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Abstract: This paper investigates the residual stress fields in the vicinity of weld 
bead in HSLA-65 steel weldments using a neural network. This study consists of 
two cases: (i) the experimental analysis was carried out on the measurement of 
residual stresses by XRD technique. Many different specimens that were subjected 
to different conditions were studied. The values and distributions of residual 
stresses occurring in welding of HSLA-65 plate under various conditions were 
determined. (ii) The mathematical modeling analysis has proposed the use of radial 
basis (RB) NN to determine the residual stresses based on the welding conditions. 
The input of RBNN are welding current, welding voltage, welding heat input, 
travel speed of welding, wire feed speed and distance from weld. The best fitting 
training data set was obtained with 18 neurons in the hidden layer, which made it 
possible to predict residual stresses with accuracy of at least as good as the 
experimental error, over the whole experimental range. After training, it was found 
that the regression values (R2) are 0.999664 and 0.999322 for newrbe and newrb 
functions respectively. Similarly, these values for testing data are 0.999425 and 
0.998505, respectively. Based on the verification errors, it was shown that the 
radial basis function of neural network with newrbe function is superior in this 
particular case, and has the average error of 7.70% in predicting the residual 
stresses in HSLA-65. This method is conceptually straightforward, and it is also 
applicable to other type of welding for practical purposes. 
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1 INTRODUCTION 

Welding is a commonly used permanent joining 

process with wide applications in industries. Highly 

non-uniform temperature field, phase transformations 

and plastic deformations which occur during welding 

give rise to residual stress build up and distortions in 

the final product. The complex metallurgical processes 

in welding produce both tensile and compressive 

residual stress in different zones of the welded 

structure. The formation of tensile residual stress may 

result in initiation of fatigue cracks, stress corrosion 

cracking, or other types of failures.  

It is important, therefore, to understand the distribution 

of residual stress inside and near the weldment. Ship 

structures are subject to a complex dynamic condition 

during service that are superimposed on residual stress 

present as a result of fit up during fabrication. In order 

to meet the requirement for a good combination of high 

strength and low-temperature fracture toughness, high-

yield-strength steels (HY series) and high-strength, 

low-alloy steels (HSLA series) have been under 

development by the Navy for the last 50 years. Among 

them, HY-100 and HSLA-100, are used extensively in 

surface ship and submarine construction today, and 

they will continue to be the principal structural 

materials in the foreseeable future [1-3]. HSLA-65 

plate steels can be produced using one of five plate 

manufacturing techniques: normalizing, controlled 

rolling (CR), controlled rolling followed by 

accelerating cooling (CR-AC), direct quenching and 

tempering (DQT), or conventional quenching and 

tempering (Q&T). The HSLA-65 steels are 

characterized by low carbon content and low alloy 

content, and they exhibit a low carbon equivalent that 

allows improved plate weldability. These steel 

processing routes ensure (a) provide the steel plate with 

a refined microstructure that ensures high strength and 

toughness; (b) eliminate or substantially reduce the 

need for preheating during welding; (c) resist 

susceptibility to hydrogen-assisted cracking (HAC) in 

the weld heat affected zone (HAZ) when fusion (arc) 

welded using low heat-input conditions; and (d) 

depending on section thickness, facilitate welding with 

heat-input up to 2 kJ/mm without significant loss of 

strength or toughness in the HAZ.  

Such differences in processing and properties of 

HSLA-65 plate steels could potentially affect the 

selection and control of various secondary fabrication 

practices, including friction stir welding [4]. Barnes et 

al. [5, 6] produced a set of single pass full penetration 

friction stir bead-on-plate and butt welds in HSLA-65 

steel using a range of traverse speeds (50 to 

500 mm/min) and two tool materials (W-Re and 

PCBN). Part I describes the influence of process and 

tool parameters on the microstructure in the weld 

region. Part II is focused on the influence of these 

parameters on residual stress, but the presence of 

retained austenite evident in the diffraction pattern and 

X-ray tomographic investigations of tool material 

depositions are also discussed.  

