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Abstract: In this paper, a large-scale experimental study has been conducted in order 
to evaluate the high-velocity compaction of aluminum powder using Gas Detonation 
Forming (GDF) processing technique. In this series of experiments, the effect of the 
distribution of grain particle size, initial powder mass, and loading conditions on 
green density and strength of compacted products were thoroughly studied. The 
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achieved. Group Method of Data Handling (GMDH)-type neural network in 
conjunction with Singular Value Decomposition (SVD) method was exerted to 
model the high-velocity compaction process of aluminum powder. The main 
objective of this idea is to demonstrate how two characteristics of the high-velocity 
compaction, namely, the relative green density and strength of products vary with 
the changing of significant parameters, involved in GDF processing technique. 
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1 INTRODUCTION 

There has been a progressive demand in powder 

metallurgy methods because of their broad applications 

in various fields such as aircraft and automotive 

industry, production of electronic components, gas 

turbine technology and manufacturing of cutting tools. 

This is due to outstanding features of these methods 

including high material utilization, near net shape 

tolerances, high production speed along with economic 

efficiency at high-volume production and 

the ability to control physical properties such as 

porosity and density during the compaction process. In 

conventional powder metallurgy methods, powder 

particles are blended and placed in the die, then 

compacted using static or quasi-static hydraulic loads. 

The compaction loads cause mechanical locking 

between particles and convert them to a solid state called 

the green part. At this stage, the mechanical strength of 

the obtained green parts is not sufficient for industrial 

applications.  Therefore, green parts are ejected from the 

die, transferred to the furnace and heated up to 80-90 

percentage of base metal melting temperature. This 

causes inter-particle bonding during an atomic diffusion 

phenomenon called sintering [1-2].  

On reviewing the literature [3-10], it appears that the 

compaction of the metallic powder using both dynamic 

and static process has been extensively investigated 

from the viewpoint of the production of nearly fully 

dense metallic compacts with unique microstructures. In 

these studies, the influences of temperature and pressure 

histories, along with the existence of sintering aids, on 

the final mechanical properties of the resulting metallic 

compacted product were investigated. However, less 

experimental and numerical work has been carried out to 

assess the dynamic compaction of aluminum powders in 

a quantitative manner, and the physical processes 

involved in increasing green density, as well as rupture 

stress, have been poorly comprehended [11-12]. 

Besides, a good understanding of the influences of 

loading rate, grain particle size and initial powder mass 

on mechanical properties of the compact is lacking. It is 

noteworthy to mention that the behavior of metallic 

powders subjected to dynamic loads is important for 

comprehending the performance of metallic armor, as 

well as the behavior of geological materials for 

penetration, seismic coupling, and planetary science 

applications. Several useful references on dynamic 

compaction can be found in the books by Nesterenko 

[13] as well as two review papers [14-15]. As mentioned 

in the literature, important experimental problems that 

result in rather large scatter and experimental 

uncertainty is a general specification of investigations of 

highly distended materials. 

In the last decade, the requirement to improve compact 

properties and to increase manufacturing rates of the 

compacted product has led to an interest in high-velocity 

compaction methods. Gas detonation forming (GDF) 

method is a new technique for forming process, 

especially powder compaction. This technique differs 

from the more conventional consolidation methods 

because of increasing green density, improving green 

strength, and reducing compact ejection forces as well 

as the porosity of compacted products. GDF technique 

can be also used instead of explosive compaction 

methods because of outstanding features such as low 

cost, low danger risk, simplicity and the ability to 

automate the process and continuous production. 

Recently in a series of studies, Babaei and his colleagues 

studied empirical and analytical modeling of circular 

and rectangular plates subjected to various impulsive 

loading conditions using GDF method [16-21]. They 

used a mixture of Acetylene and Oxygen gas with 

different volume ratios and investigated the effects of 

mechanical properties and geometry of plates, the 

impulse of applied loads and strain-rate sensitivity on the 

plastic deformation of plates. 

In this paper, the primary objective is to introduce a 

novel technique, namely, gas mixture detonation method 

for dynamic compaction process of aluminum powders. 

