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variables refined plate theory which has the number of unknown functions 
involved is only four, as against five in case of other simple shear deformation 
theories, is applied to define the third order displacement field of a composite 
rectangular plate. The plate is considered to have simply supported boundaries. 
The first variation of the Lagrangian (Hamilton’s principle) is used to obtain the 
equations of motion for the rectangular plate. Due to the significance of 
fundamental frequency of the plate, its variation with respect to the non-
dimensional geometrical parameters such as aspect ratio of the plate, size, location 
and angular velocity of the rotating patch mass, is investigated. It will be shown 
herein that the proposed theory is simple in solving the free vibration problems of 
plates with patch masses.  
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1 INTRODUCTION 

Plate structures made of composite materials, are 

mainly a combination of two or more different 

materials that may provide superior and unique 

mechanical and physical properties. These materials 

have high specific strength to weight ratio in 

comparison to other materials. In the past three 

decades, researchers have paid significant attention to 

the behavior of plates and proposed a variety of plate 

theories, in which plates are subjected to different types 

of loadings. In addition to transverse and in-plane 

loadings, these materials may be exposed to other 

loading conditions such as distributed patch mass. 

Therefore, it is necessary to develop an appropriate 

model being capable of accurately predicting behaviors 

of these materials in designing of plate type structures.  

Srinivas and Rao studied the bending, vibration and 

buckling behaviors of simply supported thick 

orthotropic rectangular laminated plates and obtained 

normal and shear stress fields under the effect of a 

uniformly distributed transverse loading [1]. It is 

important to know that they have presented a three-

dimensional linear, small deformation theory of 

elasticity solution for static as well as dynamic analysis 

of isotropic, orthotropic and laminated simply-

supported rectangular plates. The Reissner-Mindlin’s 

first-order shear deformation plate theory (FSDT) 

assumes first-order displacement functions with a shear 

correction factor for alleviating the discrepancy of 

having non-zero transverse shear strain on the top and 

bottom surfaces. This theory was employed by Whitney 

and Pagano to study vibration and bending of 

anisotropic plates [2]. 

They investigated free vibration response of a 

composite plate using this theory and employed the 

Yang-Norris-Stavski (YNS) theory to study the 

cylindrical bending of anti-symmetric cross-ply and 

angle-ply plate strips with sinusoidal loading. Bert and 

Chen presented a closed form solution for the free 

vibration of simply supported anti-symmetric 

rectangular plates based on the YNS theory [3]. 

Shankara and Iyengar obtained finite element solutions 

of free vibration of laminated composite plates by 

higher-order shear deformation theory [4]. Because the 

structures designed based on classical laminate plate 

theory (CLPT) may be unsafe and the CLPT 

overestimates the buckling load of the laminated 

composite plates, Reddy used finite element method 

(FEM) to carry out free vibration of anti-symmetric 

angle-ply laminated plates considering the effect of 

transverse shear deformation [5].  

In other work, Reddy introduced a set of equilibrium 

equations for the kinematic models proposed by 

Levinson and Murthy and also developed a third-order 

shear deformation theory (TSDT) for composite 

laminates based on assumed displacement fields (third-

order in-plane and constant out-of-plane displacement) 

[6]. Khdeir and Reddy obtained a complete set of linear 

equations of the second order theory to analyze the free 

vibration behavior of cross-ply and anti-symmetric 

angle-ply laminated plates [7]. Wong studied the effect 

of distributed patch mass on the plate vibration 

response [8]. In his work, effects of shear deformation 

and rotary inertia were not considered and the 

Rayleigh-Ritz method was applied to find the response 

of a rectangular plate.  

Recently, a two variable refined plate theory (RPT) was 

first developed for isotropic plate by Shimpi, and was 

extended to orthotropic plates by Shimpi and Patel and 

Kim et al., [9], [10], [17], [14]. The most interesting 

feature of this theory is that it does not require shear 

correction factor, and has strong similarities with the 

CLPT in some aspects such as governing equation, 

boundary conditions and moment expressions. 

