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Abstract: Functionally Graded Materials (FGMs) can be described by continuous 
variation in structure and composition over volume, resulting in corresponding 
changes in the properties of the material. These kinds of materials are designed to 
achieve specific properties for specific applications. For the first time, the effects of 
stepwise fractional axial material gradation pattern and axial compressive load with 
piecewise function on buckling behaviour of Euler-Bernoulli beam rested on semi-
rigid restraints are studied. It is worth mentioning that the more computational 
efforts are required to solve current problem with respect to the buckling problem of 
transversely graded beam due to discontinues material gradation especially in the 
axial direction, axial span-load with piecewise function and natural conditions of 
rotational spring hinges. The deflection continuity, natural equations as well as 
boundary conditions are written in the matrix form. The beam discretizing and 
nontrivial solution are employed to obtain buckling characteristic equation and 
matrix operations are used to calculate corresponding first mode shapes. 
Compatibility with various conditions and eliminating convergence drawbacks of 
conventional numerical tools are advantages of the proposed method. It is observed 
that the buckling load is decreased by increasing lengths of beam parts and increased 
by increasing rotational stiffness at semi-rigid supports. In the case of homogeneous 
beam, the result validity is proved by observing an excellent agreement between 
results of current work and well-known data in literature. 
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1 INTRODUCTION 

The sharp transition of properties at the junction of 

conventional composite materials is eliminated by 

inventing a novel type of composite materials named 

Functionally Graded Materials (FGMs). This material 

was first invented in 1984 by Japanese scientists for the 

core purpose of their aerospace project that required 

thermal barrier with the outside temperature of 2000 k 

and inside temperature of 1000 k within 1cm thickness. 

FGMs are described by continuous variation in structure 

and composition over volume, resulting in 

corresponding changes in the properties of the material. 

They are designed to achieve specific properties for 

specific applications.  

The various benefits of FGMs over conventional 

composites attract many researchers to analyze 

structures made up of FGMs. In addition, various 

complexities in current work like the fractional material 

gradation in axial direction, discontinues axial load and 

mechanical properties as well as semi-rigid supports at 

beam ends required a robust solution method.  

The thermal snap-buckling analysis of temperature-

dependent functionally graded curved Nano beam with 

clamped ends subjected to uniform temperature 

distributions across the thickness is conducted.  The size 

effects are captured by nonlocal strain gradient theory.  

Hamilton’s principle and Akavci’s beam theory are used 

to derive nonlinear governing equations. The effects of 

strain gradient parameter, nonlocal parameter, thermal 

loadings and power law index on the snap-buckling of 

the Nano beam are investigated [1].  

The wave propagation in double-layered porous 

nanotubes systems is investigated by considering 

nonlocal strain gradient theory and using the Hamilton 

principle. It is observed that the material properties of 

nanotubes are depended on the porosity and hygro-

thermal effects. The dispersion relations and 

displacement fields of wave propagation in the double 

nanotubes systems which experience three different 

types of motion are obtained and discussed. The phase 

velocities of the double nanotubes systems are affected 

by various parameters including non-local and strain 

gradient parameters, temperature and humidity change, 

porosity, material composition, interlayer spring and 

wave number [2].  

The snap-buckling analysis of nonlocal Reddy's higher-

order functionally graded porous curved beam resting on 

three parameters elastic medium subjected to uniform 

transverse load with immovable simply-supported or 

clamped boundary conditions is performed. By using the 

two-step perturbation technique, the perturbation 

equations and the approximate boundary value problems 

of nonlinear governing equations are obtained. The 

effects of small scale, elastic foundation, porosity, 

material composition, geometry and boundary 

conditions are studied [3]. According to the nonlocal 

strain gradient theory assumptions, the nonlinear 

bending analysis of porous functionally graded curved 

nanotubes with uniformly distributed pores in the radial 

direction by considering the stiffness reduction and 

enhancement effects is done.  

The asymptotic solutions of the curved nanotubes are 

obtained via two-step perturbation method. The jump 

changes as well as snap-through buckling can occur 

when the functionally graded curved nanotubes are 

affected by normal bending loads [4]. The prediction of 

wave propagation behaviors of functionally graded 

materials porous Nano beams based on Reddy's higher-

order shear deformation beam theory in conjunction 

with the nonlocal strain gradient theory is presented. By 

employing Hamilton principle, governing equations of 

the porous nan beams are derived. The analytic 

dispersion relation is obtained by solving an eigenvalue 

problem.  