An extensive experimental work has been carried out to 

investigate the influences of different parameters such as 

grain particle size distribution, initial powder mass, and 

pre-detonation pressure of Oxygen and Acetylene gas on 

green density, green strength, porosity, and 

microstructure of compacted products. Also, an attempt 

is made to model the powder compaction process using 

the Group Method of Data Handling (GMDH) 

algorithm. For constructing numerical models, new 

dimensionless numbers are suggested based on the 

effective parameters in gas detonation compaction 

process. 

2 EXPERIMENTAL PROCEDURE 

Aluminum powder was used in the current experimental 

study due to its extensive application potential and high 

compressibility. The powder was fractioned in three 

different particle size distributions of 0-50 μm, 50-100 

μm, and 100-150 μm. During the compaction process, 

the initial powder masses were 15 g, 20 g, 25 g, and 30 

g. It is noteworthy to mention that the theoretical density 

 was 2780 kg·m-3. 

Figure 1 shows the photograph of the gas detonation 

compaction apparatus. As shown in this figure, the 

apparatus consisted of two main parts, a detonation 

driver section and the test section. The driver section 

included of a strong cylindrical combustion chamber 

with 530 mm length, 210 mm outside diameter, and 120 

mm inner diameter, two control valves for filling the 

chamber with pressurized gas, a manometer gauge to 

t



Int  J   Advanced Design and Manufacturing Technology, Vol. 13/ No. 1/ March – 2020                                         19 

 

© 2020 IAU, Majlesi Branch 
 

calculate the pre-detonation pressures of gas, and an 

ignition system. Detonation pressure-time histories were 

recorded by a piezoelectric pressure sensor, an amplifier, 

and a dynamic data acquisition system which were 

located in the detonation driver unit of the apparatus 

[12], [16-21]. 

 

 
Fig. 1 The gas detonation compaction apparatus. 

 
The test section included of a conical nozzle, an 

aluminum diaphragm, a barrel with 1040 mm length, 84 

mm outside diameter, and 54 mm inner diameter, a 1350 

g rigid projectile, a piston, and a floating die with a 

central hole, which showed the diameter of the 

compacted product. It is noteworthy to mention that the 

detonation section was connected to the test section by 

the conical nozzle [12].  

The detonation mixture was a rich mixture of Oxygen 

and Acetylene gas. By filling the combustion chamber 

space with the gaseous mixture as well as filling the 

cylindrical die with unlubricated powder, the 

compaction process was simply carried out. Before 

ignition, the piston was brought into contact with tapped 

powder in the cylindrical die. The gaseous mixture was 

ignited by the detonation of combustible gas in the 

combustion chamber and then, detonation wave started 

moving towards the end of the chamber and arrived at 

the thin aluminum diaphragm. Next, the detonation 

wave immediately broke the diaphragm after the first 

pressure was built up behind the extending detonation. 

The energy of detonation wave was transmitted to the 

projectile, hence, it moved towards the end of the barrel 

and impacted onto the piston. As a result, this was 

pursued by applying an axial load, which led to 

compress the powder from one side. Eventually, the 

floating die was removed at the end of the compaction 

process and a hydraulic jack was used for ejecting the 

cylindrical compacted product from the die. 

The diametral compression test which is called the 

Brazilian disc test was considered to be an accurate and 

reliable approach to determine the green strength of 

compacted products. During the Brazilian disc test, a 

thin disc was compressed across a diameter to failure. 

The material strength was calculated based on the 

assumption that failure begins at the point of maximum 

stress. To perform the compression tests, all specimens 

were mounted on a universal testing machine with a 

crosshead speed of 0.5 mm/min and were located 

between two flat plates. 

In order to calculate the green strength of compacted 

products from the Brazilian disc test, “Eq. (1)ˮ was used 

in which the maximum load value at failure was 

substituted in this equation [22]. 

 

2
g

f

F

DH



=   (1) 

 
Where, F  is maximum load at failure, fH  and D  are 

height and diameter of the compacted product. 

3 EXPERIMENTAL RESULTS 

“Table 1ˮ summarizes the experimental results from the 

gas detonation compaction experiments. As presented in 

“Table 1ˮ, all one-sided compacted specimens were 

obtained from a 21 mm cylindrical die and were 

manufactured in groups of densities ranging from 2493.3 

kg·m-3 to 2714.4 kg·m-3. 

