

hand, tool wear negatively affects the surface quality of 

machined parts. This issue is more critical in hard 

turning, which is assumed an economic and reliable 

alternative to other finishing processes. To predict the 

surface roughness of parts during machining process, 

having information about the condition of cutting tool is 

inevitable. Therefore, to optimize the performance of 

machining process, real state of cutting tool must be 

considered. For online assessment of tool wear value, 

wide varieties of techniques have been proposed. These 

techniques can be classified in two groups: direct and 

indirect methods. Flank wear in direct methods is 

measured directly by any loss in tool or change in tool 

geometry using radioactivity, optical sensors, electrical 

methods and other similar methods. These methods have 

high accuracy, but due to complex machining conditions 

and interruption of chips, coolants and other 

disturbances, using them in real industrial conditions is 

impossible to a certain extent. Indirect wear 

measurement techniques are based on calibration 

procedures. In other words, by using some sensory 

systems, correlated machining parameters such as 

vibration, cutting force, temperature, and acoustic 

emission with flank wear are measured. This method 

practically is more easier to perform though the accuracy 

is relatively low and amount of calculations is high 

compared to direct methods [23]. Among mentioned 

indirect methods, the use of vibration signals has 

received special popularity because of its accurate 

interpretation ability and fast data collection [24]. The 

main source of vibration in turning is the rubbing 

between chip and part against cutting tool. Pattern of 

resulted vibrations changes with tool wear increasing. 

Therefore, the value of tool wear can be measured by 

using vibrations. To record these vibration signals, an 

accelerometer as the sensing device is used [25]. 

In the present research, an online tool wear measuring 

system was developed using neural networks and 

wavelet packet transform of extracted vibration signals 

from cutting tool. Since the machining direction has 

more dominant signals than other  two directions, the 

vibration signals was collected in this direction by using 

an accelerometer fitted in tool holder [26]. Among the 

obtained features, the most correlated ones with flank 

wear were selected. Then, a neural network was trained 

to predict tool flank wear. Inputs of this network were 

cutting speed (v), feed rate (f), and RMSs of selected 

features. A schematic illustration of devised strategy for 

online tool wear measurement is demonstrated in “Fig. 

2”. 

 

 
Fig. 2 Schematic diagram of tool wear measurement 

strategy. 
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2.3. Optimization Procedure Description 

To achieve uniform surface roughness in hard turning, 

cutting parameters should be regulated online and based 

on real condition of cutting tool. The aim of proposed 

ACO is to keep the surface roughness as near as possible 

to maximum permissible surface roughness. Following 

constraints are placed on the cutting parameters and 

surface roughness: 

 

Performance index:       𝑅𝑎 ≤ 𝑅𝑎𝑚𝑎𝑥  

Constraints:                𝑣𝑚𝑖𝑛 ≤ 𝑣 ≤ 𝑣𝑚𝑎𝑥                     (4) 

                                      𝑓𝑚𝑖𝑛 ≤ 𝑓 ≤ 𝑓𝑚𝑎𝑥  

 

In which parameters are as defined and given in “Table 

3ˮ. 

 
Table 3 Constraints information 

Parameter Description Value 

minv Minimum cutting speed 40 m/min 

maxv Maximum cutting speed 80 m/min 

minf Minimum feed rate 0.02 mm/rev 

maxf Maximum feed rate 0.06 mm/rev 

maxRa permissible surface 

roughness 
0.2 , 0.4 μm 

 

The limitations on cutting parameters are mainly due to 

economic and organizational issues. Lower feed rates 

will improve the surface quality though negatively 

influence MRR. On the contrary, higher feed rates 

improve the MRR, but at the same time worsen surface 

quality of produced parts. Similar problems can be 

encountered when selecting cutting speed. The value of 

cutting speed has direct relationship with removal rate. 