The results of thin beam based on classical or Euler-

Bernoulli beam theory and results of Timoshenko beam 

based on first order shear deformation beam model are 

calculated [5]. Within the framework of the nonlocal 

strain gradient theory, the nonlinear bending and 

vibrational characteristics of size-dependent shear 

deformable radially graded porous tube are analyzed. 

The feasibility and validity of the applied method are 

verified by actual examples. The effects of different 

parameters such as porosity volume fraction, power law 

index, scaling parameters and inner-to-outer radius ratio 

on the nonlinear bending and vibration behaviors of the 

porous tubes are discussed [6]. An analytic model of 

porous nanotubes for the wave propagation analysis is 

formulated with the help of the nonlocal strain gradient 

theory.  

The dispersion relations between phase velocity and 

wave number are determined by solving an eigenvalue 

problem. It is found that the asymptotic phase velocity 

can be increased by increasing the strain gradient 

parameter or decreasing the nonlocal parameter. 

Moreover, the heterogeneity of functionally graded 

materials and temperature variation has a substantial 

influence on the dispersion relations of nanotubes. The 

nonlocal parameter and strain gradient parameter have 

important effects on the dispersion relation at high wave 

numbers; in contrast, these effects can be negligible at 

low wave numbers. Meanwhile, it can be inferred that 

the phase velocity can decrease or increase as the 

porosity volume fraction rises, which depends on the 

power law index [7]. The vibration problem of size-

dependent and temperature-dependent refined porous 

nanotubes is solved via Navier method [8]. The buckling 

and postbuckling behaviors of nanotubes are studies 

thoroughly [9]. Thermal buckling and post-buckling 

analysis of functionally graded beams based on a general 

higher-order shear deformation theory is conducted [10].  
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The numerical tools like the ANFIS [11] and DTM [12] 

are the essential tools to solve engineering problems [13-

14].  

The calculus of variations and collocation method are 

employed to solve buckling problem of tapered Euler-

Bernoulli Nano-beams made up of bidirectional 

functionally graded material under variable axial 

compression in the presence of elastic medium [15]. The 

spectral Ritz method with trial functions of orthogonal 

shifted Legendre polynomials is used to solve buckling 

problem of thick functionally graded circular plate 

rested on Pasternak foundation [16]. The modified 

Chebyshev-Ritz method without adhesive or auxiliary 

functions requirement is employed to analyze size-

dependent damped vibration and buckling analyses of 

bidirectional functionally graded solid circular Nano-

plate with arbitrary thickness variation [17]. A new 

methodology based on differential transform and 

collocation methods is proposed to solve coupled partial 

differential equations of motion without any 

simplifications [18].  

A new scheme for buckling analysis of bidirectional 

functionally graded Euler beam having arbitrary 

thickness variation rested on Hetenyi elastic foundation 

is proposed [19]. The analytical method is used to 

conduct various analyses including buckling analysis of 

functionally graded tube, beam and plate [20-23]. The 

effect of attached lumped mass position on the frequency 

reduction of the radially graded tube is investigated by 

employing spectral Ritz method [24]. Elastic buckling 

analysis of multistory functionally graded sway bending 

frame is performed via finite element method [25]. 

Elastic buckling analysis of non-sway bending frame is 

performed by using stability functions [26].  

This work aims to investigate the effects of fractional 

material gradation in the axial direction as well as 

piecewise axial compressive load function on buckling 

behavior of Euler-Bernoulli beam. The problem requires 

a robust methodology due to complicated conditions 

including stepwise material gradation in the axial 

direction, axial span-load and natural conditions at 

rotational spring hinges. Current work presents an 

efficient and simple method to conduct buckling 

analysis of discontinues fractional axially graded thin 

beam with piecewise axial load function rested on semi-

rigid restraints.  

The nontrivial solution is used to calculate buckling 

characteristic equation of beam and matrix operations 

are used to obtain corresponding buckling mode shapes 

of first buckling loads. Compatibility with various 

conditions and eliminating convergence drawbacks of 

conventional numerical tools are advantages of the 

proposed method. The validity of the proposed method 

is proved by observing an excellent agreement between 

results of present work for homogeneous beam with the 

well-known data in literature. 