 
Table 1 Experimental results 

Test No , bartotalP , mm0H 3-m·, kggρ , MPagσ 

1 2 38.8 2714.4 21.46 

2 1.5 38.8 2668.2 19.08 

3 1 38.8 2619.6 16.17 

4 0.5 38.8 2532.6 12.53 

5 2 48.8 2703 20.75 

6 1.5 48.8 2650.5 18.33 

7 1 48.8 2610.7 14.53 

8 0.5 48.8 2525.1 11.75 

9 2 58.8 2699.1 20.02 

10 1.5 58.8 2644.6 16.07 

11 1 58.8 2594 12.22 

12 0.5 58.8 2514.8 8.89 

13 2 68.8 2688.8 17.40 

14 1.5 68.8 2637.4 13.75 

15 1 68.8 2588.7 11.24 

16 0.5 68.8 2501.2 7.45 

17 2 38.8 2711.3 19.97 

18 1.5 38.8 2665.2 16.38 

19 1 38.8 2616.3 13.43 

20 0.5 38.8 2531.7 9.58 

21 2 48.8 2700.5 19.48 

22 1.5 48.8 2649.1 15.81 

23 1 48.8 2606.5 12.49 
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24 0.5 48.8 2522.9 8.74 

25 2 58.8 2690.8 17.81 

26 1.5 58.8 2639.3 13.61 

27 1 58.8 2591.5 10.42 

28 0.5 58.8 2508.7 6.72 

29 2 68.8 2680.2 15.77 

30 1.5 68.8 2631.8 12.45 

31 1 68.8 2582.6 9.40 

32 0.5 68.8 2494.8 4.79 

33 2 38.8 2709.4 18.32 

34 1.5 38.8 2657.4 15.08 

35 1 38.8 2611.8 11.11 

36 0.5 38.8 2529.2 7.37 

37 2 48.8 2701 16.98 

38 1.5 48.8 2646.8 14.35 

39 1 48.8 2604 10.56 

40 0.5 48.8 2521.7 6.65 

41 2 58.8 2687.4 15.53 

42 1.5 58.8 2633.5 12.51 

43 1 58.8 2586.5 8.95 

44 0.5 58.8 2509.2 4.88 

45 2 68.8 2678 14.38 

46 1.5 68.8 2619.9 11.43 

47 1 68.8 2579.3 8.43 

48 0.5 68.8 2493.4 3.42 

 

Several aluminum powder compacts produced by gas 

mixture detonation method have been shown in Fig. 2. 

 

 
Fig. 2 Aluminum powder compacts. 

 
For a better understanding of the obtained results, the 

experimental curves of the percentage relative green 

density versus total pre-detonation pressure of gaseous 

mixture have been represented in “Fig. 3”, for the cases, 

when the value of grain particle size is constant in each 

figure and the amount of initial powder mass is changed. 

As shown in “Fig. 3”, the relative green density of 

compacted products gradually increased with total pre-

detonation pressure rising. It was clear that the figures 

demonstrated two steps with the different increasing rate 

of relative green density.  

 
(a) 50 m =  

 
(b) 100 m =  

 
(c) 150 m =  

Fig. 3 Percentage relative green density versus total pre-

detonation pressure. 

 
In the first step, for the case when the total pre-

detonation pressure was less than 1 bar, the percentage 

relative green density considerably increased. For 

instance, in “Fig. 2aˮ, when the total pre-detonation 

pressure increased to 1 bar from 0.5 bar, the percentage 

relative green density of 15 g samples reached 93.95% 

from 90.98% at a rate of 5.94 bar-1. However, in the next 

stage, i.e. when the total pre-detonation pressure was 

more than 1 bar, the relative green density slowly 

increased. On the other word, when the total pre-

detonation pressure increased to 2 bar from 1 bar, the 
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percentage relative green density of 15 g samples 

reached 97.46% from 93.95% at a rate of 3.51 bar-1. By 

calculating the rates for all specimens, it was observed 

that the increasing rate of the first step of densification 

is approximately 1.69 (6.03/3.56) times larger than that 

of the second one. This is because of that, in the first 

step, densification of compacted products mainly 

happened in the form of particle displacements as well 

particle rearrangements, consequently, the relative green 

density increased quickly by increasing total pre-

detonation pressure of the gaseous mixture. Although, in 

the second step, the released energy acting on powder 

structure was dissipated for sliding, rotating, deforming 

and breaking the particles. As a result, the increasing rate 

of relative green density at the second step was lower 

than the first one.  

