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Abstract: In order to study on the vehicle’s dynamic behavior, this study presents a 

new dynamic modeling of the vehicle by considering the engine dynamics. The 

coordinate systems are considered separately for the sprung mass and unsprung 

masses. By using Newton’s equations of motion, the force-torque equations of the 

sprung mass and unsprung masses are derived in the vehicle coordinate system. In 

general, the sprung mass in modeling of the vehicle is considered as a rigid body. 

However, in this study the components rotation of the sprung mass such as the engine 

crankshaft is considered and its gyroscopic effects are exerted in the governing 

equations. The lateral and longitudinal forces of the tire are evaluated by Pacejka 

model. In fishhook maneuver, the vehicle's dynamic behavior is studied by the 

numerical simulation method under the supervision of the National Highway Traffic 

Safety Administration (NHTSA). The numerical simulation results are also 

validated by ADAMS/Car software. According to the results, the 15-DOF model in 

this research simulates the vehicle’s dynamic behavior with a good accuracy and the 

maximum roll rate of the vehicle reaches about 37 degrees per second.   
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1 INTRODUCTION 

Vehicle safety has always been very important to vehicle 

designers. Nowadays, vehicles have to meet stringent 

safety standards in order to be allowed to enter the 

market. Vehicle stability is one of the most important 

issues in pre-crash safety, and knowing the dynamic 

behavior of the vehicle in standard maneuvers can be 

effective in assessing vehicle stability. For this purpose, 

in order to achieve real results, a comprehensive model 

of the vehicle dynamics is always needed.  

A set of experimental examinations was performed to 

evaluate the actual dynamic behavior of the vehicle in 

various standard maneuvers [1] which can be pointed out 

the phase IV rollover tests of the NHTSA [2]. Nalecz et 

al. [3] tested eight vehicles of different types in rollover 

maneuvers. These maneuvers include the maneuvers in 

which the driver loses control of the vehicle and the 

vehicle deviates toward the perimeter of the road. The 

modeling presented by Allen et al. [4] was performed by 

considering the fixed roll axis, which was modified and 

validated based on the test results. Zulhilmi et al. [5] 

analyzed the vehicle’s dynamic behavior 

during emergency braking on wet and dry surface 

condition by an experimental study. Ahmadian [6] 

improved vehicle handling, stability, and ride comfort 

and also Ataei et al. [7] studied on the lateral stability 

and rollover prevention of the vehicle. Phanomchoeng 

and Rajamani [8] developed a new rollover index that 

can detect both tripped and untripped rollovers by 

experimental and simulation examinations. The purpose 

of computer simulations is to reveal the effect of systems 

and components on the dynamic behavior of the vehicle 

as much as possible. By using computer simulations, 

these purposes can be performed much earlier in the 

targeting and initial design stages of the vehicle than the 

actual prototype. Peng et al. [9] studied on the lateral and 

longitudinal tire forces of the full-car model by computer 

simulations. Yuvapriya et al. [10] examined the 

suspension system and dynamic behavior of the vehicle 

in order to simulate the vehicle stability. Papaioannou et 

al. [11] compared four vehicle models with various 

configurations in order to study on the vehicle’s dynamic 

behavior such as ride comfort, vehicle handling and road 

holding by computer simulations. Mehrtash et al. [12] 

simulated the normal force of tires and roll angle of the 

vehicle under hand-wheel angle sequences for NHTSA 

fishhook maneuver. Wang and Chen [13] designed the 

active rollover preventer to enhance the performance of 

vehicle rollover in fishhook maneuver by computer 

simulations. Zhang et al. [14] simulated a 7-DOF model 

of the vehicle and they analyzed the yaw rate in order to 

improve the vehicle handling. Read and Viswanathan 

[15] investigated the effects of induced pressure loads 

from a realistic vehicle onto the surface of a road-side 

wall by using numerical simulation. Rajamani [16] and 

Gillespie [17] studied on the vehicle dynamics and its 

subsystems such as tire in order to study on the vehicle’s 

dynamic behavior by considering the basics of the 

dynamic [18]. Pacejka [19-22] examined the tire 

characteristics such as its longitudinal and lateral forces 

and obtained the data by mathematical expressions on 

the basis of a formula. In vehicles, the engine dynamics 

can be effective in the vehicle simulation. As an 

example, knowing the dynamic behavior of the engine 

elements such as crankshaft can be useful for obtaining 

the dynamic behavior of the vehicle [23-25]. Mourelatos 

[26] described a system model for analyzing the 

dynamic behavior of an internal combustion 

engine crankshaft. A numerical model using an explicit 

formulation was developed by Fonseca and de Faria [27] 

in order to accurately simulate crank shaft deep rolling 

dynamics. Drab et al. [28] simulated the crankshaft 

dynamics by flexible bodies and force laws describing 

the interaction between the bodies.  