2 GOVERNING EQUATIONS 

The stepwise fractional axially graded Euler-Bernoulli 

beam subjected to axial span-load rested on semi-rigid 

restraint is illustrated in “Fig. 1ˮ. The beam is made of 

two distinct parts with different lengths but same axial 

material gradation. The right part of the beam with the 

length 𝐿2 = 𝐿𝑟, is subjected to the concentrated axial 

load, 𝑃, but the left part of the beam with the length 𝐿1 =
𝐿𝑙 is axial-stress-free. The rotational stiffness of 

rotational spring hinges at left and right ends of the beam 

are 𝑘𝜃𝑙 and 𝑘𝜃𝑟, respectively. 

 

 

Fig. 1   Stepwise fractional axially graded beam with semi-

rigid support subjected to axial span-load. 
 

In fractional material gradation model, the gradation 

power function is to the power of a fraction rather than a 

whole number. In current work, the elasticity modulus 

gradation of fractional axially graded Euler-Bernoulli 

beam is modeled by one and a half fraction power 

function. 

  

𝐸𝑖(𝑥) = 𝐸0 (1 +
𝑥𝑖
𝐿𝑖
)
1.5

       𝑖 ∈ {1,2} (1) 

 

The parameter 𝐿𝑖 is beam length, which takes 𝐿1 = 𝐿𝑙 or 

𝐿2 = 𝐿𝑟. The parameter 𝐸0 is material index. The 

elasticity modulus value at left end of the beam parts is 

𝐸0. The elasticity modulus at right end of the beam parts 

is 2√2𝐸0. The total potential energy can be written as 

follows: 

 

𝛱 = 𝑈 + 𝛺 (2) 

 

The stored strain energy and path-dependent work 

caused by non-conservative force are shown by 𝑈 and 

𝛺, respectively.The total potential energy of buckled 

fractional axially graded Euler-Bernoulli beam element 

is: 
  

𝛱 =
1

2
𝐼 ∫ 𝐸(𝑥) (

𝑑2

𝑑𝑥2
𝑤(𝑥))

2

𝑑𝑥
𝐿

0

−
1

2
𝑃∫ δ𝑙(𝑥)

𝐿

0

 

(3) 

 

Where, the parameters 𝐼, 𝑤, 𝑃 and δ𝑙(𝑥) denote moment 

of inertia, deflection, concentrated axial compression 

applied to the beam end and change of the beam element 
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length caused by buckling at the position 𝑥, respectively. 

It is noteworthy that the parameter δ𝑙(𝑥) takes positive 

sign when decrease in length occurs. The total change of 

the beam length subjected to compressive load is 

calculated as follows: 

 

Δ𝐿 = ∫ (√1 + (𝑑𝑤(𝑥) 𝑑𝑥⁄ )2 − 1)
𝐿

0

𝑑𝑥 (4) 

 

The integrand in second term of “Eq. (3)ˮ is replaced by 

truncated Taylor series expansion with truncation order 

of three. “Eq. (3)ˮ is rewritten as follows:  

 

𝛱 =
1

2
𝐼∫ 𝐸(𝑥) (

𝑑2

𝑑𝑥2
𝑤(𝑥))

2

𝑑𝑥
𝐿

0

− 

1

2
𝑃∫ (

𝑑

𝑑𝑥
𝑤(𝑥))

2

𝑑𝑥
𝐿

0

 

(5) 

 

The total potential energy must be minimized to 

calculate governing equilibrium equation. To this 

purpose, instead of 𝑤, the auxiliary path, �̃�, is assumed. 

 
�̃�(𝑥) = 𝑤(𝑥) + 𝜆𝜑(𝑥) (6) 

 

The smooth function 𝜑(𝑥) can be differentiated twice. 

Moreover, 𝜑(𝑥) and its derivatives are vanished at both 

ends of the beam element. The derivative of 𝛱 with 

respect to 𝜆 is calculated to minimize total potential 

energy. The numeral constant 𝜆 is approached to zero to 

match the auxiliary path to the initial path. 