In order to investigate the effect of grain particle size on 

the amount of percentage relative green density, the 

experimental curve of percentage relative green density 

versus total pre-detonation pressure has been shown in 

“Fig. 4”. 

 

 
Fig. 4 Percentage relative green density versus total pre-

detonation pressure (M0 = 25 g). 

 
This figure was presented only for 25 g samples because 

the other specimens had the same behavior. A closer 

look at “Fig. 4” represented that the percentage relative 

green densities of compacted products did not increase 

significantly with grain particle size rising. Hence, it can 

be concluded that the increase of grain particle size does 

not have much effect on the increase of green density of 

compacted products. 

The experimental curves of green strength versus total 

pre-detonation pressure of gaseous mixture have been 

represented in “Fig. 5” for the cases when the value of 

grain particle size is constant in each figure and the 

amount of initial powder mass is changed. As 

represented in “Fig. 5”, the green strength of compacted 

products gradually increased by an increase in total pre-

detonation pressure. Moreover, as total pre-detonation 

pressure increases, the kinetic energy is increased 

obviously. 

 
(a) 50 m =  

 
(b) 100 m =  

 
(c) 150 m =  

Fig. 5 Percentage relative green strength versus total pre-

detonation pressure. 

 
Hence, the kinetic energy applying on powder particles 

will increase and this will cause deformation and 

displacement of the particles more easily. Consequently, 

the bonding will be improved significantly for the 

mechanical interlocking between the powder particles as 

well as the cold welding. 
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In order to investigate the effect of grain particle size on 

the amount of green strength, the experimental curve of 

green strength versus total pre-detonation pressure has 

been shown in “Fig. 6”. 

 

 
Fig. 6 Green strength versus total pre-detonation pressure 

(M0 = 25 g). 

 
This figure was presented only for 25 g samples because 

the other specimens had the same behavior. A closer 

look at “Fig. 5” represented that the green strengths of 

compacted products increased significantly with grain 

particle size rising. Hence, it can be concluded that 

unlike green density, the increase of grain particle size 

has a considerable effect on the increase of green density 

of compacted products. 

4 MODELLING USING GMDH-TYPE NEURAL 

NETWORKS 

The classical GMDH algorithm can be represented as a 

set of neurons in which different pairs of them in each 

layer are connected through a quadratic polynomial and 

thus produce new neurons in the next layer. Such 

representation can be used in modelling to map inputs to 

outputs. The formal definition of the identification 

problem is to find a function f̂  which can be 

approximately used instead of actual one, f , in order to 

predict output ŷ  for a given input vector 

( )1 2 3, , , , nX x x x x=   as close as possible to its actual 

output y . Therefore, given M observation of multi-

input-single-output data pairs so that [11]. 

( ) ( )1 2 3, , , ,     1,2,3, ,i i i i iny f x x x x i M=  =   (2) 
 

It is now possible to train a GMDH-type neural network 

to predict the output values ˆ
iy  for any given input vector

( )1 2 3, , , ,i i i i inX x x x x=  , that is: 

( ) ( )1 2 3, , , ,     1,2,3ˆˆ , ,i i i i iny f x x x x i M=  =   (3) 

 
The problem is now to determine a GMDH-type neural 

network so that the square of the difference between the 

actual output and the predicted one is minimized, that is: 

 

( )
2

1 2 3

1

, , , , min ˆ
M

i i i in i

i

f x x x x y
=

  − →
   (4) 

 
The general connection between inputs and output 

variables can be expressed by a complicated polynomial 

of the form: 

 

0

1 1 1 1 1 1

 
n n n n n n

i i ij i j ijk i j k

i i j i j k

y a a x a x x a x x x
= = = = = =

= + + +  

 (5) 

 
Which is known as the Ivakhnenko polynomial [11]. 