The residual stress measurements were made using 

white beam synchrotron X-ray diffraction (SXRD). The 

residual stresses were affected by the traverse speed as 

well as the weld tool material. While the peak residual 

stress at the tool shoulders remained largely unchanged 

(approximately equal to the nominal yield stress 

(450 MPa)) irrespective of weld speed or tool type, for 

the W-Re welds, the width of the tensile section of the 

residual stress profile decreased with increasing 

traverse speed (thus decreasing line energy). The effect 

of increasing traverse speed on the width of the tension 

zone was much less pronounced for the PCBN tool 

material.  

Wei and Nelson examined the influence of heat input 

on post weld microstructure and mechanical properties 

of friction stir welded HSLA-65 steel [7]. To 

understand and model the thermos-mechanical 

response of HSLA-65, uniaxial compression tests were 

performed on cylindrical samples, using an Instron 

servo hydraulic testing machine and UCSD’s enhanced 

Hopkinson technique [8]. HSLA-100 steel is a low 

carbon, copper precipitation strengthened steel used for 

surface combatant structures and non pressure hull 

structural ship applications as a replacement for HY-

100 steel. Although there have been a number of 

studies of HSLA-100 steel plate and its weldments with 

the last 10 years [9, 10]. These investigations have been 

mainly centered on the microstructure properties 

relationship. Only a few results are available 

concerning the residual stress distribution in the 

weldment [11].  

Ahmadzadeh et al. [12] presented the development of a 

back propagation neural network model for the 

prediction of maximum residual stresses produced in 

gas metal arc welding process. The thickness of the 

plate, electrode size, welding speed and current/voltage 

intensity have been considered as the input parameters 

and the maximum residual stresses due to welding as 

output parameters in the development of the model. 

The Levenberg–Marquardt method as a feedforward 

back propagation method has been used in this 

investigation. The neural network predictions have 

been compared with the finite element results for 

accuracy, and the comparison showed that the results 

obtained from neural network model were sufficiently 

accurate in predicting the residual stresses. The 

prediction of welding residual stresses has been the 

subject of investigations by several researchers using 

different approaches.  

http://link.springer.com/search?facet-author=%22S.+J.+Barnes%22
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Finite element analysis (FEA) has been employed by 

most authors [13–19] for welding simulations and to 

predict residual stresses in different types of welded 

joints and materials. Xu et al. [20] used the FEM to 

predict the residual stresses in a tube to tube sheet 

weld. The effect of heat input, preheating temperature, 

and the gap between tube and the tube hole on residual 

stresses was also investigated by numerical simulation. 

The peak Von Mises residual stress occurred in the 

base metal near the interface between surface welding 

layer and base metal. The heat input had little effect on 

the residual stresses. The maximum residual stress was 

determined by the yield strength rather than heat input. 

With the preheating temperature increasing, the peak 

hoop stresses were decreased. With the gap between 

tube and the tube hole increasing, the residual stresses 

were increased.  

Prediction of axial and hoop residual stresses in high 

strength carbon steel pipe weld was made by 

employing a sequentially coupled 3-D thermal, 

metallurgical and mechanical FE model [21]. In the FE 

model, temperature-dependent thermo-physical and 

mechanical properties were considered, and phase 

transformation plasticity were also taken into account. 

The results showed the importance of incorporating 

solid-state phase transformation in the simulation of the 

pipe welding. The residual stresses around a high 

strength quenched and tempered steel T-butt web to 

curved plate weld have been measured using neutron 

diffraction strain scanning. The results showed that the 

residual stresses near the weld were dominated by the 

welding residual stresses, while the stresses further 

from the weld were dominated by the bending residual 

stresses. The results suggest that the combination of 

welding-induced residual stress and significant pre-

welding residual stress, as in the case of a thick bent 

section of plate can significantly alter the residual stress 

profile from that in a flat plate [22].  