 

lim
𝜆→0

∂

𝜕𝜆
(𝐼 ∫ 𝐸(𝑥) (

𝑑2

𝑑𝑥2
�̃�)

2

𝑑𝑥 −
𝐿

0

 

𝑃∫ (
𝑑

𝑑𝑥
�̃�)

2

𝑑𝑥
𝐿

0

) = 0 

(7) 

 

The chain rule is employed as follows: 

 

1

2
lim
𝜆→0

𝐼 ∫ (𝐸(𝑥)
∂

𝜕�̃�′′
(�̃�′′)2

∂�̃�′′

𝜕𝜆
𝑑𝑥 −

𝐿

0

 

𝑃∫
∂

𝜕�̃�′
(�̃�′)2

∂�̃�′

𝜕𝜆
𝑑𝑥

𝐿

0

) = 0 

(8) 

 

“Eq. (8)ˮ is simplified as follows: 

 

𝐼 ∫ 𝐸
𝑑2

𝑑𝑥2
𝑤(𝑥)

𝑑2

𝑑𝑥2
𝜑(𝑥)𝑑𝑥

𝐿

0

− 

𝑃∫
𝑑

𝑑𝑥
𝑤(𝑥)

𝑑

𝑑𝑥
𝜑(𝑥) 𝑑𝑥

𝐿

0

= 0 

(9) 

 

According to integration by parts rule, one can write: 

𝐼 ∫ 𝐸(𝑥)
𝑑2

𝑑𝑥2
𝑤(𝑥)

𝑑2

𝑑𝑥2
𝜑(𝑥)𝑑𝑥

𝐿

0

− 

𝑃∫
𝑑

𝑑𝑥
𝑤(𝑥)

𝑑

𝑑𝑥
𝜑(𝑥)𝑑𝑥

𝐿

0

= 

𝐸(𝑥)𝐼 (
𝑑2

𝑑𝑥2
𝑤(𝑥)

𝑑

𝑑𝑥
𝜑(𝑥))−𝑃 (

𝑑

𝑑𝑥
𝑤(𝑥)𝜑(𝑥))]

𝑥=0

𝑥=𝐿

 

−𝐼∫
𝑑

𝑑𝑥
𝜑(𝑥)

𝑑

𝑑𝑥
(𝐸(𝑥)

𝑑2

𝑑𝑥2
𝑤(𝑥)) 𝑑𝑥

𝐿

0

 

+𝑃∫
𝑑2

𝑑𝑥2
𝑤(𝑥)𝜑(𝑥)𝑑𝑥

𝐿

0

= 0 

(10) 

 

The integration by parts rule can be employed again. 

 

−𝐼∫
𝑑

𝑑𝑥
𝜑(𝑥)

𝑑

𝑑𝑥
(𝐸(𝑥)

𝑑2

𝑑𝑥2
𝑤(𝑥))𝑑𝑥

𝐿

0

 

+𝑃∫
𝑑2

𝑑𝑥2
𝑤(𝑥)𝜑(𝑥)𝑑𝑥

𝐿

0

= 

−𝐼
𝑑

𝑑𝑥
(𝐸(𝑥)

𝑑2

𝑑𝑥2
𝑤(𝑥))𝜑(𝑥)]

𝑥=0

𝑥=𝐿

+ 

∫ (𝐼
𝑑2

𝑑𝑥2
(𝐸(𝑥)

𝑑2

𝑑𝑥2
𝑤(𝑥))

𝐿

0

+ 

𝑃𝜑(𝑥)
𝑑2

𝑑𝑥2
𝑤(𝑥))𝑑𝑥 = 0 

(11) 

 

“Eq. (11)ˮ, implies that the integrand must be set equal 

to zero. The equilibrium equation is obtained as follows: 

 

𝐸0𝐼((𝐿 + 𝑥)
2𝑤(4) + 3(𝐿 + 𝑥)𝑤(3)

+ (3 4⁄ )𝑤(2)) 

+𝑃𝐿2√1 + (𝑥 𝐿⁄ )𝑤(2) = 0 

(12) 

3 DEFLECTION FUNCTION 

According to “Fig. 2ˮ, the local coordinates are assigned 

to each part of the beam to calculate deflection functions. 

 

 

Fig. 2   Local coordinates for beam parts. 

 

The solution of the governing differential equation is:  

 

𝑤(𝑥2) = 𝑐1𝑤1(𝑥2) + 𝑐2𝑤2(𝑥2) + 𝑤𝑟𝑏𝑚(𝑥2) (13) 
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The function 𝑤𝑟𝑏𝑚(𝑥2) denotes rigid body motion of the 

right part of the beam element. 

