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1 INTRODUCTION 

The need to minimize the complex of sensor, processor, 

operator assemblies and integrate them into a single chip 

has led to the invention of the finest human fabrications 

called microelectromechanical systems (MEMS). So 

accurate modeling and providing suitable methods for 

solving equations governing their mechanical behavior 

is of great importance. Microbeam with geometric 

discontinuity are widely used in MEMS industries. 

A micropositioning system is a motioning system 

composed of different mechanical and electrical 

components capable of producing displacements in 

micro scale. Such equipments are used in systems to 

produce displacements in the order of micro meter. 

Some of the important applications of this equipment are 

in semiconductors, optic and laser industries, sweeping 

microscopes, precise machining, genetic manipulations 

and inter-cellular activities [1]. The main function of 

these systems is based on the deformation of a beam in 

micro size. Therefore, study of the behavior and control 

of microbeams will be of great importance in science 

and engineering. Micro/nano actuators are made of two 

electrodes in a micro/nano electromechanical system, 

one of them is movable and flexible and the other is 

fixed, the moving electrode is suspended above the 

substrate electrode. The applied voltage between the two 

electrodes causes the displacement of the moving 

electrode and its displacement towards the substrate (or 

fixed) electrode. When the voltage between two 

electrodes is increased from a certain value, the system 

becomes unstable and the contact between the two 

electrodes is created. This phenomenon is called the 

Pull-in instability and the voltage corresponding to that 

is the Pull-in voltage [2]. Over the past several decades, 

there has been a lot of research on micro and nano-sized 

structures, which we will cover a few. Sadeghi et al. [3] 

Investigated the size-dependent behavior of a 

microbeam under the influence of a nonlinear 

electrostatic pressure. They found that there is 

significant difference between the Pull-in voltages 

obtained from classical theory and modified couple 

stress theory, where previous researchers who used 

classical theory used a large amount of tensile residual 

stress of their modeling. However, the results of this 

research show that the use of modified couple stress 

theory significantly reduces the difference between 

theoretical and experimental results. Zhu et al. [4] 

reviewed the behavior of the Pull-in stepped microbeam 

using the modified couple stress theory. They found that 

the natural frequency as well as the Pull-in voltage 

increased with increasing width ratios uniformly, but 

with increasing length ratio, first decreases and then 

increases. Habibnejad korayem et al. [5] Analyzed the 

piezoelectric and geometric discontinuities of an atomic 

force microscopy using the modified couple stress 

theory and they used DQ method to solve them. The 

results showed that the length scale parameter does not 

only affect the frequency and amplitude but also 

improves the accuracy of the results compared to the 

classical theory. In addition, the effects of geometric 

parameters on the piezoelectric frequency are also 

investigated. Rahaeifard and Ahmadian [6], investigated 

instability of microbeam under the electrostatic load 

using the strain gradient theory and Hamilton principle 

and compared their results with the results of the 

classical theory as well as the modified couple stress 

theory. The results of strain gradient theory and 

modified couple stress theory were well convergent. 

Rahaeifard et al. [7], studied the deflection and pull-in 

voltage of microbeam, using the modified couple stress 

theory. They compared their research results with 

experimental results and classical theory, and used a 

finite difference method to solve them and found that 

there was a difference between experimental 

observations and classical theory, but they achieved 

better convergence with the results of the theory. Zhu 

and Liu [8] analyzed sensitivity of pull-in voltage for a 

stepped cantilever-type Radio Frequency (RF) MEMS 

switch, based on modified couple stress theory, they 

discovered the pull-in voltage sensitivity of design 

parameters. The optimal value of the dimensionless 

length ratio only depends on the dimensionless width 

ratio. Static and dynamic modeling of pull-in instability 

of a nanobeam was performed by Sadeghi et al. [9] using 

the strain gradient theory and reduced order method. The 

results showed that when the nano-actuator thickness is 

comparable with the material length scales, the size 

effect can significantly affect the tensile behavior of the 

system. It was also found that pull-in static voltage was 

greater than the dynamic voltage due to the inertia force. 