Alibeigloo et al., applied the third order shear 

deformation theory (TSDT) to solve the free vibration 

of a simply supported laminated composite plate with 

distributed patch mass using the Hamilton’s principle 

by means of a double Fourier series [11].  

In this article, free vibration characteristics of plates 

carrying distributed attached mass with arbitrary size 

and location on the rectangular plate are investigated. 

Alibeigloo and Kari also studied the forced vibration 

response of anti-symmetric laminated rectangular 

plates with distributed patch mass [12]. Seung-Eock et 

al., employed the two variable refined plate theory 

(RPT2) for plates under the action of transverse and in-

plane forces and obtained the stiffness and mass 

matrices using the Hamilton principle [13]. They 

compared the non-dimensional deflection obtained by 

various theories namely the classical laminate plate 

theory, the first order shear deformation theory, the 

higher order shear deformation theory and the refined 

plate theory. They showed that the RPT2 model gives 

more accurate results of deflection and buckling load 

than the HSDT in comparison with the three-

dimensional elasticity solution.  

Seung-Eock et al., also carried out buckling analysis of 

isotropic and orthotropic plates using the two variable 

refined plate theory [14]. A closed form solution of a 

simply supported rectangular plate subjected to in-

plane loading has been obtained using Navier's method. 

Huu-Tai and Seung-Eock developed analytical 

solutions of deflection and stress fields for orthotropic 

plates using the two variable refined plate theory and 

showed their strong similarities with those obtained by 

the classical plate theory [15]. In other work, Huu-Tai 

and Seung-Eock developed the two variable refined 

plate theory for free vibration of composite plates using 

Navier’s technique [16]. Based on the computed results 

for free vibration of composite plates, RPT2 was found 
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to give more accurate results than the TSDT compared 

with the exact solutions of three-dimensional elasticity 

theory [16]. Alibakhshi extended the two variable 

refined plate theory for a rectangular composite plate 

carrying a rectangular patch mass and showed that this 

theory has more consistency with the third order shear 

deformation theory compared with the finite element 

method, Yang-Norris-Stavski and higher order shear 

deformation theories [18]. 

This paper aims to extent the RPT2 theory for vibration 

analysis of laminated composite plates carrying a 

rotating circular patch mass. The non-dimensional first 

natural frequency of a plate with simply supported 

boundary conditions is obtained under the effect of a 

patch mass with arbitrary dimensions, positions and 

angular velocities. The simultaneous effect of various 

parameters such as dimensionless position of the patch 

mass, angular velocity and aspect ratios of circular 

patch mass on free vibration response of the plate is 

also investigated. 

2 REFINED PLATE THEORY 

Let us consider a rectangular plate with length, width 

and total thickness equal to a, b and h, respectively. 

The plate supports a circular patch mass, massM , with 

radius of R, that is located in an arbitrary position 

 y,x   as shown in Figure 1. The mass is considered to 

be placed on the upper surface of the plate. The origin 

of the global Cartesian coordinate system is chosen to 

be at the corner and on the middle plane of the plate, 

z=0.  

 

 
Fig. 1 Geometry of a rectangular plate with a circular 

patch mass 

 

Therefore, the domain of plate is defined as ax0  , 

by0   and 2hz2h  . In order to proceed with 

the formulation of the problem using two variable 

refined plate theory (RPT2), it is assumed that the 

displacement components )w,v,u(  of the plate are 

small in comparison with the thickness of the plate, 

hence the strains involved are considered to be 

infinitesimal. On the other hand, the transverse normal 

stress in the z-direction, z , is assumed to be very small 

in comparison to the in-plane stress components, x  

and 
y . As a consequence of the above definition, the 

stress–strain relations can be reduced from a 66  

matrix to a 55  matrix that may significantly reduce 

the complexity of the problem. The total displacement 

of the plate in the z-direction (w) is assumed to be 

consisting of three components, aw  (extension), bw  

(bending) and sw  (shearing) which are functions of x, 

y coordinates and the time [13]. 