 

𝑤𝑟𝑏𝑚(𝑥2) = 𝑐3𝑥2 + 𝑐4 (14) 

 

The bases 𝑤1(𝑥2) and 𝑤2(𝑥2) are: 

 

𝑤1(𝑥2)

= 𝐽2 (4√𝐿2 + 𝑥
4

2
√𝑃𝐿2

3 2⁄ 𝐸0𝐼⁄ )√𝐿2 + 𝑥2 
(15) 

  

𝑤2(𝑥2)

= 𝑌2 (4√𝐿2 + 𝑥
4

2
√𝑃𝐿2

3 2⁄ 𝐸0𝐼⁄ )√𝐿2 + 𝑥2 
(16) 

 

Where, 𝐽 and 𝑌 are Bessel functions of the first and 

second kinds, which are one of a class of special 

functions related to the hypergeometric functions that 

arise as solutions of Bessel's equation. Standard 

solutions are known as the Bessel functions of the first 

and second kinds, 𝐽 and 𝑌, respectively. The subscript 

two denotes the order of the Bessel functions. By 

approaching 𝑃 to zero, the deflection of fractional 

axially graded beam in the absence of axial compression 

will be obtained.  

 

�̅�(𝑥1) = 𝑐5�̅�1(𝑥1) + 𝑐6�̅�2(𝑥1) + �̅�𝑟𝑏𝑚(𝑥1) (17) 

 

The function �̅�𝑟𝑏𝑚(𝑥1) denotes rigid body motion of the 

beam element.  

 

�̅�𝑟𝑏𝑚(𝑥1) = 𝑐7𝑥1 + 𝑐8 (18) 

 

The bases �̅�1(𝑥1) and �̅�2(𝑥1) are: 

 

�̅�1(𝑥1) = √𝐿1 + 𝑥1 (19) 

  

�̅�2(𝑥1) = √(𝐿1 + 𝑥1)
3 (20) 

4 CHARACTERISTIC EQUATION 

The problem includes eight homogeneous equations. A 

system of linear equations is homogeneous if all of the 

constant terms are zero. The solutions involving the 

number zero are considered trivial, while nonzero 

solutions are considered nontrivial. The required 

equations for calculating characteristic equation of beam 

are: 

 

�̅�|𝑥1=0 = 0 (21) 

  

(𝐸1𝐼
𝑑2

𝑑𝑥1
2 �̅�)|

𝑥1=0

− 𝑘𝜃𝑙 (
𝑑

𝑑𝑥1
�̅�)|

𝑥1=0

= 0 (22) 

𝑤|𝑥2=𝐿𝑟 = 0 (23) 

  

(𝐸2𝐼
𝑑2

𝑑𝑥2
2𝑤)|

𝑥2=𝐿𝑟

+ 𝑘𝜃𝑟 (
𝑑

𝑑𝑥1
𝑤)|

𝑥2=𝐿𝑟

= 0 (24) 

  

�̅�|𝑥1=𝐿𝑙 − 𝑤|𝑥2=0 = 0 (25) 

  

(
𝑑

𝑑𝑥1
�̅�)|

𝑥1=𝐿𝑙

− (
𝑑

𝑑𝑥2
𝑤)|

𝑥2=0

= 0 (26) 

  

2√2𝐸0𝐼 (
𝑑2

𝑑𝑥1
2 �̅�)|

𝑥1=𝐿𝑙

− 𝐸0𝐼 (
𝑑2

𝑑𝑥2
2𝑤)|

𝑥2=0

= 0 

(27) 

  

𝑑

𝑑𝑥1
(𝐸1𝐼

𝑑2

𝑑𝑥1
2 �̅�)|

𝑥1=𝐿𝑙

−
𝑑

𝑑𝑥2
(𝐸2𝐼

𝑑2

𝑑𝑥2
2𝑤)|

𝑥2=0

= 0 

(28) 

 

“Eq. (21) to Eq. (28)ˮ are written in the matrix form.   

 

[
m11(P) … m18(P)

⋮ ⋱ ⋮
m81(P) … m88(P)

]

8×8

{

c1
⋮
c8
}

8×1

= {
0
⋮
0
}

8×1

 (29) 

 

In the next step, the rows that include only one nonzero 

array and corresponding columns are deleted. The 

characteristic equation is calculated by vanishing 

determinant of the reduced coefficient matrix. 