Brown et al. [23] presented results of the work on a 

series of rectangular repair welds in P275 and S690 

(EN 10025) steels to validate the numerical modelling 

techniques used in the determination of the residual 

stresses generated during the repair process. The repair 

welds were modelled using the finite element method 

to make predictions of the as-welded residual stress 

distributions. Comparisons between the measurements 

and the finite element predictions generally showed 

good agreement, thus providing confidence in the 

method. Bae et al. [24] used three data-based models, 

support vector regression (SVR), fuzzy neural network 

(FNN), and their combined (FNN + SVR) models to 

predict the residual stress for dissimilar metal welding 

under a variety of welding conditions. By using a 

subtractive clustering (SC) method, informative data 

that demonstrate the characteristic behavior of the 

system selected to train the models from the numerical 

data obtained from finite element analysis under a 

range of welding conditions. The FNN model was 

optimized using a genetic algorithm. The statistical and 

analytical uncertainty analysis methods of the models 

were applied, and their uncertainties were evaluated 

using 60 sampled training and optimization datasets, as 

well as a fixed test data set. The distribution of the 

residual stress in the weld joint of HQ130 grade high 

strength steel has been investigated by means of finite 

element method (FEM) using ANSYS software [25]. 

Welding was carried out using gas shielded arc welding 

with a heat input of 16 KJ/cm. The results show that the 

stress gradient near the fusion zone is higher than any 

other location in the surrounding area. Unfortunately, 

residual stresses in HSLA-65 weldments have not been 

addressed well in the literature.  

This paper investigates the residual stress fields in the 

vicinity of weld bead in HSLA-65 steel weldments 

using a neural network. This study consists of two 

parts. First, the experimental analysis was carried out 

on the measurement of residual stresses by XRD 

technique. The values and distribution of residual 

stresses occurring in welding of HSLA-65 plate under 

various conditions were determined. Next, the 

mathematical modeling analysis was carried out which 

has proposed the use of radial basis neural network to 

determine the residual stresses based on the welding 

conditions. 

2 EXPERIMENTAL PROCEDURES   

HSLA-65 steel is a low alloy steel, containing small 

amounts of alloying elements Cr, Mo, Si, Mn and Ni. 

The specified value of tensile strength of this steel is 

1000 MPa and this steel exhibits correspondingly high 

hardenability. The chemical composition of the HSLA-

65 steel plate used in the welding trials is summarized 

in Table 1, and the welding parameters are shown in 

Table 2. The microstructure of HSLA-65 steel contains 

low carbon, tempered martensite and has a wide range 

of properties after heat treatment. The width of the 

weld plate is 250 mm and the thickness is 25.4 mm. 

Flux cored arc welding (FCAW) is used to deposit the 

weld bead on the top surface of the specimen plates. 

Within the FCAW welded specimens, plates are welded 

with either high or low heat inputs with MIL-101TM 

welding consumable. The 0.045 in. (1.2 mm) 

Outershield® 91K2H  (AWS: E91T1-K2M H8) 

provided by The Lincoln Electric Co. Welding 

parameters are as follows: voltage 20-32 V, current 

130–305A, travel speed 5.1-9.33 mm/s, and wire feed 

speed 73.3-265 mm/s. Ar+25% Co2is the recommended 

shielding gas for this consumable; however, in order to 

minimize the hydrogen loss, pure Argon at a flow rate 

of 45 ft
3
/h (21.2 L/min) is used instead. The schematic 
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diagram of the weld sample is shown in Fig. 1 (h is the 

thickness of the test plate and l is the width). The X-ray 

diffraction (XRD) is the most accurate and best 

developed method of quantifying the residual stresses 

produced by some processes such as welding. XRD 

offers a number of advantages when compared to 

various mechanical methods or the nonlinear elastic 

ultrasonic or magnetic methods currently available. 

XRD is a linear–elastic method in which the residual 

stress in the material is calculated from the strain 

measured in the crystal lattice. XRD methods are not 

significantly influenced by material properties such as 

hardness, and degree of cold work. XRD is capable of 

high spatial resolution, approximately millimeters and 

depth resolution about microns, and can be applied to a 

wide variety of sample geometries. Vanadium-filtered

CrK radiation of wavelength 2.290920A


is 

diffracted from the (211) planes of iron at 1562  . 

The 2sin  method is used to determine residual stress. 