However, for most application, the quadratic form of 

only two variables is used in the form: 

 

( ) 2 2

0 1 2 3 4 5
ˆ ,i j i j i j i jy G x x a a x a x a x x a x a x= = + + + + +

 (6) 

 

To predict the output y, The coefficient ia  in “Eq. (6)ˮ 

are calculated using regression techniques, so that the 

difference between actual output, y  and the calculated 

one, ŷ , for each pair of ,i jx x as input variables are 

minimized. Indeed, it can be seen that a tree of 

polynomials is constructed using the quadratic form 

given in “Eq. (6)ˮ whose coefficients are obtained in a 

least-squares sense. In this way, the coefficients of each 

quadratic function 
iG  are obtained to optimally fit the 

output in the whole set of input-output data pair, that is: 

 

( )( )
2

1

2

1

2

M

i i

i

M

i

i

y G

r

y

=

=

−

=



 (7) 

 

In the basic form of the GMDH algorithm, all the 

possibilities of two independent variables out of total n 

input variables are taken in order to construct the 

regression polynomial in the form of “Eq. (6)ˮ that best 

fits the dependent observations )( , 1,  2,  ,  iy i M=   in 

a least-squares sense. Consequently, 
( )1

2 2

n nn − 
= 

 
 

neurons will be built up in the second layer of the 

feedforward network from the observations 
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( ) ( ) , , ; 1, 2,...,i ip iqy x x i M=                                                     

for different  , 1,2,...,p q M . In other words, it is now 

possible to construct M data triples 

( ) ( ) , , ; 1, 2,...,i ip iqy x x i M=  from observation using 

such  , 1,2,...,p q M  in the form: 

1 1 1

2 2 2

p q

p q

Mp Mq M

x x y

x x y

x x y

 
 
 
 
 
  

M M M
. 

 

Using the quadratic sub-expression in the form of “Eq. 

(6)ˮ for each row of M data triples, the following matrix 

equation can be readily obtained as: 

 

A =a Y  (8) 

 
Where a  is the vector of unknown coefficients of the 

quadratic polynomial in “Eq. (6)ˮ. 

 

 0 1 2 3 4 5, , , , ,a a a a a a=a  (9) 

 
And: 

 

 1 2 3, , , , 
T

My y y y= Y  (10) 

 
Where Y is the vector of output’s value from 

observation. It can be readily seen that: 

 
2 2

1 1 1 1 1 1

2 2

2 2 2 2 2 2

2 2

1

1

1

p q p q p q

p q p q p q

Mp Mq Mp Mq Mp Mq

x x x x x x

x x x x x x
A

x x x x x x

 
 
 =
 
 
  

M M M M M M
 (11) 

 
The least-squares technique from multiple-regression 

analysis leads to the solution of the normal equations in 

the form of: 

  

( )
1

T TA A A
−

=a Y  (12) 

 
Which determines the vector of the best coefficients of 

the quadratic “Eq. (6)ˮ for the whole set of M data 

triples. However, such a solution directly from normal 

equations is rather susceptible to round off error and, 

more importantly, to the singularity of these equations. 

SVD is the method for solving most linear least squares 

problems where some singularities may exist in the 

normal equations. The SVD of a matrix,
6MA  , is a 

factorization of the matrix into the product of three 

matrices, column-orthogonal matrix 
6MU  , 

diagonal matrix 
6 6W   with non-negative elements 

(singular values), and orthogonal matrix 
6 6V   such 

that: 
 

TA UWV=  (13) 

 

The most popular technique for computing the SVD was 

originally proposed in [23-29]. The problem of optimal 

selection of vector of the coefficients in “Eqs. (9) and 

(12)ˮ is first reduced to find the modified inversion of 

diagonal matrix W, in which the reciprocals of zero or 

near zero singulars (according to a threshold) are set to 

zero. Then, such optimal a  is calculated using the 

following relation. 
 

1 T

j

V diag U
w

  
=   

    

a Y  (14) 

 

Such procedure of SVD approach of finding the optimal 

coefficients of quadratic polynomials, a , improves the 

performance of self-organizing GMDH type algorithms 

that are employed to build networks based on input-

output observation data triples. 

5 STRUCTURE IDENTIFICATION OF GMDH-TYPE 

NETWORKS 

For simultaneous determination of structure and 

parametric identification of GMDH-type neural 

networks, the numbers of layers, as well as the number 

of neurons in each layer, is determined according to a 

threshold for error “Eq. (6)ˮ. In addition, unlike two 

previous approaches, some of the input variables or 

generated neurons in different layers can be included in 

subsequent layers. The main steps of this approach are 

described as follows [11]: 

 

- Step 1: Set K=1, Set Threshold. 