 

|

m11(P) … m1(8−r)(P)

⋮ ⋱ ⋮
m(8−r)1(P) … m(8−r)(8−r)(P)

|

(8−r)×(8−r)

= 0 

(30) 

 

The parameter 𝑟 denotes number of removed rows or 

columns. The 𝛾𝑡ℎ mode shape of buckled beam can be 

calculated as follows: 

 

{

𝑐1
⋮

𝑐7−𝑟
}

(7−𝑟)×1

= −𝑐(8−𝑟) 

[

𝑚11(𝑃𝛾) … 𝑚1(7−𝑟)(𝑃𝛾)

⋮ ⋱ ⋮
𝑚(7−𝑟)1(𝑃𝛾) … 𝑚(7−𝑟)(7−𝑟)(𝑃𝛾)

]

(7−𝑟)×(7−𝑟)

−1

 

{

𝑚1(8−𝑟)(𝑃𝛾)

⋮
𝑚(7−𝑟)(8−𝑟)(𝑃𝛾)

}

(7−𝑟)×1

 

(31

) 

in which 𝑃𝛾 is the 𝛾𝑡ℎ positive root of the characteristic 

equation (𝑃𝛾 ∈ ℝ). 
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5 RESULT VALIDATION 

The dimensionless buckling loads of first three modes of 

prismatic homogeneous beam with various classical 

boundary conditions are available in literature. The 

proposed method in current work is used to calculate 

first three dimensionless buckling loads of Euler-

Bernoulli beam with pinned-clamped boundary 

conditions to prove validity of the calculated results 

based on proposed method by observing an excellent 

agreement between current work results and results of 

available data in literature. The intact beam is discretized 

to two distinct parts with the same mechanical properties 

and section dimensions, but different lengths 𝐿1 and 𝐿2. 

It is assumed that the axial compression load is applied 

at the end of the beam; consequently, the deflection 

functions of the beam parts can be calculated as follows: 

 

𝑦𝑖(𝑥𝑖) = 𝑐1+𝑗 + 𝑐2+𝑗𝑥𝑖 + 𝑐3+𝑗 sin(𝐹𝑥𝑖)

+ 𝑐4+𝑗 cos(𝐹𝑥𝑖) 
(32) 

 

In which, 𝑖 ∈ {1,2} and 𝑗 takes 0 or 4 for 𝑖 = 1 or 𝑖 = 2, 

respectively. Also, the parameter 𝐹 is √𝑃 𝐸𝐼⁄ . Boundary 

conditions for simply supported-clamped beam are: 

 

𝑦1|𝑥1=0 = 0 (33) 

  
𝑦2|𝑥2=𝐿2 = 0 (34) 

  
𝑑2

𝑑𝑥1
2 𝑦1|

𝑥1=0

= 0 (35) 

  
𝑑

𝑑𝑥2
𝑦2|𝑥2=𝐿2 = 0 (36) 

 

The continuity of deflection at junction of two parts 

implies that “Eq. (37) and Eq. (38)ˮ must be satisfied. 

 

𝑦1|𝑥1=𝐿1 − 𝑦2|𝑥2=0 = 0 (37) 

  
𝑑

𝑑𝑥1
𝑦1|

𝑥1=𝐿1

−
𝑑

𝑑𝑥2
𝑦2|

𝑥2=0

= 0 (38) 

 

The equilibrium of bending moment and shear force at 

junction of two parts are explained by “Eq. (39) and Eq. 

(40)ˮ. 

𝑑2

𝑑𝑥1
2 𝑦1|

𝑥1=𝐿1

−
𝑑2

𝑑𝑥2
2 𝑦2|

𝑥2=0

= 0 (39) 

  
𝑑3

𝑑𝑥1
3 𝑦1|

𝑥1=𝐿1

−
𝑑3

𝑑𝑥2
3 𝑦2|

𝑥2=0

= 0 (40) 

“Eq. (33) to Eq. (40)ˮ are written in the matrix form. The 

coefficient matrix, 𝑚𝑖𝑗 (𝑖, 𝑗 ∈ {1,2,3, … ,8}), is presented 

in “Eq. (41)ˮ. In the next step, the rows that include only 

one nonzero array and corresponding columns are 

deleted. Because of zero arrays, the 3rd row and 

corresponding column (4th column) of coefficient matrix 

in “Eq. (41)ˮ are eliminated. The similar elimination is 

used for 1st row and 1st column of the remained matrix 

in “Eq. (42)ˮ to obtain the reduced coefficient matrix 

(𝐶𝑣 = cos(𝐹𝐿𝑣) , 𝑆𝑣 = sin(𝐹𝐿𝑣)). 
 