Wang and Duan [10] provided a discrete singular 

convolution method for static analysis, buckling, and 

free vibration of beam. They considered the Euler-

Bernoulli model and proved the application of the above 

method to a beam with geometric discontinuity. 

Fathalilou and Rezaee [11] presented two methods for 

solving the electrostatic micro sensors vibrational 

equation. In the first method, first the two sides of the 

governing equation were multiplied by the reversal of 

the electrostatic force, then the Galerkin method was 

applied. Although in the second method, the Galerkin 

method was directly applied to the governing differential 

equation. They concluded that the first method was not 

able to detect pull-in point in some cases.  

Up until about forty years ago, all carbon-based 

polymers were insulated, and the idea of plastic 

conductivity was meaningless and in the electrical 

industry, plastics were widely used as insulators. This 

attitude was quickly changed by the discovery of 

conductive polymers. In 1958, Shirakawa and 

colleagues produced a black polyacetylene powder, 
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which determined that the product obtained could have 

semi-conductivity to conductivity, depending on its 

conditions. Among the most common conductive 

polymers, polythiophene, polyaniline and polypyrrole 

are mentioned [12]. The electrical, electrochemical, 

optical conductivity polymers have converted them as a 

material for use in antistatic coatings, anti-corrosion 

coatings, coatings for absorbing microwave waves, 

biosensors. The conductivity properties of the polymers 

are adjustable to the desired degree, so that it can be in 

the form of conductors or semiconductors. These 

polymers are structurally in their main chain of dual 

band as one, so that their conductivity properties 

increase during the process of doping. The term doping 

is taken from the dictionary of semiconductor bodies 

because the receiver and electron donor material can 

increase the conductivity of conjugated polymers. The 

term doping is synonymous with oxidation or reduction. 

Valentova and Stejskal [13] have obtained the 

mechanical properties of polyaniline conductive 

polymer, such as the Young modulus and the Bulk 

modulus. Lang and et al. [14] obtained the mechanical 

properties of conductive polymer (PEDOT) by two 

methods of tensile testing, and also using an Atomic 

force microscopy and compared with each other. Cho et 

al. [15] analyzed the synthesis methods, 

electrochemical, and the size effect of polyaniline coated 

with polymetal. Zhang and Chu [16] studied the 

electrostatic actuated of conductive polymer 

microbridges. They used three different types of 

conductive polymers and they found the stability and 

conductivity of these materials. Moreover, the results of 

the Pull-in voltage, deflection and resonance 

phenomenon showed that mechanical properties have 

improved with the effect of residual stress in MEMS 

polymer structures. Kumar et al. [17] Investigated the 

synthesis methods, properties and applications of 

conductive polymers in various fields.  

In this paper, strain gradient theory is employed to 

investigate the size dependent pull-in of the microbeam. 

The microbeam has a geometric discontinuity and is 

considered as a step. In addition, by applying the 

Galerkin method and numerical differential quadrature 

method, static analysis and the effect of different 

parameters are examined. The length scale parameter of 

the Polyaniline that is one of the conductive polymers, 

was obtained which recently researchers use them in the 

MEMS industries. 

2 THEORETICAL MODEL 

2.1. Fundamentals of Strain Gradient Theory 

In this section, a review of the structural relations of the 

strain gradient theory will be presented according to the 

below section. In this theory, there are three independent 

of length scale parameters in the constitutive equations 

in addition to the two classical constant of material, 

which the constitutive equations are dependent to the 

size of material. The strain energy (U) in a homogeneous 

elastic material in the domain of can be  obtained as 

follows [18-19]: 

 

(1) (1)1
( )

2

s s

ij ij i i ijk ijk ij ijU P m dv     


        (1) 

 

The strain relations given above are obtained using the 

following relationships: 
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Where, , , γi, and xs
ij are strain tensor, dilatation 

gradient vector, deviatoric stretch and symmetric 

rotation gradient tensor, respectively. ui is displacement 

vector and δij is Kronocker Delta. In addition, the 

stresses corresponding to the parameters η(1)
ijk, γi, εij and 

xs
ij, respectively, can be defined by s

ijijkiij mP ,,, )1( . It 

is shown that , the classic stress tensor, s

ijijki mP ,, )1(  

describe higher order tensors that are obtained using the 

following relationships: 
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Where, l0, l1 and l2 are additional material length scale 

parameters which appear in the constitutive of higher 

order stresses. Moreover, K and G are the bulk and shear 

modulus of material, using the E Young modulus and  

Poisson's ratio which are obtained  

 and  

Respectively. 