This study by presenting a 15-DOF model of the vehicle 

dynamics, considers the vehicle modeling that can 

simulate the vehicle’s dynamic behavior in the state of 

stability threshold of the vehicle and can apply effective 

design parameters in the model. The tire is modeled with 

the Pacejka 89 model, which calculates the tire forces 

using longitudinal and lateral slips. The gyroscopic 

moment of the crankshaft is directly added to the torque 

vector of external forces, and the final equations of 

motion of the vehicle will be extracted. The dynamic 

behavior of the 15-DOF presented model is validated by 

ADAMS/Car software. By using numerical method of 

the Newmark [29], dynamic behavior of the vehicle in 

fishhook maneuver is simulated under the supervision of 

the phase IV of NHTSA’s light vehicle rollover research 

program.  

2 MODELING AND EQUATIONS  

In this research, the vehicle is considered as a set of 

lumped masses including the sprung mass and four 

unsprung masses as a set of wheels and tires. The 

unsprung masses are connected to the sprung mass by 

the spring and damper. Each tire is assumed equivalent 

to a spring and a damper in parallel in the vertical 

direction. The number of degrees of freedom considered 

for the vehicle model is 15 degrees, which is 6-DOF 

related to the translation and the rotation of the sprung 

mass. 4-DOF is for vertical movement of the unsprung 

masses, which indicates the vertical movement of the 

suspension systems. 4-DOF is related to the rotation of 

the wheels around its axis and 1-DOF is considered for 

steerability of the front wheels. For this set of masses, 

separate coordinate systems such as fixed inertial 

coordinate system (O), sprung mass coordinate system 

(S), roll axis coordinate system (vehicle coordinates (V)) 

https://scholar.google.com/citations?user=U65zDacAAAAJ&hl=en&oi=sra
https://www.sciencedirect.com/science/article/abs/pii/S0045794901001195#!
https://www.sciencedirect.com/topics/engineering/internal-combustion-engine
https://www.sciencedirect.com/topics/engineering/internal-combustion-engine
https://www.sciencedirect.com/topics/engineering/crankshafts
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and wheel coordinate system (US) are considered. The 

direction of the coordinate systems as shown in “Fig. 1” 

is in accordance with the SAE (Society of Automotive 

Engineers) standard [17].  

 

 
Fig. 1 Direction of the vehicle coordinate system 

according to the SAE standard. 
 

In “Fig. 1”, the sprung mass coordinate system is located 

at the center of gravity of the sprung mass (CGS). The 

coordinate system located on the roll axis, which is the 

most important coordinate system and all variables are 

expressed in this system, is located at a point on the roll 

axis and below the center of gravity of the vehicle mass 

(VCG). It is also assumed that this coordinate system 

only rotates around the Z axis. To obtain the equations 

of wheels’ motion in the vertical direction and around 

their rotation axis, for each wheel a coordinate system is 

used at the center of rotation. According to coordinate 

systems and using Newton’s equations of motion, all 

equations of motion for the sprung and unsprung masses 

will be obtained in the vehicle coordinate system. 

Therefore, for sprung mass, “Eqs. (1-3)” can be written: 
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Similarly, for unsprung masses, “Eqs. (4-6)” are 

obtained: 
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By placing velocities of “Eqs. (1-3)” in Newton’s linear 

momentum equation of sprung mass, the force vector of 

sprung mass in the vehicle coordinate system is obtained 

as “Eq. (7)”: 
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(7) 

 

Similarly, for unsprung masses, “Eqs. (8-12)” are 

obtained: 
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According to “Eq. (13)”, the total forces acting on the 

vehicle include the forces acting on sprung and unsprung 

masses:  
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(13) 

 

Which, 𝑚 = 𝑚𝑠 + 2𝑚𝑢𝑠𝑓 + 2𝑚𝑢𝑠𝑟  is the total mass of 

the vehicle. According to Newton’s angular momentum 

equation, the resultant of the torques acting on the body 

is equal to the change of the body’s angular momentum. 