  1 0 0 1 0 0 0 0 

 0 0 0 0 1 𝐿2 𝑆2 𝐶2 

 0 0 0 −𝐹2 0 0 0 0 

 0 0 0 0 0 1 𝐹𝐶2 −𝐹𝑆2 

 1 𝐿1 𝑆1 𝐶1 −1 0 0 −1 

 0 1 𝐹𝐶1 −𝐹𝑆1 0 −1 −𝐹 0 

 0 0 −𝐹2𝑆1 −𝐹2𝐶1 0 0 0 𝐹2 

 0 0 −𝐹3𝐶1 𝐹3𝑆1 0 0 𝐹3 0 

 
0 0 0 1 𝐿2 𝑆2 𝐶2 

 0 0 0 0 1 𝐹𝐶2 −𝐹𝑆2 

 1 𝐿1 𝑆1 −1 0 0 −1 

 0 1 𝐹𝐶1 0 −1 −𝐹 0 

 0 0 −𝐹2𝑆1 0 0 0 𝐹2 

 0 0 −𝐹3𝐶1 0 0 𝐹3 0 
 

(41) 

 

 

 

 

 

 

 

 

 

(42) 

 

 

 

 

 

 

 
0 0 1 𝐿2 𝑆2 𝐶2 

0 0 0 1 𝐹𝐶2 −𝐹𝑆2 

𝐿1 𝐶1 −1 0 0 −1 

1 𝐹𝐶1 0 −1 −𝐹 0 

0 −𝐹2𝑆1 0 0 0 𝐹2 

0 −𝐹3𝐶1 0 0 𝐹3 0 
 

(43) 

 

The buckling characteristic equation will be obtained by 

calculating determinant of reduced coefficient matrix in 

“Eq. (43)ˮ. It is worth mentioning that the roots of 

characteristic equation calculated from coefficient 

matrix in “Eq. (41)ˮ and roots of characteristic equation 

calculated from reduced coefficient matrix in “Eq. (43)ˮ 

are similar, but using reduced coefficient matrix results 

into decreasing of computational efforts to calculate 

corresponding mode shapes. The characteristic equation 

of homogeneous beam with pinned-clamped boundary 

conditions is calculated as follows: 
 

(cos(𝐹𝐿1) cos(𝐹𝐿2)
− sin(𝐹𝐿1) sin(𝐹𝐿2))𝐹(𝐿1
+ 𝐿2)  

−(cos(𝐹𝐿1) sin(𝐹𝐿2) + sin(𝐹𝐿1) cos(𝐹𝐿2))
= 0 

(44) 

The characteristic equation can be simplified by 

considering this fact that the total length of the beam is 

𝐿 = 𝐿1 + 𝐿2. 
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tan(𝐹𝐿) = 𝐹𝐿  (45) 

 

The first three positive real roots of “Eq. (46)ˮ are 

4.4934, 7.7253 and 10.9041. The first three 

dimensionless buckling loads (𝜋2𝐸𝐼 𝐿2⁄ ) are calculated 

as 2.0457, 6.0468 and 12.0471. These results are 

available in literature; therefore, the validity of the 

proposed method is proved. The coefficients 𝑐1 and 𝑐4 

are set equal to zero. The modified bases of two separate 

parts are recalculated and the unknown coefficients’ 

subscripts are resorted (�̅�2 = 𝑥2 − 𝐿1). 

 

 

 

 

Fig. 3   Normalized first three mode shapes of homogeneous 

beam. 

 

𝑦1(𝑥1) = 𝑐1𝑥1 + 𝑐2 sin(𝐹𝑥1) (46) 

  

𝑦2(�̅�2) = 𝑐3 + 𝑐4�̅�2 + 𝑐5 sin(𝐹�̅�2)
+ 𝑐6 cos(𝐹�̅�2) 

(47) 

 

According to “Eq. (31)ˮ, the unknown coefficients for 

critical mode shape are calculated as follows (𝑟 =
2, 𝑐6 = 1, 𝐿1 = 𝐿 4⁄ , 𝐿2 = 3𝐿 4⁄ ): 

 

{
 
 

 
 
𝑐1
𝑐2
𝑐3
𝑐4
𝑐5}
 
 

 
 

=

{
 
 

 
 
1.0827056 𝐿⁄
1.109193504
0.270676391
1.0827056 𝐿⁄
0.479906478}

 
 

 
 

 (48) 

 

The unknown coefficients for second mode shape are: 

 

{
 
 

 
 