 

- Step 2: Construct ( )1 2k k kN N N = −  neurons 

according to all possibilities of connection by each pair 

of neurons in the layer. This can be achieved by forming 

the quadratic expression ( ),i jG x x which approximates 

the output y  in “Eq. (6)ˮ with least-squares errors of 

“Eq. (7)ˮ either by solving the normal “Eq. (12)ˮ or by 

SVD approach “Eq. (14)ˮ. 

 

- Step 3: Select the single best neuron out of these kN   

neurons, x , according to its value of 
2r . If (Error < 

Threshold) Then END, Otherwise set 
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 1 2 3Vec_of_Var= , , ,..., ,nx x x x x  

 

- Step 4: Set 1k kN N= + ; go to 2.  

6 NUMERICAL MODELLING RESULTS 

The method described in previous sections is now used 

to design GMDH-type network systems for a set of 

dimensionless parameters constructed upon 

experimental input-output data in a series of compaction 

tests given in “Table 1ˮ. Accordingly, the set of output-

inputs variables used to train the GMDH-type neural 

network is a dimensionless set,  1 2 3, , ,..., k    =

, rather than the set of real physical variables 

   1 2 3, ,  ,  ,  , , ny X y x x x x=  . Hence, given M 

observation of multi-input-single-output data pairs 

which have been converted to the equivalent 

dimensionless parameter [11-12], [24].   

So that: 

 

( ) ( )1 2 3 4, , ,..., 1,2,3,...,i i i i kif i M    = =  (15) 

 
It is now possible to train a GMDH-type neural network 

to predict the output values 1
ˆ

i  for any given input 

vector ( )2 3 4, , ,...,i i i ki    , that is: 

 

( ) ( )1 2 3 4
ˆˆ , , ,..., 1,2,3,...,i i i i kif i k    = =  (16) 

 
The problem is now to determine a GMDH-type neural 

network so that the square of the difference between the 

actual dimensionless output and the predicted one is 

minimized, that is: 

 

( )
2

2 3 4 1

1

ˆ, , , , min ˆ
M

i i i ki i

i

f     
=

  − →
   (17) 

 
Again, the quadratic form of only two variables is used 

in the form of “Eq. (18)ˮ to predict the output 1 . 

 

( )1 0 1 2 3

2 2

4 5

ˆ ,i j i j i j

i j

G a a a a

a a

      

 

= = + + +

+ +
 (18) 

 

In high-velocity powder compaction process using gas 

detonation forming method, the percentage relative 

green density ( 100rel g t  =  ) and the percentage 

relative green strength ( 100rel g t  =  ) of 

compacted products can be expressed based on effective 

parameters including the pre-detonation pressure of 

Oxygen (
2OP ) and Acetylene (

2 2C HP ) in the chamber, 

the initial powder mass ( 0M ) and height of powder in 

the die ( 0H ), the density of powder in the die before 

compaction ( 0 ), the final powder mass ( fM ) and 

height of compacted products ( fH ), the diameter of the 

die (D), the sound velocity in Oxygen (
2

332.2OC m s= ) 

and Acetylene (
2 2

329C HC m s= ) and the grain 

particles size (  ). These parameters have been 

considered to generate 5 dimensionless numbers in a 

neural network. From this set of input-output 

parameters, 5 independent dimensionless numbers have 

been constructed according to 3 main dimensions (M, L, 

T), as follows: 

 

1 rel =  (19) 

 

1 rel  =  (20) 

 

2 2 2

2 2 2

0

2

O H O

O C H

C C

P P




+
=  (21) 

 

3
0

fM

M
 =  (22) 

 

4
D


 =  (23) 

 

5
0

fH

H
 =  (24) 

 
So that: 

 

( )1 1 2 3 4 5, , , ,f      =  (25) 

It should be noted that the simplest possible 

dimensionless parameters have been considered 

according to the involved physical parameters. 

In order to model, based on experimental data presented 

in “Table 1ˮ, the multi-input-single-output set of 

constructed dimensionless data according to “Eqs. (19)-

(24)ˮ, the method previously mentioned was used 

separately in conjunction with the SVD approach for the 

coefficient of the quadratic polynomials. In order to 

demonstrate the prediction ability of such GMDH-type 

neural networks in the case of dimensionless modelling, 

the data have been randomly divided into two different 

sets, namely, training and testing sets. The training set, 
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which consists of 32 out of 48 input-output data pairs, is 

used for training the GMDH-type neural network 

models using SVD approach for the coefficients of the 

quadratic polynomials. The predicting set, which 

consists of 16 unforeseen inputs-output data samples 

during the training process, is merely used for predicting 

to show the prediction ability of such GMDH-type 

neural networks models during the training process. 