If we write this relation for the center of the vehicle 

coordinate system whose distance to the center of the 

sprung mass coordinate system remains constant, “Eq. 

(14)” will be obtained: 
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Which, 𝐑𝑆
𝑉  is the matrix of coordinate transformation 

from the sprung mass coordinates to the vehicle 

coordinates (see appendix). Assuming that the amounts 

of inertia moments remain constant with small rotation 

of roll and pitch of the vehicle, “Eq. (15)” is obtained: 
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Since the xy plane is symmetry plane of the vehicle with 

a good approximation, so 𝐼𝑥𝑦 = 𝐼𝑦𝑧 = 0 and with 

ignoring the value of 𝐼𝑥𝑧, the matrix of sprung mass 

inertia moments will be presented in “Eq. (17)”: 
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By placing 𝛚𝑠
𝑉 , �̇�𝑒

𝑉  and 𝐈𝑠
𝑉 , respectively, from “Eqs. 

(2), (16) and (17)” in the “Eq. (15)”, “Eq. (18)” is 

obtained: 
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To derive the equation of unsprung mass angular 

momentum, similar to the equation of sprung mass 
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angular momentum (“Eq. (15)”), “Eqs. (19-21)” are 

obtained as follows: 

 

 V V V V V V

usij usij usij usij usij usij  M I ω ω I ω (19) 

 

V V V V
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(21) 

 

Considering that the center of coordinate of the vehicle 

is a point that differs from the center of mass of the 

sprung and unsprung masses, according to “Eq. (22)”, 

the total torque applied to the vehicle can be calculated 

[18]: 

 

   Q G relrelrel
m  H H ρ V  

(22) 

 

Equation (22) shows the angular torque around the 

desired point Q. According to the toques principle in 

which the sum of the torques of all external forces of the 

system around of point Q must be equal to resultant their 

torque around Q, “Eq. (23)” is obtained as follows: 

 

Q G    M M ρ F (23) 

 

By placing vector of forces and torques in “Eq. (23)” for 

the proposed vehicle model, “Eq. (24)” is obtained: 

 
V V V V V V V

V S usij CGS S usij usij     M M M ρ F ρ F  (24) 

 

By exerting the force-torque equations (“Eqs. (7), (9-

12), (18) and (21)”) in “Eq. (24)”, torque components of 

the vehicle are obtained according to “Eqs. (25-27)”: 
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(27) 

 

The left side of “Eqs. (13) and (25-27)”, which are the 

main equations of motion of the vehicle, includes the 

forces and torques of the external forces applied to the 

vehicle and an example of them is shown in “Fig. 2”. By 

considering the directions of the coordinate systems, 

these forces and torques are entered into the equations of 

motion of the vehicle.  

 

 
Fig. 2 External forces on the xy plane of the vehicle 

coordinate system. 

2.1. Equations of External Forces 

By writing the resultant of forces and torques applied to 

the vehicle, “Eqs. (28) and (29)” are obtained: 
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In “Eqs. (28) and (29)”, 𝑍𝑛 is the displacement of a point 

of the sprung mass in the vertical direction above the 

unsprung masses, which is calculated according to “Eq. 

(30)”: 

 

1 ( 2)sin sinCGS fZ Z t l    , 

2 ( 2)sin sinCGS fZ Z t l    , 

3 ( 2)sin sinCGS rZ Z t l    , 

4 ( 2)sin sinCGS rZ Z t l     

(30) 