𝑐1
𝑐2
𝑐3
𝑐4
𝑐5}
 
 

 
 

=

{
 
 

 
 
−1.059859 𝐿⁄
1.068701814
−0.26496478
−1.059859 𝐿⁄
−0.37699279}

 
 

 
 

 (49) 

 

The unknown coefficients for third mode shape are: 

 

{
 
 

 
 
𝑐1
𝑐2
𝑐3
𝑐4
𝑐5}
 
 

 
 

=

{
 
 

 
 
2.466708 𝐿⁄
2.47706007
0.61667719
2.466708 𝐿⁄
−2.2662362}

 
 

 
 

 (50) 

 

The first normalized mode shapes are illustrated in “Fig. 

3ˮ. 

6 RESULTS AND DISCUSSION 

The diagram of characteristic equation of beam buckling 

for fractional material gradation in axial direction with 

pinned-clamped boundary conditions is depicted in “Fig. 

4ˮ.  

 

 
Fig. 4 Characteristic equation diagram for pinned-clamped 

ends. 
 

The pinned and clamped supports are modeled by 

approaching 𝑘𝜃𝑙 and 𝐸0𝐼 (𝐿𝑘𝜃𝑟)⁄  to zero. The 

mechanical and geometrical properties are 𝐸0 = 2 ×
106 𝑘𝑔 𝑐𝑚2⁄ , 𝐿1 = 20𝑐𝑚 and 𝐿2 = 40𝑐𝑚. The beam 

section is a square with 5cm side.  
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The intersection points of diagram with the horizontal 

axis (characteristic equation roots) are buckling loads of 

first modes. The first three buckling loads are 1362.81 

ton, 4278.58 ton and 11186.58 ton. The normalized 

mode shapes are illustrated in “Fig. 5 to Fig. 7ˮ. 

 

 
Fig. 5 Normalized first mode shape of axially graded 

beam. 

 

 
Fig. 6 Normalized second mode shape of axially graded 

beam. 
 

 
Fig. 7 Normalized third mode shape of axially graded 

beam. 
 

The effects of rotational spring stiffness at semi-rigid 

supports on critical load of fractional axially graded 

beam subjected to axial span-load are presented in “Fig. 

8ˮ. By increasing rotational stiffness, the critical load 

increases. The increase rate of critical load decreases by 

increasing rotational stiffness at semi-rigid restraints.  

 

 
Fig. 6 The effect of rotational stiffness on critical load. 

 

The effect of rotational stiffness on end rotations in first 

mode shape of stepwise fractional axially graded beam 

subjected to axial compression with piecewise load 

function is presented in “Fig. 9ˮ. The rotation of the 

beam ends decreases by increasing rotational stiffness. 

For mechanical and geometrical properties of beam 

assumed in this section, the maximum deflection is 

shifted to the left slightly by increasing rotational 

stiffness (𝑘𝜃𝑙 = 𝑘𝜃𝑟 = 𝑘𝜃 ). 
 

 
Fig. 9 The effect of rotational stiffness on mode shape. 

 

 
Fig. 10 The effect of two part lengths on critical load. 
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The critical load reduction of simply supported (𝑘𝜃𝑙 =
𝑘𝜃𝑟 = 0) stepwise fractional axially graded beam 

subjected to axial span-load caused by increasing of two 

part lengths is illustrated in “Fig. 10ˮ. 

7 CONCLUSION 

For the first time, the buckling analysis of Euler-

Bernoulli beam by considering discontinues material 

gradation in the axial direction with fractional pattern 

subjected to axial compressive load with piecewise 

function rested on semi-rigid restraints is conducted. In 

the limit state, the various boundary conditions including 

simply supported and clamped ends are modeled and 

numerical solutions are presented. The equilibrium 

differential equations of beam with and without axial 

compression are calculated by using variational 

calculus. The natural equations, deflection continuity as 

well as boundary conditions are written in the matrix 

form. The beam discretizing and nontrivial solution are 

employed to derive characteristic equation from reduced 

coefficient matrix by satisfying continuity, natural and 

boundary conditions. The corresponding mode shapes of 

first buckling loads are calculated by employing matrix 

operations. It is observed that the buckling load is 

decreased by increasing lengths of beam parts and 

increased by increasing rotational stiffness at semi-rigid 

supports. In the case of homogeneous beam, the result 

validity is proved by observing a good agreement 

between results of current work and well-known data in 

literature. 
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