Nevertheless, higher values for cutting speed 

remarkably intensify tool wear rate, which is not 

desirable. Therefore, the values for cutting speed and 

feed rate are limited to the specific range. The flow chart 

of proposed ACO strategy is demonstrated in “Fig. 3”. 

The proposed system starts with wear measuring unit. In 

this unit, vibration signals are conditioned and 

decomposed via wavelet packet transform. Among 

decomposed features, the features that have the most 

correlation with tool flank wear are detected and their 

RMSs are calculated. These values along with 

corresponding cutting parameters are fed to neural 

network, which has been learnt to estimate the value of 

flank wear. 

Based on calculated flank wear, optimization unit tries 

to find the optimum feed rate that results roughness as 

near as possible to specified surface roughness. A 

population composed of specified cutting speed and 

random feed rates are created as initial population in the 

optimization unit. Created population along with 

calculated tool flank wear is sent to estimation unit. In 

this unit, the value for tool flank wear and surface 

roughness for next ∆t seconds for each member of 

population is predicted using GP and ANN respectively. 

The predicted values in estimation unit, returned to 

optimization unit. To assure the quality of produced 

parts, the ACO system has to ensure that the work pieces 

with surface roughness higher than permissible value 

will not be produced. So, the members that result 

unacceptable surface roughness will be deleted from 

population. A member of population with maximum 

surface roughness is selected as the best member with 

optimum feed rate. Interface unit transmits the optimum 

cutting parameters to numerical control of machine tool 

to be used in next ∆t seconds of machining. This process 

continues until the maximum value of 0.3 mm be 

reached for tool flank wear. 

In order to demonstrate the efficiency of proposed 

methodology, a comparison should be made between the 

proposed method with traditional optimization method. 

For this purpose, operation cost and MRR of both 

methods would be compared. In order to have a more 

comprehensive investigation on performance of ACO in 

hard turning, two values for maximum permissible 

surface roughness were targeted: 0.2 μm and 0.4 μm. For 

traditional method, the same PSO algorithm and 

intelligent models would be applied to find optimum 

constant cutting speed and feed rate that result in the 

minimum cost along with maximum targeted surface 

roughness. The optimum constant cutting speed would 

be used as specified cutting speed in ACO system. 

Operation cost can be expressed as equation 5 [27]:  

 

𝐶𝑝 = 𝑇𝑝(
𝐶𝑡

𝑇
+ 𝐶1 + 𝐶0)                                                (5) 

 

In which T is tool life, and Ct, C1 and C0 are tool cost, 

labour cost and overhead cost respectively. Tp is 

production rate, and can be defined as equation 6 [27]: 

 

𝑇𝑝 = 𝑇𝑠 + 𝑉 (
1+𝑇𝑐 𝑇⁄

𝑀𝑅𝑅
) + 𝑇𝑖                                          (6) 

 

V is volume of the removed material and Ts, Tc and Ti are 

tool set-up time, tool change time and tool idle time 

respectively. The value for Ct, C1, C0, Ts, Tc and Ti are 

given in “Table 4ˮ [27]. 

 
Table 4 Value of cutting coefficients 

Parameter Value 

Ct 13.55 $ 

C1 0.31 $/min 

C0 0.31 $/min 

Ts 0.12 min 

Tc 0.26 min 

Ti 0.04 min 
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Fig. 3 The flow chart of proposed ACO system. 

 

 

3 EXPERIMENTAL SETUP 

The instrumentation setup for proposed ACO 

methodology is shown in “Fig. 4”. The setup consisted 

of lathe and tool, material, tool wear measuring 

apparatus and interface device. The machining condition 

along with selected material and machine tool 

specifications are listed in “Table 5ˮ. For each cutting 

condition, consisted of a cutting speed and feed rate, 12 

tests in various times were performed to study the effect 

of tool wear and cutting parameters on extracted 

vibration signals. Therefore, totally 108 tests were 

carried on until end of tool life. Furthermore, some extra 

machining tests in various cutting conditions were tested 

to validate the accuracy and reliability of trained 

intelligent models. 