 

)t,y,x(w)t,y,x(w)t,y,x(w)t,z,y,x(w sba   
(1) 

 

The displacement components in the x and y-directions 

are also defined as [13]: 

 

)t,y,x(u)t,y,x(u)t,y,x(u)t,z,y,x(u sb0   
)t,y,x(v)t,y,x(v)t,y,x(v)t,z,y,x(v sb0   

(2) 

 

The bending components of the displacement function 

i.e. bu  and bv  are assumed to be similar to the 

displacements based on the classical plate theory 

(CPT). It means that [10]: 

 

 xwzu bb  ,  ywzv bb   (3) 

 

Considering the fact that the shear stresses zx  and zy  

are zero at upper and lower faces of the plate, i.e. 

2hz   and 2hz   respectively, the shear 

displacement su  and sv  can be written as [10]: 

 

      xwhz3541zu s
2

s  , 

      ywhz3541zv s
2

s   

 

 

(4) 

 

Each layer is assumed to have orthotropic material 

property, hence the stress-strain relations in the 

direction of the principle axes of orthotropy are found 

to be [9]: 

 

11 12 13

12 22 23

13 23 33

44

55

66

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

x x

y y

z z

yz yz

xz xz

xy xy

Q Q Q

Q Q Q

Q Q Q

Q

Q

Q

 

 

 

 

 

 

    
    
    
       

     
    
    
    
        

 

(5) 
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Where 
ijQ  are the components of the reduced stiffness 

matrix and are expressed in terms of material properties 

of each layer [13]. 
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 (6) 

Equation (5) represents the stress-strain relations in an 

especially orthotropic material, where the principle 

axes of orthotropy are parallel to the geometric axes of 

the plate (x, y), i.e. the direction of the load application. 

In order to define the stress-strain relations in the 

geometrical coordinate system of the plate, that is the 

global Cartesian coordinate system, components of the 

reduced stiffness tensor are transformed according to 

the transformation law of fourth order tensors. Hence, 

the stress-strain relations in the global coordinate 

system are [13]: 

 
)k(

xz

yz

xy

y

x

)k(

5545

4544

662616

262212

161211

)k(

xz

yz

xy

y

x

QQ000

QQ000

00QQQ

00QQQ

00QQQ





































































































 

(7) 

 

Where k  indicates the layer number and ijQ  is the 

material constants of the k
th

 lamina in the laminate 

coordinate system. In order to obtain the equations of 

motion by the Hamilton principle, the strain energy and 

the kinetic energy of the plate are first defined. The 

definition of the strain energy is as follows: 
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V
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(8) 

 

The strain energy of the plate can be written as [13]: 
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(9) 

 

Where N ,  M  and  Q  are the stress resultants of 

the total N layers of the plate which are defined in the 

Appendix. The total kinetic energy is the summation of 

the kinetic energies of the plate, the uniformly 

distributed patch mass and that of the rotating mass 

acting on the top surface of the plate [11]. 

 

platemass TTT   (10) 

 

The kinetic energy of the plate is defined as [11]: 
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Substituting equations (1) to (4) into Equation (11), and 

considering the limits of integration in the plate, the 

kinetic energy of plate can be written as [13]: 
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(12) 

 

The kinetic energy of the circular patch mass ( massM ) 

that is located on the top surface of the plate  2hz   

can be written as: 
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(13) 

 

Where I and J denote the inertia momentum (i. e., 

2RM 2

mass ) and angular velocity of the mass, and 

20 I,I  are inertia terms as below [16]: 

 

   dzz,1I,I

2h

2h

2
20 



  

(14) 

 

Substituting the displacements field in the relevant 

strain energy and kinetic energy terms, integrating the 

results and obtaining their first variation, the equations 

of motion are found. Finally, by collecting the 

coefficients of parts, the governing equation of plate 

vibration is obtained as below [11]: 

 

       0MS 2   (15) 

 

Where [S], [M],   and   are the stiffness (see ref. 