 

 
Fig. 7 Comparison of experimental results with 

computed/predicted values by GMDH-type network. 

 

 
Fig. 8 Comparison of experimental results with 

computed/predicted values by GMDH-type network. 

 
Accordingly, “Figs. 7-8” show the relative green density 

and strength of aluminum powder compacts, 

respectively, using GMDH-type network model 

constructed with singular value decomposition approach 

for the coefficients of the quadratic polynomials. The 

solid line in the following figures is where the 

experimental and numerical values of ( )rel and ( )rel  

are equal. Also, the red dash lines in these figures are 

“Eq. (A.22) ( )rel  and Eq. (A.50) ( )rel ˮ which have 

been drawn for the aim of displaying the fitting 

accuracy.  

The results of “Fig. 7” show that all experimental data 

points in “Table 1ˮ fall inside the 90% confidence level 

and the presented polynomial equations based on the 

structure of the GMDH-type neural network can be 

successfully used for prediction of the percentage 

relative green density compacted products by gas 

detonation forming method. Also, the results of “Fig. 8” 

demonstrate that the present experimental data points 

fall into the ±(σrel) range from the solid line with a 

confidence level of 73%. The structures of GMDH-type 

network for prediction of the relative green density and 

strength of products have been depicted in “Figs 9-10”, 

respectively. 

 

 
Fig. 9 GMDH-type network for prediction of the relative 

green density. 

 

 
Fig. 10 GMDH-type network for prediction of the relative 

green strength. 

 
By considering aforementioned points, the application 

and validity of suggested dimensionless numbers and 

GMDH-type network were proved and it is concluded 

that these suggested numbers can be used successfully 

for determination and predicting the final mechanical 

properties of compacted products by gas detonation 

forming method. The best point is that the suggested 

dimensionless numbers, as well as polynomial 

equations, considered many effective parameters of the 

processing technique. However, more experimental 

studies on metallic powder with different grain particle 

size distributions and mechanical properties should be 

carried out to develop the network. 
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7 CONCLUSION 

In this paper, a novel processing technique, namely, gas 

detonation forming method was introduced and used for 

powder compaction. According to this new idea, high-

velocity compaction of aluminum powder was 

investigated experimentally. On returning to the 

literature review, the obtained results were the first 

quantitative experiments on compaction of aluminum 

powder by gas detonation forming method.  

In the experimental section, 48 experiments were carried 

out by gas mixture detonation apparatus at four different 

total pre-detonation pressure of the gaseous mixture, 

three different grain particle size distribution and also, 

three different initial powder masses. The detonation 

loads were generated by a detonating mixture of 

Acetylene and Oxygen gas in a combustion chamber, 

while the detonation pressure was measured by means of 

a piezoelectric sensor and dynamic data acquisition 

system. The energy of detonation wave was transmitted 

to the projectile, hence it moved towards the end of the 

barrel and impacted onto the piston. As a result, this was 

pursued by applying an axial load, which led to 

compress the powder from one side. The main 

experimental results are: 

• The relative green density of products 

gradually increased with total pre-detonation pressure 

rising and the increasing rate of the first step of 

densification is approximately 1.69 times larger than that 

of the second one. 

• The green strength of products gradually 

increased by the increase of pre-detonation pressure. 

• Unlike green density, the increase of grain 

particle size has a considerable effect on the increase of 

green density of the product. 

GMDH-type networks were successfully used for the 

modelling of the very complex process of high-velocity 

compaction of aluminum powder. In this way, it has 

been shown that GMDH-type networks provide 

effective means to model and predict the relative green 

density and strength of products by GDF processing 

technique according to different inputs. Moreover, it has 

been shown that SVD can significantly improve the 

performance of such GMDH-type networks. 

8 APPENDIX OR NOMENCLATURE 

The obtained polynomial equations for the percentage 

relative green density compacted products based on the 

structure of the GMDH-type neural network depicted in 

“Fig. 9” using SVD approach for the coefficient of the 

quadratic polynomials in the form of: 
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