Seven  -angles )45,30,15,0(    are used. All 

measurements are made with a 2 mm diameter round 

collimator. A measurement time of 15 min is found to 

produce acceptable counting statistics of 15  Mpa. At 

each location, stress measurements are made in the 
 45,0  and 90  orientations where 0  is 

defined as a direction perpendicular to the weld 

(transverse) and 90  is a direction parallel to the 

weld line [26].  

 
 

 

Fig. 1 Schematic diagram of the welding test plate 

 

 

Table 1 Chemical composition and mechanical properties of HSLA-65 steel 

Chemical composition (wt.%) 

C V Cu Si Mn Mo Cr Ni Ti S P Nb 

0.074 0.058 0.25 0.24 1.35 0.06 0.14 0.34 0.012 0.006 0.011 0.018 

 

Table 2 Welding parameters used in the test 

No. Welding current 

(A) 

Welding voltage 

(V) 

Traveling speed 

mm/min 

Welding heat 

input (Kj/mm) 

Wire feed speed 

(mm/s) 

1 130 20 306 0.4 73.3 

2 130 22 408 0.37 73.3 

3 180 23 490 0.8 116.6 

4 180 25 350 0.7 116.6 

5 220 25 420 0.8 158.3 

6 220 27 560 0.5 158.3 

7 265 27 315 1.2 208.33 

8 265 29 330 1.3 208.33 

9 305 30 390 1.3 265 

10 305 32 372 1.4 265 

 

 

3 ARTIFICAL NEURAL NETWORKS  

Artificial NNs are non-linear mapping systems with a 

structure loosely based on principles observed in 

biological nervous systems. In greatly simplified terms 

as can be seen from Figure 2-a, a typical real neuron 

has a branching dendritic tree that collects signals from 

many other neurons in a limited area; a cell body that 

integrates collected signals and generates a response 

signal (as well as managing metabolic functions); and a 

long branching axon that distributes the response 

through contacts with dendritic trees of many other 

neurons. The response of each neuron is a relatively 

simple non-linear function of its inputs and is largely 

determined by the strengths of the connections from its 

inputs. In spite of the relative simplicity of the 

individual units, systems containing many neurons can 

generate complex and interesting behaviors. An ANN 

shown in Figure 3 is very loosely based on these ideas. 

In the most general terms, a NN consists of a large 

number of simple processors linked by weighted 

connections [27].  
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Fig. 2   (a) A biological nervous system, and (b) an artificial 

neuron model 

 

 

 
 

Fig. 3   A layered feed-forward artificial NN 

By analogy, the processing nodes may be called 

neurons. Each node output depends only on 

information that is locally available at the node, either 

stored internally or arriving via the weighted 

connections. Each unit receives inputs from many other 

nodes and transmits its output to yet other nodes. By 

itself, a single processing element is not very powerful; 

it generates a scalar output with a single numerical 

value, which is a simple non-linear function of its 

inputs. The power of the system emerges from the 

combination of many units in an appropriate way. A 

network is specialized to implement different functions 

by varying the connection topology and the values of 

the connecting weights. Complex functions can be 

implemented by connecting units together with 

appropriate weights [28]. In fact, it has been shown that 

a sufficiently large network with an appropriate 

structure and property chosen weights can approximate 

with arbitrary accuracy any function satisfying certain 

broad constraints. Usually, the processing units have 

responses like (see Figure 2-b) 

)(

i

iufy                                                               (1) 

Where iu are the output signals of hidden layer to 

output layer, )(f  is a simple non-linear function such 

as the sigmoid, or logistic function. This unit computes 

a weighted linear combination of its inputs and passes 

this through the non-linearity to produce a scalar 

output. In general, it is a bounded non-decreasing non-

linear function; the logistic function is a common 

choice. This model is, of course, a drastically 

simplified approximation of real nervous systems. The 

intent is to capture the major characteristics important 

in the information processing functions of real 

networks without varying too much about physical 

constraints imposed by biology. 