 
Table 5 Experimental condition and instrumentation 

Work material AISI D2 with hardness 46 HRC 

Machine tool EMCOTURN CNC lathe machine 

Tool insert TNMG 220408 (grade NC3020, TiN 

coated) 
Lubrication Dry 

Cutting speed 40, 60 and 80 m/min 

Feed rate 0.02, 0.04 and 0.06 mm/rev 

Depth of cut 1 mm 
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Two statistical measures were used to fitness evaluation 

of intelligent models: coefficient of determination, R2, 

and root mean square error, RMSE. A light source 

microscope with magnification of 36x and image 

processing software were utilized to measure the value 

of tool flank wear. To measure the surface roughness of 

machined parts, a Taylor Hobson S100 surface 

profilometer was employed.  

A CTC AC102 accelerometer with sensitivity of 

100±5% mV/g was mounted on holder as near as 

possible to insert to capture vibration signals. The 

measuring frequency range of accelerometer was 1 Hz 

to 5 kHz. A signal conditioner, which was powered by a 

10 V supplier, was used to amplify signals. To transmit 

the vibration signals from conditioner to MATLAB 

software, a NI USB DAQ 6008 data acquisition card 

with sampling rate 10 kHz was utilized.  

 

 
Fig. 4 Experimental set-up used in the present study. 

 

 

Tool wear measuring and optimization process was 

performed in ∆t=10 seconds intervals. After finishing 

optimization process in each step, optimum cutting 

parameters were transmitted to numerical control of 

CNC machine tool via the NI USB DAQ 6008. 

4 RESULTS AND DISCUSSION 

4.1. Intelligent Modeling 

Using primary “Eq. 1”, a genetic equation was 

developed to predict tool flank wear in next ∆t seconds 

of machining process based on performed experiments. 

The equation is as follows: 

 

𝑉𝐵𝑖+1 = 𝑉𝐵𝑖 + 𝑒(𝑣2+𝑣+(𝑓−7.004)×7.004×𝑓) + [
(𝑒𝑣−∆𝑡)

6.558
×

(2 × 𝑣 − 6.9)] + (𝑣 × ∆𝑡)4 × (𝑓 + 5.3753)             (7) 

 

In which, VBi is current tool flank wear and VBi+1 is 

predicted tool flank wear after ∆t seconds of machining 

with corresponding cutting parameters v and f. Having 

the value of predicted flank wear (VBi+1), the value for 

surface roughness in next ∆t seconds (Rai+1) can be 

predicted using previously trained neural network. The 

results of validation tests for both GP and ANN models 

are given in “Table 6ˮ.  

The fitness values of GP and ANN models for both the 

training and validation tests are given in “Table 7ˮ. The 

results indicate that the trained intelligent models have 

sufficiently high accuracy to be used in estimation unit 

of an ACO system reliably. 

 

 

 
 

Table 6 Experimental validation tests 

 
GP 

(mm) i+1VBFlank wear  

ANN 

Surface roughness (µm) 

Test No. 
Cutting speed 

(m/min) 

Feed rate 

(mm/rev) 

Time 

(sec) 
iVB 

(mm) 
Measured Predicted Measured Predicted 

1 40 0.04 20 0.269 0.288 0.2958 0.51 0.5359 

2 60 0.02 20 0.245 0.314 0.2841 0.45 0.467 

3 

 

 

 

60 0.04 5 0.108 0.137 0.1513 0.27 0.281 

4 80 0.02 5 0.206 0.221 0.2476 0.28 0.288 

5 40 0.035 15 0.232 0.271 0.2581 0.4 0.413 

6 50 0.05 10 0.091 0.132 0.1158 0.38 0.3877 

7 70 0.03 15 0.149 0.19 0.1879 0.23 0.215 

8 85 0.06 5 0.092 0.126 0.1132 0.42 0.4411 

9 40 0.04 10 0.126 0.143 0.1365 0.32 0.3341 

10 60 0.02 5 0.08 0.099 0.1033 0.18 0.1622 

11 60 0.06 20 0.209 0.25 0.2435 0.46 0.497 

12 80 0.04 10 0.081 0.131 0.156 0.31 0.342 
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Table 7 The accuracy of intelligent models for training and validation data sets 