[13]), mass matrices, natural frequency and the vector 

of unknown coefficients respectively. For convenience, 

the non-dimensional natural frequency of the plate is 

defined as [11]: 
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   2
2 Eha   (16) 

3 PROBLEM DEFINITION 

Now, a set of boundary conditions namely the SS-2 

boundary condition of the following form is applied to 

an anti-symmetric angle-ply laminate [13]: 

For s,b,ai   , a,0m   and b,0n   
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(17) 

 

In order to satisfy the boundary conditions, the 

following displacement fields are assumed [13]. 
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(18) 

 

Where am , bn  and mnU , mnV , bmnW , 

smnW , amnW  are coefficients. 

4 NUMERICAL SCHEME 

The following properties are used for computing the 

non-dimensional natural frequencies: 

Material data:  
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At first, the effect of a non-rotating circular patch mass, 

located at 2by,2ax  , is considered (i. e. J=0). 

In Fig. 2, the influence of the length to thickness ratio, 

ha , on the non-dimensional natural frequency is 

shown. As this figure shows, the non-dimensional 

natural frequency increases by increasing the length to 

thickness ratio. It is evident that the non-dimensional 

natural frequency reaches to a constant value at ba   

and 20ha   (i. e. thin plate’s behaviour).  

In the case of free vibration of a plate with circular 

mass, the ratio of the radius of the patch mass to the 

length of the plate, aR , is an effective factor should be 

considered. As shown in Fig. 3, by increasing the 

radius to the length ratio (with constant mass ratio), the 

non-dimensional natural frequency increases.  
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Fig. 4 Influence of mass ratio on non-dimensional natural 

frequency of a square plate, .30ha   

 

The effect of the mass ratio on the non-dimensional 

natural frequency for different radius to length ratio is 

presented in Fig. 4. According to this figure, by 

increasing the amount of local mass, the stiffness of the 

plate decreases and consequently the non-dimensional 

natural frequency decreases. The effect of rotating 

circular mass (with constant mass ratio) on the non-
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dimensional natural frequency with ha  as a parameter 

is presented in Table 1. According to the table, by 

increasing the angular velocity of the circular patch 

mass, it can be seen that the non-dimensional natural 

frequency decreases. It is also found that increasing the 

angular velocity of circular mass has more decreasing 

effect on the non-dimensional natural frequency of 

rectangular plate than square plate. 

  
Table 1 The Non-dimensional natural frequency for 

 245/45   with various ha  and .1.0aR   ratios, 

5.0MM platemass  , 1.0aR  . 

 ha  

ba   10 20 30 40 50 

0J   10.5839 12.7370 13.3076 13.5268 13.6321 

5J   9.9171 12.4773 13.0465 13.2623 13.3656 

15J   4.4532 10.8166 11.3943 11.5878 11.6788 

30J   2.2441 7.7627 8.4897 8.6407 8.7094 

b2a        

0J   24.9523 33.4194 36.2502 37.4328 38.0224 

5J   18.8416 32.7755 35.7306 36.9141 37.4986 

15J   6.7277 24.7533 32.1952 33.4150 33.9646 

30J   3.3756 12.9396 24.7117 26.3261 26.7986 
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Fig. 5 The effect of angular velocity on the percentage 

decrease of natural frequency,  245/45  , 5.0MM platemass  , 

.1.0aR   

 

The percentage decrease of non-dimensional natural 

frequency for three loading cases ( 30,15,5J  rad/sec) 

is shown in Fig. 5. It is shown that as the angular 

velocity of the patch mass increases, percentage 

decrease of natural frequency increases for small values 

of a/h (i.e. 10ha  ). In other words, increasing the 

angular velocity leads to an increase in the kinetic 

energy of the patch mass (see Eq. (13)), and 

consequently to increase the effective mass acting on 

the plate. Percentage decrease of the non-dimensional 

natural frequency of a rectangular plate is higher than 

that of a square plate (with constant angular velocities). 