2.2. Microbeam Model  

Figures 1 and 2 show the typical electrostatically 

actuated stepped microbeams with CF and CC boundary 

condition, respectively, the microbeam consists of a 

fixed electrode and a movable electrode with length of L 

and thickness of h which are separated by a dielectric 

spacer with an initial gap 
0g . 

 

 
Fig. 1 Top and side view of stepped CF microbeam. 

 

The movable electrode can be viewed as a beam of 

length L, width b1 and thickness h with a rectangular pad 

of length L2, width b2 and thickness h at its tip for micro 

cantilevers. The fixed electrode is the same size as the 

rectangular pad and is positioned under the pad.  

 

 
Fig. 2 Top and side view of stepped CC microbeam. 

 

The origin of the Cartesian coordinate system is located 

at the middle of the left end of the stepped microbeams 

where X, Y and Z are the coordinates along the length, 

width and thickness, respectively. Note that the 

consideration of stretching and that of axial tractions 

along the beam is beyond the scope of this work and 

these effects are neglected in this research. 

By substituting the displacement components in “Eqs. (2 

to 10)ˮ and then by replacing resultant of them in Eq. (1) 

the bending strain energy, Um can be obtained by the 

following form: 

 
1
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
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(11) 

 

The following equation is also added to the strain energy 

relation for the CC beam: 
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Where, 3

11
12

1
hbI   and 3

22
12

1
hbI   are the cross 

sectional area moment of inertia and iw is the beam 

deflection of microbeam. For CF beam,

 

2,1i , and For 

CC beam, i= 1, 2, 3. By applying the voltage V, the 

movable electrode bends to the fixed electrode under 

electrostatic force on the beam from 
1LX   to 

21 LLX  . The electrical potential energy Ue is the 

total electrostatic energy between the movable and fixed 

electrodes of the beam as follows: 

 
1 2

1
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2

L L

e

L

U V dC



  
 

(13) 

 

Where, V is the applied voltage and DC is the parallel 

plate capacitance per unit length between the fixed and 

movable electrodes: 
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In the above equation, 
21212

0 10854.8  mNc  is 

the permittivity of the free space and 1r  is the 

dielectric coefficient of the dielectric medium between 


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the movable and fixed electrodes, and finally, we use 

(13) and (14), [20]. 

 
1 2

1
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0 2 0 2

2
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[ (1 0.65 ]
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L L

e
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b g wV
U dx

g w b
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
  
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(15) 

 

The second term on the right hand side of “Eq. (15)ˮ is 

the fringing field due to the finite width of the beam. The 

kinetic energy of the beam is also expressed as follows: 
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(16) 

 

The following statement is also added for CC beam to 

the kinetic energy relation: 
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Where,   is mass density of the beam material, 

hbA 11   and hbA 22  are the cross sectional area 

of the beam. Now, the governing equations can be 

obtained using the [21] Hamilton’s principle 
2
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In order to simplify the parametric calculations, the 

governing equations and boundary conditions can be 

converted to dimensionless state. Creating 

dimensionless parameters creates new concepts and 

better describes physical phenomena. The dimensionless 

variables 

0g

w
w i , 

L

x
x  , and 

0t

t
  are used to 

simulate the governing equations and boundary 

conditions (Static state). The governing equation of the 

system can be derived as the Eq. (18), with the following 

boundary conditions: 
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In the above equations, the following relationships are 

established: 
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3 SOLVING METHOD 