2.2. Equations of Engine Rotating  

Generally, in the extraction of equations of the vehicle, 

the sprung mass is considered as rigid. Now, if a part of 

the sprung mass has a rotation relative to the vehicle 

coordinate system (such as the engine crankshaft), then 

it is necessary to enter the effect of the rotation of this 

component in the force-torque equations that have been 

calculated so far. In this study, it is assumed that the 

rotating components are symmetric, so the product of 

inertia multiplications is zero. In this case, the rotation 

of these components will not create any force and 

therefore the force equation remains stable. However, if 

the rotational velocity of the rotating components or 

their moment of inertia is significant, then the 

gyroscopic moments due to the angular momentum of 

the rotating component are considerable and its effect 

must be considered in the torque equation. The 

gyroscopic moment is obtained according to “Eq. (31)”: 
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In “Eq. (31)”, 𝐇 is the angular momentum vector of the 

engine and the vector of the angular velocity of the 

engine in the vehicle coordinate system ( 𝛚𝑒
𝑉 ) is 

considered according to “Eq. (32)”: 
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In this study, the crankshaft coordinate axes are 

considered to correspond to the vehicle coordinate axes, 

in which case the product of the crankshaft inertia 

multiplications in the vehicle coordinates is also equal to 

zero. Thus:  
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By placing “Eqs. (32) and (33)” in “Eq. (31)”, the 

gyroscopic moment vector in the vehicle coordinate 

system is obtained as “Eq. (34)”:  
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In “Eq. (34)”, 𝜔 is the angular velocity of the engine and 

𝐼𝑎𝑒  is the crankshaft inertia moment around its rotation 

axis. In this study, the gyroscopic moment of the 

crankshaft is considered like other external torques and 

is added directly to the torque vector of external forces.  

2.3. Wheels Equations of Motion  

The wheel equations of motion in the vertical direction 

are determined according to “Eqs. (35-38)”. With 

writing the resultant of the forces for each of the 

unsprung masses (“Fig. 3”), “Eqs. (35-38)” are obtained: 
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Fig. 3 Modeling of the unsprung mass. 
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2.4. Tire Modeling  

In this research, the model of Pacejka 89 (Magic 

Formula), which has the ability to estimate the lateral 

and longitudinal forces of the tire under lateral and 

longitudinal slips, is considered [19-22]. This model 

receives variables such as vertical force of the wheel and 

longitudinal and lateral slips as input and its output is the 

longitudinal and lateral forces of the tire. The 

longitudinal slip is considered based on “Eqs. (39) and 

(40)”:   

 

Longitudinal slip during acceleration: 

 

 0 : 1x x wif a V V    (39) 

 

Longitudinal slip during braking: 

 

 0 : 1x w xif a V V    (40) 

 

In “Eqs. (39) and (40)”, 𝑉𝑤 = 𝑟𝑤𝜔𝑤 and the lateral slip 

angle is difference between the direction of tire 

longitudinal axis and the direction of tire velocity vector 

in the xy plane (“Fig. 4”). The lateral slip angles are 

obtained in the form of “Eqs. (41) and (42)”: 

 

   arctan ( 2)fR y f x fV l V t       
 

, 

   arctan ( 2)fL y f x fV l V t       
 

 
(41) 

  

   arctan ( 2)rR y r xV l V t     
 

, 

   arctan ( 2)rL y r xV l V t     
 

 
(42) 

 

 
Fig. 4 Tire coordinates according to the SAE standard 

[19]. 

 

Therefore, the longitudinal and lateral forces of the tire 

are obtained according to “Eqs. (43) and (44)” by 

determining the longitudinal slip and lateral slip angle. 

In the appendix, the constants of Magic Formula 

(Pacejka 89) are given and longitudinal and lateral forces 

of Magic Formula are shown in “Figs. 5 and 6”. 

 

    1 1 1sin arctan arctanxF D C BX E BX BX Sv     

0C b ,  2

1 2z zD b F b F  , 

   52

3 4
zb F

z zBCD b F b F e


  , 

 /B BCD CD ,  2

6 7 8z zE b F b F b   ,  

9 10zSh b F b  , 0Sv  , 
1X Sh   

(43) 

  

    1 1 1sin arctan arctanyF D C BX E BX BX Sv     

0C a ,  2

1 2z zD a F a F  ,  

   3 4 5sin arctan 1zBCD a F a a   , 

 /B BCD CD ,  6 7zE a F a  ,  

9 10 8zSh a F a a    , 11 12 13z zSv a F a F a  

,  

1X Sh   

(44) 

 

 
Fig. 5 Variation of longitudinal force of Magic Formula 

according to the longitudinal slip. 
 