It is noteworthy to notice that there is a singular point 

in which the percentage decrease of the non-

dimensional natural frequency of square and 

rectangular plates are the same. Considering different 

values of angular velocity of the patch mass 

(i.e. 30,15,5J   rad/s), these singular points are found 

to be at 2.28,2.27,20ha   respectively. As depicted in 

Fig. 5, by increasing the angular velocity of the patch 

mass and a/h ratio, the percentage decrease of the non-

dimensional natural frequency of square and 

rectangular plates approaches to the same value. In 

order to reveal the effect of aspect ratio of the patch 

mass on the behavior of laminated composite plates, 

the contour plots of non-dimensional natural 

frequencies are presented.  

 

R/a

J 
(r

a
d

/s
)

 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15

20

25

30

35

40

45

50

0

2

4

6

8

10

12

14

16

18

 
Fig. 6 Variation of non-dimensional natural frequency 

with radius to length ratio and angular velocity,  245/45  , 

5.0MM platemass  , square plate, .10ha   

 

Fig. 6 shows simultaneous effect of the radius of the 

patch mass to the length and the angular velocity of the 

patch mass (mass ratio is taken as 0.5) on the non-

dimensional natural frequencies of a square plate. It is 

evident from Fig. 6 that the non-dimensional natural 

frequency decreases as both the aR  ratio and the 

angular velocity increase.  
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Fig. 7 Variation of non-dimensional natural frequency 

with the mass ratio and angular velocity,  245/45  , 1.0aR  , 

square plate, .10ha   

 

Simultaneous effect of the mass ratio and the angular 

velocity of patch mass (ratio of the radius to length is 
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taken as 0.1) on the non-dimensional natural frequency 

of a square plate is shown in Fig. 7. 

As shown in this figure, the non-dimensional natural 

frequency decreases as both the mass ratio and the 

angular velocity increase. Fig. 8 presents simultaneous 

effect of the x-position and the angular velocity of a 

circular patch pass (with constant mass ratio) on non-

dimensional natural frequency of a rectangular plate. It 

is found that by increasing the distance between the 

mass and x=0 edge of the plate (i. e., ax  ratio) and 

also the angular velocity of mass, the stiffness of the 

plate decreases, and finally the non-dimensional natural 

frequency decreases.  

 

x/a

J 
(r

a
d

/s
)

 

 

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50

20

25

30

35

40

45

 
Fig. 8 Variation of non-dimensional natural frequency 

with x-position and angular velocity,  245/45  , 

05.0aR  , 5.0MM platemass  , rectangular plate, 

.30ha   
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Fig. 9 Variation of non-dimensional natural frequency 

with x and y-positions,  245/45  , 05.0aR  , 

5.0MM platemass  , rectangular plate, 30ha  , 0J  rad/s. 

 

Figures 9 and 10 present simultaneous effect of the x-

position and the y-position of the circular patch pass 

(with constant mass ratio) on the non-dimensional 

natural frequency of the rectangular plate for J=0 and 

50 respectively.  According to these figures, as the 

distance between the mass and x=y=0 edges of the 

plate increases, the stiffness of the plate decreases, and 

consequently the non-dimensional natural frequency 

decreases. Due to the symmetry imposed by the 

boundary conditions of the plate, it is observed that the 

longitudinal and transversal movement of the patch 

mass would have the same effect on the non-

dimensional natural frequencies of the plate.  
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Fig. 10 Variation of non-dimensional natural frequency 

with x and y-positions,  245/45  , 05.0aR  , 

5.0MM platemass  , rectangular plate, 30ha  , 

50J  rad/s. 
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Fig. 11 Variation of non-dimensional natural frequency 

with radius to length and mass ratio,  245/45  , square plate, 

30ha  , 0J  rad/s. 
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Fig. 12 Variation of non-dimensional natural frequency 

with radius to length and mass ratio,  245/45  , square plate, 

30ha  , 50J  rad/s. 