4 RADIAL BASIS NEURAL NETWORK   

The basic concept underlying the RBNN is that of a 

fixed non-linear mapping of the input space to a higher 

dimensional space followed by a linear, adjustable 

output mapping. As can be shown in Figures 3 and 4, 

the structure of the RBNN is a model of three-layer 

feed forward network. The hidden layer consists of a 

set of basis function units, each of which has associated 

with its parametric vector known as receptive field. 

These units compute the distance between the center of 

the field and the input vector. The output of the units is 

then a function of the distance measure [29]. The 

RBNN is expressed by 






N

j

jjj cxywxf

1

)()(                                              (2) 

Where x is a n-dimensional input vector; N, the number 

of hidden units and jc , is the receptive field. The basis 

function is such that jy  has a significant result only in 

the neighborhood of jc . There are several possibilities 

for the choice of basis functions. However, Gaussian 

type functions offer desirable properties, making the 

hidden units responsive to locally tuned regions. The 

typical examples of basis function have been explained 

[30]. Gaussian type activation is employed in the 
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proposed NN. The Gaussian activation function can be 

expressed as follows:  

]
)(

)(
exp[)(

2

2

j

j
j

x
xy




                                            (3) 

Where j is the vector representing the function center 

and σ is parameter affecting the spread of the radius. 

The chosen basis function influences both the learning 

and modelling abilities of the network, and will also 

influence the choice of learning rule used to train the 

network. The performance of the radial basis NN 

depends critically on the placement of the centres of the 

receptive; and the localization associated with each 

radial basis function (RBF) is a vital factor for attaining 

faster training speeds. In this study, radial basis 

Gaussian function and back propagation learning 

algorithm are employed to train the proposed NN. The 

learning algorithm topology, which was employed for 

the NN updating the weight, can define the error 

function as: 





on

i

idi tytyJ

1

2))()((
2

1
                                         (4) 

Where )(tydi are the ith desired outputs and )(tyi  are 

the ith outputs of the network. This error function is to 

be minimized with respect to all the unknown 

parameters  . In the steepest descent approach the 

parameter vector T
n ]..,.,[ 21   is adjusted using 

the increment vector T
n],..,.,[ 21   defined along 

the negative gradient direction of J 

i
i

J






                                                               (5) 

Although the one-hidden-layer model is used in the 

present application, it is useful to derive the gradient of 

J for the general case, and the result for the one-hidden-

layer model can readily be obtained as a special case. 

Starting from the output layer m of the network and 

setting ij
m

i W , the application of the chain rule 

gives rise to 

m
ij

i

i
m

ij W

y

y

J

W

J













                                                      (6) 

From Eq. (4) 

m
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i
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y
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


)(                                              (7) 

Where 
m
i  is called the error signal of the ith neuron in 

the mth layer. From Eq. (6) 
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i x
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y
                                                              (8) 

Thus, 
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
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j
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J
                                                        (9) 

Next, consider the (m-1)th layer. Using the chain rule 

yields: 
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Then 
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1

1





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

 m
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i
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z
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and 

2

1

1









 m
jm

ij

m
i x

W

z
                                                         (12) 

z

zg
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


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)(
)(                                                            (13) 

and )( izg is the activation of neuron i. By defining the 

error signal for the ith neuron of the (m-1)th layer as: 

m
ki

n

k

m
k

m
i

m
i Wzg

o




 

1

11 )(                                         (14) 

Eq. (4) can be rewritten as: 

21

1








 m
j

m
im

ij

x
W

J
                                                 (15) 

Similarly, it can be shown that 

1

1








 m
im

ib

J
                                                          (16) 

Where 1m
ib  is the bias input to neuron i in layer (m-1). 