 Training data set Validation data set 

 2R RMSE 2R RMSE 

Genetic Programming 0.9902 0.0102 0.9473 0.0163 

Neural Network 0.9879 0.0154 0.9553 0.0203 

 

 

4.2. Tool Wear Monitoring 

Tool wear measuring is an essential task in ACO 

systems employed for machining operations. In the 

proposed ACO system, an efficient tool wear measuring 

strategy was proposed using the wavelet packet 

transform of tool vibration signals. During cutting 

experiments, vibration signals were gathered by 

accelerometer and relevant tool flank wear was 

measured carefully. Then, using wavelet packet 

transform, vibration signals were decomposed into 4 

levels consisting of 16 sub-band features. 

Each feature belongs to a specific frequency band 

ranging from [0-312.5] Hz to [4687.5-5000] Hz. Precise 

consideration of the RMS values of features revealed that 

the effect of tool wear could be only traced in 4 

decomposed features, which included 2nd, 6th, 11th and 

14th sub-band features. These features are corresponded 

to [312.5-625] Hz, [1562.5-1875] Hz, [3125-3437.5] Hz 

and [4062.5-4375] Hz frequency ranges respectively. 

Similar correlation between decomposed features of 

vibration signals and gradually developing tool wear 

was reported in previous researches [28]. The RMS 

values of extracted features along with cutting 

parameters were fed to the neural network that was 

trained to estimate tool flank wear. The accuracy of 

trained network for both train and validation tests were 

obtained as given in “Table 8ˮ. 

 
Table 8 Fitness values of trained neural network for online 

tool wear measuring system 

 2R RMSE 

Training 0.9934 0.0104 

Validation 0.9511 0.0261 

 

The results show that the wavelet coefficients from the 

machining vibration signals are sensitive to the variation 

of tool flank wear and cutting parameters. It also can be 

concluded that there is relatively good agreement 

between results of measurements and predicted values 

obtained by neural networks. More information about 

the results can be found in [23].   

4.3. Traditional Optimization Results 

To prove the effectiveness of suggested ACO strategy, a 

comparison was made between the resulted production 

cost and MRR of this method and that of traditional 

optimization method with constant cutting parameters. 

Two sets of experiments were performed with different 

values for maximum surface roughness, 0.2 and 0.4 μm. 

For maximum surface roughness of 0.4 μm, constant 

cutting parameters were calculated as v=62.5 m/min and 

f=0.0375 mm/rev to reach minimum operation cost. 

With these cutting parameters, operation cost of 15.92 $ 

was resulted and MRR was 2.39 cm3/min.  

Constant cutting parameters for getting maximum 

surface roughness of 0.2 μm with the minimum cost 

were calculated as v=65 m/min and f=0.02 mm/rev. 

Using these cutting parameters, operation cost was 

calculated 17.11$ and MRR was obtained as 1.27 

cm3/sec.  

4.4. ACO Results 

ACO system starts adaptive process with fresh tool 

(VB=0). The main purpose of the proposed ACO system 

is to find the next feed rate that produces surface 

roughness as near as possible to Ramax. All cutting 

parameters during ACO process were selected according 

to defined performance index and specified constraints. 

For precise investigation of proposed methodology, two 

sets of experiments were arranged with Ramax= 0.2 and 

0.4 μm. The ACO process lasted until flank wear of 0.3 

mm was reached. 

The value of cutting speed was sat to 62.5 /min. The 

variation of feed rate along with produced surface 

roughness for Ramax= 0.4 μm is shown in “Fig. 5”.  