 

Figures 11 and 12 show simultaneous effect of the 

radius of the patch mass to the length of the plate and 

the mass ratio of the circular patch mass on non-
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dimensional natural frequency of the square plate for 

J=0 and 50 respectively. By comparing the contour 

plots, it is observed that the non-dimensional 

frequencies have a significant decrease when the 

angular velocity of the mass approaches to a large 

value. Simultaneous effect of the x-position and the 

mass ratio of a circular patch mass on the non-

dimensional natural frequency of a square plate for J=0 

and 50 are shown in Figures 13 and 14, respectively. It 

is observed that the non-dimensional frequencies 

significantly decrease when the angular velocity 

approaches to a very large value.  
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Fig. 13 Variation of non-dimensional natural frequency 

with x-position and mass ratio,  245/45  , square 

plate, 1.0aR  , 30ha  , 0J  rad/s 
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Fig. 14 Variation of non-dimensional natural frequency 

with x-position and mass ratio,  245/45  , square 

plate, 1.0aR  , 30ha  , 50J  rad/s 

 

The influence of both the radius of the patch mass to 

the length of the plate and the x-position of the circular 

mass on the non-dimensional natural frequency of a 

square plate for J=0 and 50 are shown in Figs. 15 and 

16, respectively. It can be seen that, by increasing the 

angular velocity of the mass, there is a sudden change 

in the natural frequency. Finally, comparative results 

show that the simultaneous influence of radius of the 

patch mass to the length of the plate and mass ratio 

(Figs. 11-12), and also the x-position of the circular 

mass and radius of the patch mass to the length of the 

plate (Figs. 15-16) have more decreasing effect on non-

dimensional natural frequency than other parameters. 
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Fig. 15 Variation of non dimensional natural frequency 

with x-position and radius to length ratio,  245/45  , 

5.0MM platemass  , square plate, 30ha  , 0J  rad/s. 

 

x/a

R
/a

 

 

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

2

4

6

8

10

12

14

16

18

20

22

 
Fig. 16 Variation of non-dimensional natural frequency 

with x-position and radius to length ratio,  245/45  , 

5.0MM platemass  , square plate, 30ha  , 50J  rad/s. 

5 CONCLUDING REMARKS 

In the present study, the two variable refined plate 

theory was developed for vibration analysis of 

laminated composite plates with rotating circular patch 

mass. First, the governing equation of vibration of the 

rectangular plate with a patch mass was obtained by 

this theory. Simultaneous effects of various parameters 

such as the size and the location of the rotating circular 

patch mass, and the aspect ratio of the plate on the non-

dimensional natural frequency of the plate was studied. 

The main conclusions are listed as follows: 

 

■ The ratio of the radius of the patch mass to the length 

of the plate has higher effect on the non-dimensional 

natural frequency for  245/45   than that of 

 230/30   composite plates. 
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■ By increasing the value of the angular velocity of the 

mass, the kinetic energy of patch mass and finally the 

effective patch mass on the plate increases. 

■ Considering large values of ha  and small values of 

angular velocities, the percentage decrease of non-

dimensional natural frequencies for square and 

rectangular plates carrying a circular mass is the same.  

■ Considering the large values of ha  and angular 

velocities, the percentage decrease of non-dimensional 

natural frequency of a square plate is greater than that 

of a rectangular plate carrying a rotating circular mass.  

■ Considering constant angular velocity, Percentage 

decrease of the non-dimensional natural frequency for a 

rectangular plate is greater than that of a square plate. 

■ By increasing the radius of the patch mass to the 

length of the plate and the angular velocity, the non-

dimensional natural frequency decreases.  

■ By increasing the mass ratio and the angular velocity 

of the circular patch mass, the non-dimensional natural 

frequency decreases. 

■ As the distance between the added mass and x,y=0 

edges of the plate and angular velocity of the mass 

increases, with constant mass ratio, the stiffness of the 

plate decreases, and finally the non-dimensional natural 

frequency decreases. 

6 APPENDIX 
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