Due to the nonlinearity of the governing equations, 

solving it is complicated and time-consuming. For this 

reason, in this research, differential quadrature method 

is used to solve these equations. According to this 

method, dimensionless displacements, as well as 

displacement derivatives at any arbitrary point are 

[22-23]: 
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In the above equations, 
k

ijc  is the weight functions and 

N denotes the number of nodes that are irregularly 

distributed over the entire domain (the length of the 

microbeam), and the position of each node subjected to 

the beginning of the beam is expressed as: 
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Many methods have been proposed to calculate the 

weight functions in DQ, but one of the most accurate and 

easiest methods for determining the values of the weight 

functions and approximate the value of a function and its 

derivatives is given by Shu. Based on this method, the 

weight function for the derivative of 
)1(

ijc  can be 

computed from the following formula: 
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To calculate the values of the weight functions in higher 

order derivatives can be used as follows: 
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By applying the DQ method to the governing equations 

(17), these are rewritten as follows: 
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(26) 

In the above equations, 
iQ  is the distribution of force 

along the length of the microbeam as follows: 

 
2 2

2

2 2(1 ) (1 )
i

i i

Q
w w

 
 

 
 (27) 

 

The governing equations and boundary conditions 

together form a system of nonlinear equations, which 

can be solved by solving methods such as Newton-

Ruffson. However, here for solving this system, the 

equations are first linearized using the Taylor series of 

the applied force vector. Using a repetitive process 

below, the pull in voltages and displacement are 

obtained: 

1- Using the Taylor Series Linear section, the initial 

force vector is rewritten as following form: 

 

22

2

22 )2(   ii wQ  (28) 

 

Now, assuming the initial value of 
0V  and solving 

equation (26) and boundary conditions, the displacement 

vector value 2w  is obtained. 

2- Equivalent to 22 ww 


 and placement 


2w  in 

equation (27), a new force vector is obtained. Using the 

vector of force and rewriting the governing equations, 

we will have a matrix form: 

 

QwK 2
 (29) 

 

In the above equation, K represents a stiffness matrix. 

After solving the matrix equation, a new vector of 
1

2w  

is obtained. 

3- By replacing 
1

2w  instead of 


2w  and repeating the 

second step, the displacement vector
2

2w  will be 

obtained. 

4- Repetition of the above step to the convergence of the 

deformation continues using the following tolerance: 
 

2

2

1 2

2

( )

( )

m

m

w
Error

w 






  

(30) 

 

Where, 
mmm

www 2

1

22 


in the equation. The 

initial voltage increases until the stiffness matrix is 

singular or equation (29) is not satisfied. The last voltage 

that satisfies the deformation rate of equation (30) is the 

pull in voltage PIV . 
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The above steps for 1w  and 3w  are also repeated and 

then summed together until the final pull in voltage and 

displacement are obtained. 

4 RESULTS AND VERIFICATIONS 

First, to ensure that the results are correct, the results of 

the current solution must be validated. Due to the fact 

that no laboratory and experimental work has been done 

on conductive polymer microbeams, the current solution 

method has been validated using the results in reference 

[4]. The mechanical properties and dimensions of the CF 

and CC are listed in “Table 1 and 2ˮ respectively:  

 
Table 1 Mechanical properties and dimensions of CF beam 

1 68b m  
2 164b m 140L m  

2 94L m  7h m  
0 2g m  

78.5E Gpa

 
0.22   

319600kgm   

 

But before verification, we need to make sure that the 

results of DQ are independent of the number of nodes 

which considered on the domain (length of the 

microbeam).  

 

Table 2 Mechanical properties and dimensions of CC beam 

1 60b m  
2 120b m  500L m  

2 100L m  2h m  
0 2g m  

78.5E Gpa  0.22   319600kgm   

 

“Fig. 3ˮ shows the dependence of the pull in voltage on 

the number of nodes considered in DQ method for each 

of the different boundary conditions of the microbeam. 

As shown in “Fig. 3ˮ, the pull in voltage after 10 nods 

for CF beam becomes independent of the number of 

nodes. 

 

 
Fig. 3 Pull in voltage variation relative to the number of 

nodes considered in the DQ method. 