By carrying on this procedure, Eqs. (14)–(16) can be 

used as a general algorithm for updating weights in 

other layers. Eqs. (14)–(16) indicate how the error 

signals propagate backwards from the output layer of 

the network through the hidden layer to the input layer, 

hence the name back propagation. The steepest-descent 

minimization of the error function defined in Eq. (4) 

produces the following increments for updating  : 

)()()( 1 txttW m
j

m
iw

m
ij

                                        (17) 

)()( ttb m
ib

m
i                                                      (18) 

Where in the output layer 
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)()()( tytyt idi
m
i                                                (19) 

and in other layers 

  

j

m
ji

m
j

m
i

m
i tWttzgt )1()())(()( 11                (20) 

The constants w ( 10  w ) and b ( 10  b ) 

represent the learning rates for the weights and biases 

respectively [31]. In practice, a large value of the 

learning rate would be preferable, because this would 

result in rapid learning. Unfortunately, a large value of 

the learning rate can also lead to oscillation or even 

divergence. To help speed up learning, but avoid undue 

oscillations, a momentum term is usually included so 

that Eqs. (17) and (18) become: 

)1()()()( 1   tWtxttW m
ijw

m
j

m
iw

m
ij            (21) 

)1()()(  tbttb m
ib

m
ib

m
i                             (22) 

Where w  and b  are momentum constants, which 

determine the effect of past changes of )(tW m
ij  and 

)(tbm
i  on the current updating direction in the weight 

and the bias space respectively. This effectively filters 

out high frequency variations in the error surface. To 

summarize, the back propagation algorithm updates the 

weights and thresholds of the networks according to: 

)()1()( tWtWtW m
ij

m
ij

m
ij                                    (23) 

and 

)()1()( tbtbtb m
i

m
i

m
i                                        (24)  

Where the increments )(tW m
ij  and )(tbm

i  are given 

in Eqs. (21) and (22). 

5 RESULTS AND DISCUSSION  

A simulation study was carried out using radial basis 

Gaussian NN for the estimation residual stress of a 

FCAW HSLA-65 steel.  The NN predictors for the 

residual stress of HSLA-65, has been shown in Figure 

4. The back propagation algorithm was used to update 

the network weights. Training parameters of the 

network are given in Table 3.  

The nodes in the input and output layer are determined 

by the number of predictors and predicted variables. In 

this research there are 6 nodes in the input layers due to 

the number of input variables, and 3 nodes in the output 

layer, for similar reasons. The RBNN itself consists of 

a single hidden layer with a RBF and a linear output 

layer. The hidden layer has 18 non-linear neurons. 

Modeling of residual stresses with RBF neural 

networks is composed of two stages: training and 

testing of the networks with experimental data. Total 

80 such data sets were used, of which 70 were selected 

randomly and used for training purposes, whilst the 

remaining 10 data sets were presented to the trained 

networks as new application data for verification 

(testing) purposes. Thus, the networks were evaluated 

using data that had not been used for training.  

 
Table 3 Training parameters of the RBNN 

Network     
In  Hn  on  N  AF  

RBNN 0.001 0.01 6 18 3 2639 GF 

 

 : learning rate;  : momentum term; In : number of input 

units; Hn : number of hidden units; on : number of output 

units; N: training numbers; AF: activation function; GF: 

Gaussian function. 

 

Before the ANN could be trained and the mapping 

learnt, it is important to process the experimental data 

into patterns. For the training of the network the Matlab 

Neural Network Toolbox is used [32]. Two functions, 

namely newrbe and newrb have been used for creating 

of RBF networks. The stopping criteria are adjusted, 

that the mean square error should be less than 0.01 and 

the number of epochs (iterations) should be less than 

50000. Spread factor (S) value of Gaussian activation 

functions in the hidden layer is the parameter that 

should be determined by trial and error when using 

MATLAB neural network toolbox for designing RBF 

networks.  
 

Table 4 The effects of different number of hidden neurons 

on the RBF network performance (S=4) 
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12 0.0151 16.87 7.35 12.1 12.16 

14 0.014 9.66 6.77 8.23 8.22 

16 0.0131 13.43 9.02 11.54 11.33 
18 0.0115 8.95 8.15 6 7.70 

20 0.0113 11.72 7.73 9.68 9.71 

22 0.0107 12.02 8.48 10.25 10.25 

 

In the present case, it was found by trial and error that 

18 hidden neurons with the spread factor of 4, can give 

a model, which has the best performance in the 

verification stage [33]. Table 4 shows the effect of the 

number of hidden neurons on the RBF network 

performance. A stress profile along the 45

direction from the weld bead is also shown as well as 



62                                               Int  J   Advanced Design and Manufacturing Technology, Vol. 8/ No. 2/ June– 2015 
  