As it can be seen from “Fig. 5”, by passing time and 

gradually increasing tool wear, ACO system adjusted 

feed rate to compensate the negative effect of tool wear 

on surface quality. The effect of feed rate on surface 

roughness is remarkable. In initial seconds of 

machining, tool flank wear is trivial and therefore, 

relatively high values for feed rate was selected. In the 

times to come, with increasing tool flank wear, the 

selected feed rates were decreased step by step to its 

minimum value of 0.025 mm/rev. By doing this, ACO 

tried to compensate the negative effect of tool wear on 

produced surface roughness. As it can be realized from 

“Fig. 5 (b)”, the roughness produced during process is in 

permissible range (Ra<0.4 μm) until the end of process. 

At the end of operation, overall cost of operation was 

calculated as 14.51 $ that is 8.8% lower compared to 

traditional optimization method. On the other hand, 

overall MRR was obtained as 2.66 cm3/sec, which shows 

11.3% grows.  
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Fig. 5 Variation of feed rate and surface roughness during 

ACO process for obtaining Ramax=0.4 μm. 

 

 

 
Fig. 6 Variation of feed rate and surface roughness during 

ACO process for obtaining Ramax=0.2 μm. 

 

Adjusted feed rate and obtained surface roughness for 

Ramax= 0.2 μm is shown in “Fig. 6”. The cutting speed 

was considered 65 m/min, which is equal to 

corresponding constant optimum cutting speed. Similar 

manner for selected feed rates was reported as in Ramax= 

0.4 μm. It can be seen that the adaptively selected feed 

rate values became lower to obtain desired surface 

roughness. The surface roughness over the entire 

machined surface was in permissible limit (“Fig. 6 (b)”). 

In this case, operation cost and MRR was obtained as 

1.53 cm3/sec and 16.17 $ respectively. Results show 

5.5% reduction in costs and 20% growth in MRR in 

comparison with traditional optimization method. 

5 CONCLUSION 

The rate of tool wear is extremely high in hard turning 

processes. Since part surface quality is influenced 

drastically by tool wear, traditional optimization 

approaches, because of their inability in considering the 

effect of tool wear, cannot offer optimal cutting 

condition. Therefore, cutting parameters should be 

adjusted in real time and according to current tool state. 

In this work, an intelligent adaptive control with 

optimization system to produce work pieces with 

uniform surface roughness in finish hard turning of AISI 

D2 was presented. Considering the real condition of 

cutting tool, the proposed system was able to adjust feed 

rate to achieve relatively uniform and acceptable surface 

quality. For this purpose, an online tool wear measuring 

strategy was developed using neural networks and 

wavelet packet transform of extracted vibration signals 

from cutting tool. Intelligent models, included artificial 

neural network and genetic programming, were 

employed to predict surface roughness and tool flank 

wear during machining process. Then, using particle 

swarm optimization algorithm, optimum cutting 

parameters were calculated. For fresh cutting tool, the 

strategy of ACO system was to choose higher feed rate 

values to reach to specified surface roughness. As tool 

wear increased, the selected feed rates were decreased to 

compensate the negative effect of tool wear on surface 
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roughness. Finally, the proposed ACO system resulted 

in work pieces with acceptable and relatively uniform 

surface roughness, which led to remarkable reduction in 

machining costs and increase in MRR. In order to prove 

the effectiveness of the proposed ACO technique, two 

different values for Ramax were considered as desired 

surface roughness of machined parts. The results 

obtained from experiments showed that the proposed 

ACO system decreased the cost of machining 8.8% and 

increased MRR 11.3% when Ramax=0.4 μm compared to 

traditional optimization technique with constant cutting 

parameters. For Ramax=0.2 μm, cost decreased about 

5.5% and MRR increased by 20%.  

To outline a direction for future work in the relevant 

field, authors suggest to assess the ability of various 

sensory systems designed for tool wear monitoring, 

designing adaptive optimization systems with different 

performance indexes and constraints such as 

temperature, vibration and other machining 

characteristics.  
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