 

 
Table 3 Comparison of the model results presented in reference [4] and the present solving method 

CC Micro beam CF Micro beam Model type 

Discrepancy 

Percent 
Present work [4] 

Discrepancy 

Percent 
Present work [4] 

Pull in voltage(v) 

3.16 12.4 12.02 1.72 94.1 92.5 

 

Table 4 Physical Properties of Conductive Polymers 

Material Conductivity (S/cm) E (Gpa) G (GPa)   
PANI 50 1.3 0.49 5210 0.32 

PTs 1000 2.5 0.95 2230 0.32 

 

 

In “Table 3ˮ, the results of the current solution and the 

reference results [4] are compared. In reference [4], the 

coupe stress theory is used, and the percentage of error 

obtained from the strain gradient theory and coupe stress 

theory is also given in the table below, which according 

to reference [4], 0l  is considered.  

In the review of microbeams, llll  210
 can be 

considered for reducing the parameters of the size effect 

and the convenience of discussing the results. With this 

assumption, the three size effects parameters are reduced 

to one parameter. In addition, this assumption helps to 

explain size effect parameter through simple diagrams 

without the reader being confused with multiple 

parameters. Moreover, this assumption makes it easier 

to compare experimental results with the results of the 

strain gradient theory .On the other hand, determining a 

constant l  through laboratory methods is easier than 

measuring three constants  of 
210 ,, lll .  

For accuracy and reliability, the results of the 

dimensionless pull in voltage diagram and the 

dimensionless length ratio in “Figs. 4 and 5ˮ are plotted 

for CF and CC stepped microbeam, respectively for 

value of 0.2   and compared with reference [4]. From 

the comparison of the results, it can be seen that the 

present solution is very well suited to the results of 

reference [4] that they used Finite element method. It is 

also seen that as the value of   increases, then the pull 

in voltage is decreased and then increased. 

0
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Fig. 4 Comparison of the results presented in reference [4] 

and the present work for CF beam. 

 
 

 
Fig. 5 Comparison of the results presented in reference [4] 

and the present work for CC beam. 

 

 

Fig. 6 The variation of the pull in voltage ratio versus the 

h l  for three materials. 

4.1. Conductive Polymer 

Work on the conductive polymers has grown over the 

last four decades. With the recent advances in 

micro/nano science and technology, the attention of 

many researchers have attracted the construction of 

conductive polymers in micro/nano dimensions. 

Polyaniline (PANI) and polythiophen (PTs) are among 

the polymers with the lowest and most conductivity. The 

physical characteristics of these micro beams are given 

in “Table 4ˮ. 

In “Fig. 6ˮ, the variations of the pull in voltage versus 

the ratio h l  of the two types of conductive polymer 

and also the gold material are plotted for CF microbeam, 

it is seen that by increasing the thickness ratio to the 

length parameter h l , the pull in voltage ratio 

calculated by the theory of strain gradient theory 
SGTV  

is reduced to the calculated voltage with the classical 

theory of CTV . Although for the small values of h l , 

the difference between the two theories becomes more 

significant. The physical properties of gold used in “Fig. 

6ˮ are: 

398.5 , 19300

27 , 0.44

E Gpa kgm

G Gpa





  


 

 

4.2. Effect of Length Scale Parameter 

The variations of the pull in voltage versus the size effect 

of microbeam are shown in “Fig. 7ˮ.  
 

Fig. 7 Pull in voltage of microcantilever versus the h l  

for different theories. 

It can be seen that horizontal line is occurred when there 

is no size effect and the classical theory is used, in this 

case the pull in voltage is not a function of the size effect. 