© 2015 IAU, Majlesi Branch 

 

general profiles for both the transverse )0(  and the 

longitudinal )90(  residual stresses. The results of 

surface residual stress measurements with XRD and 

RBNN have been shown in Figures 5 and 6. As shown 

in Figures 5 and 6, the results of newrbe and newrb 

function of RBNN have been shown in the transverse 

direction of the bead weld. These stress profiles are for 

condition number 7 and 10 in Table 3, respectively. 

 

 

Fig. 5 Transverse residual stress distributions for 

condition No. 7 )0(   

 

 

Fig. 6 Transverse residual stress distributions for 

condition No. 10 )0(   

 

Figures 7, 8, 9 and 10 show the residual stress profiles 

for longitudinal and 
45  at the same pervious 

condition numbers. Tensile stress states in the 

longitudinal direction in the residual stress (condition 

No. 7, 10) are shown in Figures 7 and 8. This tensile 

stress is a result of shrinkage of highly heated areas 

near weld zone being restrained by the surrounding 

colder zone during the rapid heating and subsequent 

cooling in welding. The longitudinal stress at condition 

No. 7 reaches a maximum of approximately 200 MPa, 

2.5 mm from the weld bead, then gradually decreases 

to a constant tensile stress of about 40~50 MPa. The 

transverse residual stress profiles show a considerable 

gradient as a function of distance from the weld edge 

line. The stress near the weld zone is highly 

compressive, reaching a level of approximately -300 

MPa at condition No. 7. Then the stress state changes 

to tensile at 7.3 mm away from the weld edge line and 

reaches a constant value of 100~150 MPa. The 

compressive stress may be attributed partly to the effect 

of phase transformation in steel, since the volume 

expansion associated with the austenite to 

martensite/bainite phases may increase the compressive 

stress level.  

 

 

Fig. 7 Longitudinal residual stress distributions for 

condition No. 7 )90(   

 

 

Fig. 8  Longitudinal residual stress distributions for condition 

No. 10 )90(   

 

The residual stress profiles at the surface of the sample 

are shown in Figures 6, 8 and 10 at condition No. 10. It 

is apparent that the residual stress shape is qualitatively 

similar to that of the sample at condition No. 7. The 
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magnitudes are, however, somewhat different from 

each other. The residual stress of this condition has 

generally a smaller absolute value because a higher 

welding heat input was adopted. This result 

demonstrates clearly that welding heat input has a 

significant effect on the surface residual stress state. 
 

 

Fig. 9 Residual stress distributions for condition No. 7

)45(   

 

 

Fig. 10 Residual stress distributions for condition No. 10

)45(   

6 CONCLUSION 

In this paper, two supervised neural networks have 

been used for Flux-Cored Arc Welding of HSLA-65. 

An effort was made to include as many different 

FCAW conditions as possible that influence the 

process. A number of observations may be drawn from 

this study.                 

1. The simulation results show the advantages of the 

radial basis Gaussian network in the fast convergence 

of the results of different approaches. 

2. The results show that, estimation by newrbe function 

is better than newrb function because it has less error 

than other functions and the regression value is 

0.999664.  

3. Transverse residual stresses )0(   are always 

compressive on the surface near the weld, and 

gradually become tensile as the distance from the weld 

increases. Longitudinal residual stress )90(   is 

usually tensile on the surface near the weld, and slowly 

decreases as the distance from the weld increases. The 

residual stress profiles of 45 direction from the 

weld are always between the profiles of the 

longitudinal stress and transverse stress.         

4. Specimens which are subjected to different welding 

heat input have similar distributions of residual stress 

on the surface, but the magnitudes of stresses are 

different. Higher welding heat input generates smaller 

stress.   

5. The results show that increasing the welding speed 

reduces the reaction time for weld, as an external acting 

force. The result of lack of enough reaction time is a 

reduction in the magnitude of residual stresses. 
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