 
Fig. 6 Variation of lateral force of Magic Formula 

according to the lateral slip angle. 
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3 NUMERICAL METHOD  

By using numerical method of the Newmark in the form 

of time integration [29], vehicle’s dynamic behavior is 

simulated. In the Newmark family methods, at time of 𝜏 

the vector of displacement (𝐪), velocity (�̇�) and 

acceleration (�̈�) are estimated by 𝐄𝑑+1, �̇�𝑑+1 and 𝐚𝑑+1 

at time of 𝜏𝑑+1. The vehicle’s displacement vector is 

selected as “Eq. (45)” and the governing matrix-vector 

equations at time of 𝜏 = 𝜏𝑑+1 can be changed to an 

estimated prescription as “Eq. (46)”.   

 

{ , , , , , , }T

CGS usfR usfL usrR usrLX Y Z Z Z Z Z     q  (45) 

  

1 1 1 1 1( ) ( , )d d d d d     Γ E a G E E Λ  
1

0 0 0(0), (0), ( (0)) ( (0), (0))   E E E E a Γ E G E E  
(46) 

 

Where, 𝚪 is the inertia matrix and 𝚪 and 𝐆 are function 

of the displacement and velocity, 𝚲 is the vector of 

external excitations, 𝐄0 is the initial displacement, �̇�𝟎 is 

the initial velocity and 𝐚0 is the initial acceleration. 

Displacement and velocity can be predicted by “Eqs. 

(47) and (48)”: 

 
2ˆ 0.5 (1 2 )d d d d      E E E a  (47) 

  
ˆ

(1 )d d d    E E a (48) 

 

Where, ∆𝜏 = 𝜏𝑑+1 − 𝜏𝑑 is the size of time step, 𝜉 and 𝜂 

are the Newmark’s algorithm parameters which show 

the accuracy of the algorithmic. Updated displacement 

and velocity are obtained from “Eqs. (49) and (50)”: 

 
2

1 1
ˆ

d d d    E E a (49) 

  

1 1

ˆ
d d d    E E a (50) 

 

In order to obtain 𝐄𝑑+1 and �̇�𝑑+1, update of the 

acceleration must be known (𝐚𝑑+1). By using method of 

the Newton–Raphson for every time step and by placing 

“Eqs. (49) and (50)” into “Eq. (46)”, 𝐚𝑑+1 is obtained 

from “Eqs. (51) and (52)”:   

 
1

1 1 1

u u u

d d d



    a a a (51) 

  

1 1 1 1 1 1

u u u u u

d d d d d d         J a Γ a G Λ (52) 

 

Where, 𝑑 and 𝑢 are the iteration number of time step and 

Newton–Raphson method, 𝚪𝑑+1
𝑢 = 𝚪(𝐄𝑑+1

𝑢 ), 𝐆𝑑+1
𝑢 =

𝐆(𝐄𝑑+1
𝑢 , �̇�𝑑+1

𝑢 ) and 𝐉𝑑+1
𝑢  is the matrix of Jacobian and is 

defined as “Eq. (53)”:   

 

2 1 1 1

1 1

1 1

1

1

( ) [ ]

)

u u u

u u d d d

d d u u

d d

u

d

u

d

 

 

  

 

 





 
    

 






Γ a G
J Γ E

E E

G

E

 (53) 

4 VALIDATION AND SIMULATION RESULTS  

Several different test programs in the phase IV of 

NHTSA’s light vehicle rollover research program were 

reviewed and evaluated to select the most appropriate 

maneuver from them to investigate the rollover. 

According to “Table 1ˮ , it can be seen that one of the 

best maneuvers, is the fishhook#1b, which has obtained 

the highest score. According to “Fig. 7” in the 

fishhook#1b test, the pause time of the hand-wheel angle 

(T1) at the maximum angle of the initial hand-wheel 

angle is until the roll rate of the vehicle reaches 1.5 

degrees per second. On the other hand, in the 

fishhook#1b maneuver, the change of hand-wheel angle 

direction is done when the roll rate of the vehicle has 

reached 1.5 degrees per second.  