However, in the strain gradient theory and modified 

couple stress theory, the pull in voltage is quite a 

function of the size effect, and also with the narrowing 

of the beam, this effect is more dependent on the length 

scale parameter. The close results of two non-classical 

theories in the graphs are clearly observed. It is worth 

mentioning that for 5h l  , the difference between the 

classical and the non – classical theories for narrower 

beams is visible. In addition, strain gradient theory and 

modified couple stress theory are close to each other for 

5h l  , therefore it is importance to apply non-

classical theories for the micro / nano scale dimensions. 
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4.3. Comparison of Theoretical Results with 

Experimental Results  

Here, to obtain the length scale parameter of the 

conductive polymer (PANI) and compare with the 

article published by (Zhang and Chu 2007), microbeam 

without a step was considered. Using the strain gradient 

theory, for the conductive polymer (PANI) 

microcantilrvers was considered with the geometrical 

properties as shown in “Table 1ˮ. The pull-in voltages 

given by classical theory and the strain gradient theory 

for microbeam with specifications given in “Table 1ˮ are 

compared in “Table 5ˮ. As it may be observed from 

“Table 5ˮ, prediction of the pull in voltage from the 

classical theory are less than that of the experiment 

results. In other words, the classical theory predicts a 

lower stiffness for the beam with respect to the 

experimental results. Furthermore, the values of pull in 

voltage from the strain gradient theory are more than that 

of the values from the classical theory. Hence, it is 

deduced that the strain gradient theory may reduce the 

gap between the experiments and analytical simulations. 

 
Table 5 Comparison between pull-in voltage predicted by classical and strain gradient theories with the experimental results given 

by Zhang et al [24] for beams with specifications given in “Table 1ˮ 

Cantilever 

Length 

(µm) 

Pull-in 

Voltage based 

on the 

Classical 

Theory(V) 

Pull-in Voltage based on 

the Strain gradient 

Theory(V) 

Pull-in Voltage 

based on 

the experimental 

[24] (V) 

 

 

 h/l=4 h/l=6 h/l=8 h/l=10 h/l=8.23(Optimum 

value) 

 

20 
 

60 
 

100 
 

140 

121.4 124.9 124.2 123.8 123.5 124.1 123.9 

91.6 94.1 93.3 92.8 92.2 92.7 92.6 

84.8 87.3 86.9 86.2 85.8 85.9 86.1 

80.7 83.8 83.1 82.5 82.1 82.3 82.4 

 

 

From the results of “Table 5ˮ, it is concluded that the 

classical theory predicts the pull-in voltage less than the 

experiments. In other words, the classical theory predicts 

a lower stiffness for the beam with respect to the 

experimental results.  

 

 
 

Fig. 8 Comparing the theoretical and experimental pull-in 

voltages for PANI. 

On the other hand, the Strain gradient theory predicts 

more values for the pull-in voltage with respect to the 

classical theory. Hence, it is deduced that the Strain 

gradient theory may reduce the gap between the 

experiments and analytical simulations. 

According to the least square error method, the best fit 

for the predictions of the strain gradient theory with the 

experimental results for various values of the beam 

length is achieved with h/l = 8.23. The pull-in voltages 

evaluated by the strain gradient theory with h/l = 8.23 

are also presented in “Table 5ˮ. 

However, based on the trend of the predictions of the 

strain gradient theory, as discussed before, this theory 

can decrease the deviation of the classical theory 

predictions with the experimental results. With h/l = 

8.23, the best fit for the strain gradient theory and the 

experimental results is achieved for the considered 

beams. Since the thickness of the beam is h = 7µm (see 

“Table 1ˮ), the length scale parameter is calculated as l 

= 0.85µm (“Fig. 8ˮ). 

5 CONCLUSION 

In the present paper, size dependent behavior was 

investigated for conductive polymer stepped microbeam 

with electrostatic force. The governing equations for the 

static deformation of the microbeam were obtained for 

two boundary conditions using the strain gradient theory 

and numerical solution of DQ. As the results show, the 

use of classical theory leads to incorrect results in 

microstructures, which have a longitudinal scale 
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parameter in comparison to their thickness, and non-

classical theories such as strain gradient should be used. 

In addition, the results showed that the effect of size-

dependent behavior is significantly increased by 

decreasing the thickness ratio to the length parameter of 

the microbeam. The results obtained in the design and 

modeling of microstructures are useful. In addition, the 

expensive and unavailable material can be replaced by 

conductive polymers as a new material. 
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