 
Table 1 Comparison of different rollover maneuvers [2] 

Assessment 

Criterion 

NHTSA 

J-Turn 

Fishhook 

#1a 

Fishhook 

#1b 

Nissan 

Fishhook 

Objectivity 

and 

Repeatability 

Excellent Excellent Excellent Good 

Performability Excellent Good Excellent Satisfactory 

Discriminatory 

Capability 

Excellent Excellent Excellent Excellent 

Appearance of 

Reality 

Good Excellent Excellent Good 

 

 
(a) 



32                                            Int  J   Advanced Design and Manufacturing Technology, Vol. 14/ No. 2/ June – 2021 
  

© 2021 IAU, Majlesi Branch 
 

 
(b) 

Fig. 7 Schematic of hand-wheel angle of the vehicle in: 

(a): NHTSA fishhook#1b maneuver [2], and (b): this study. 
 

Due to the fact that the vehicle is assumed to be perfectly 

symmetrical with respect to its xz plane, direction of the 

hand-wheel angle (clockwise or counterclockwise) of 

“Fig. 7” has no effect on the maneuver results. The initial 

speed of the vehicle is shown in “Figs. 8 and 9” and the 

engine speed is 5000 revolutions per minute (RPM). 

During fishhook#1b maneuver, the passed trajectory by 

the vehicle is shown in “Fig. 10”.    

 

 
Fig. 8 Longitudinal velocity of the vehicle in fishhook#1b 

maneuver. 
 

 
Fig. 9 Lateral velocity of the vehicle in fishhook#1b 

maneuver. 

 
Fig. 10 Trajectory of the vehicle in fishhook#1b maneuver. 

 

By applying the hand-wheel angle according to “Fig. 7”, 

the numerical method of the Newmark and the 

parameters of “Table 2ˮ , the dynamic behavior of the 

vehicle is compared by ADAMS/Car software according 

to “Figs. 11-13”. Based on the validation results, it is 

found that the 15-DOF presented model in this research 

simulates the vehicle’s dynamic behavior with a good 

accuracy. According to the results, by applying the 

steering input, the lateral acceleration reaches about 0.8g 

and after a few seconds decreases with decreasing 

longitudinal velocity of the vehicle. The roll angle of the 

vehicle reaches about 8.5 degrees and after a few 

oscillations due to the vibrational behavior of the 

system, it decreases. The maximum roll rate of the 

vehicle also reaches about 37 degrees per second. 

  
Table 2 System parameters of this study 

Parameter Value Unit Parameter Value Unit 

𝑚𝑠 808 Kg 𝑐𝑟 882.9 N.s/m 

𝑚𝑢𝑠𝑓 2×31

.5 

Kg 𝐼𝑥 298 Kg.m2 

𝑚𝑢𝑠𝑟 2×29

.5 

Kg 𝐼𝑦 1243 Kg.m2 

ℎ𝐶𝐺 0.54 m 𝐼𝑧 1130 Kg.m2 

ℎ𝑅𝐴 0.1 m 𝑟𝑤 0.257 m 

𝑡 1.4 m ℎ𝑅𝐶  0.1 m 

𝑙𝑓 0.945 m ℎ𝑆 0.45 m 

𝑙𝑟 1.4 m 𝐼𝑎𝑒 1.5 Kg.m2 

𝑘𝑓 16 kN/m 𝑘𝑡𝑓 160 kN/m 

𝑘𝑟 15.4 kN/m 𝑘𝑡𝑟 154 kN/m 

𝑐𝑓 1414.

3 

N.s/

m 
𝜉 0.25 - 

𝑐𝑡 0 N.s/

m 
𝜂 0.5 - 

𝑙𝑠 0.35 m    
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(a) 

 
(b) 

Fig. 11 Roll angle of the vehicle in fishhook#1b maneuver: 

(a): ADAMS software, and (b): this study. 

 
(a) 

 
(b) 

Fig. 12 Roll rate of the vehicle in fishhook#1b maneuver: 

(a) ADAMS software and (b) this study. 

 
(a) 

 
(b) 

Fig. 13 Lateral acceleration of the vehicle in fishhook#1b 

maneuver: (a) ADAMS software and (b) this study. 

5 CONCLUSION 

This study presents the dynamics of a 15-DOF model of 

the vehicle by performing simulations to investigate the 

vehicle’s dynamic behavior in fishhook maneuver under 

the supervision of the phase IV of NHTSA’s light 

vehicle rollover research program. Using Newton’s 

equations of motion, the equations of motion for the 

sprung and unsprung masses are all written in the vehicle 

coordinate system. In order to study the engine 

dynamics, the crankshaft coordinate axes are considered 

to correspond to the vehicle coordinate axes. Finally, the 

gyroscopic moment of the crankshaft is added directly 

to the torque vector of external forces, and the governing 

equations are evaluated by numerical method of the 

Newmark. The tire is modeled with the Pacejka 89 

model, which estimates tire forces with using 

longitudinal and lateral slips. By selecting the 

fishhook#1b maneuver, the dynamic behavior of the 15-

DOF presented model is validated by ADAMS/Car 

software. Based on the simulation results, it is found that 

the 15-DOF presented model in this research simulates 

the vehicle’s dynamic behavior with a good accuracy. 

By applying the steering input, the lateral acceleration 
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reaches about 0.8g and after a few seconds decreases 

with decreasing longitudinal velocity of the vehicle. The 

roll angle of the vehicle reaches about 8.5 degrees and 

after a few oscillations due to the vibrational behavior of 

the system, it decreases. The maximum roll rate of the 

vehicle reaches about 37 degrees per second.  

6 APPENDIX OR NOMENCLATURE 

Nomenclature Subscripts 

𝑎 

Accelera

tion and 

lateral 

constants 

of the 

Magic 

Formula 

𝑡 
Track 

width 
𝑎𝑒 

Cranks

haft 
𝑠 

Sprung 

mass 

𝑏 

Longitud

inal 

constants 

of the 

Magic 

Formula 

𝑉 Velocity 𝐶𝐺 

Center 

of 

gravity 
𝑡 Tire 

𝑐 

Damping 

coefficie

nt 
𝑍 

Vertical 

displace

ment 
𝑒 Engine 𝑢𝑠 

Unsprun

g mass 

𝐹 Force Greek Letters 𝑓 Front 𝑉 Vehicle 

ℎ Height 𝛼 

Lateral 

slip 

angle 
𝑔 Road 𝑤 Wheel 

𝐻 

Angular 

moment

um 
𝛾 

Camber 

angle 
𝑖 

Front 

and 

rear 

wheels 

(𝑓, 𝑟) 

𝑥 

Longitu

dinal 

directio

n 

𝐼 
Moment 

of inertia 
𝛿 

Steering 

input 
𝑗 

Right 

and 

left 

wheels 

(𝐿, 𝑅) 

𝑦 

Lateral 

directio

n 

𝑘 

Stiffness 

coefficie

nt 
𝜃 

Roll 

angle 
𝐿 

Left 

side 
𝑧 

Vertical 

directio

n 

𝑚 Mass 𝜎 

Longitu

dinal 

slip 
𝑟 Rear   

𝑀 Torque 𝜑 
Yaw 

angle 
𝑅 

Right 

side 
  

𝑟 Radius 𝜓 
Pitch 

angle 
𝑅𝐴 

Roll 

axis 
  

𝑅 

Function 

of 

coordina

te 

transfor

mation 

𝜔 
Angular 

velocity 
𝑅𝐶 

Roll 

center 
  

 

The transformation relation between coordinate systems 

of the sprung mass and vehicle which results from 

rotation of pitch and roll, is obtained as follows: 

cos 0 sin 1 0 0

0 1 0 0 cos sin

sin 0 cos 0 sin cos

v

s

 

 

   

   
   

  
   
      

R  

cos sin sin sin cos

0 cos sin

sin cos sin cos cos

v

s

    

 

    

 
 

 
 
  

R  

 
Table 3 Constant values used in the Pacejka 89 tire model 

Lateral constants Longitudinal constants 

0 1.65a  , 
1 34a   , 

2 1250a  , 
3 3036a  , 

4 12.8a  , 
5 0.00501a  , 

6 0.02103a   , 

7 0.77394a  , 

8 0.002289a  , 

9 0.013442a  , 

10 0.003709a  , 

11 19.1656a  , 

12 1.21356a  , 

13 6.26206a   

0 2.37272b  , 

1 9.46b   , 
2 1490b  , 

3 130b  , 
4 276b  , 

5 0.0886b  , 

6 0.00402b  , 

7 0.0615b   , 
8 1.2b  , 

9 0.0299b  , 

10 0.176b    
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