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Abstract: The current study presents a new analytical method for buckling 
analysis of circular plates with constant thickness and Poisson’s ratio, made of 
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based on energy method for thin plates. The boundary conditions of the plate are 
assumed to be simply supported and clamped. The stability equations were 
obtained by using conservation of energy. The critical buckling load and first mode 
shape in terms of Bessel function of the first kind were obtained using Variational 
Calculus method. Increase in buckling capacity and improvement in the behavior 
of functionally graded plates in comparison to homogenous plates have been 
investigated. 
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1 INTRODUCTION 

New design techniques are needed for applying new 
enhanced materials able to bearing high pressure in 
developing industrial structures. One of these materials 
is functionally graded material (FGM) that has been 
used in frequent applications in industry. The idea of 
FGMs was primarily formed for aeronautics field. The 
concept of functionally graded materials (FGMs) was 
first emerged in 1984 in Japan as a thermal resistant 
material for aircrafts, and space shuttles [1].  
Materials whose compounds and functions vary evenly 
or step-wisely from one side to the other side are called 
functionally graded materials. Prevalently, FG material 
frequently shows smooth variations of function and 
property. Moreover, in functionally graded materials, 
the property of one side differs from that of the other 
side. Therefore, there are several behaviors within a 
material. For instance, one side may have the high 
mechanical strength and the other side may have the 
high thermal resistant property; hence, there are "two 
qualities" that even can be contrary properties, in one 
material. FGM provides two discordant properties such 
as thermal conductivity and thermal barrier property in 
one material contemporaneously.  
The profit of FGMs is the capability of maintaining 
their embedded materials under high temperature 
gradients without dispossessing their structure entirety 
[1]. These materials are usually made of a commixture 
of ceramic and metal. The ceramic constituent has low 
thermal conductivity and the metal constituent 
disallows fracture of material due to high temperature 
gradients [2-3]. FGM has an exquisite capability to 
diminish thermal stresses, especially in high-
temperature applications. At present, it enables 
manufacturing industries to fabricate light-weight, firm 
and enduring materials which are utilizable in many 
fields such as energy conversion material, structural 
material and others. Structure grading technology is 
also employed for cancer research.  
There are few works done about the buckling of 
functionally graded structures in comparison with 
comprehensive analyses on isotropic and composite 
plates and shells. By assuming that the material 
properties across the structure are formed by a spatial 
distribution of the local reinforcement volume fraction 
Vf = vf(x,y,z), Feldman and Aboudi [4] studied the 
elastic bifurcation buckling of functionally graded 
plates under uniaxial loading. Thermal buckling of 
functionally graded rectangular thin plates was 
investigated by Javaheri and Eslami [5]. By classical 
and higher order of shear deformation theories of 
plates, the basic equations of the plate were derived; 
also under several types of thermal loads the closed 
form solutions were obtained.  

Deflection and stress analyses for sandwich plates were 
made by Zenkour [6]. Nonlinear post-buckling of 
functionally graded circular plates subjected to thermal 
and mechanical loadings was studied by Ma and Wang 
[7]. Buckling of FG plates subjected to transverse loads 
was studied for circular and rectangular shapes [8–10]. 
Analytical and numerical elaborating of the mechanical 
behavior of FG plates subjected to transverse load was 
studied by Chi and Chung [11-12]. Vibration and 
thermal buckling of FG plates have been investigated 
by several researchers for rectangular and circular 
plates [13–19]. An exact solution for buckling of 
functionally graded circular plates based on higher 
order of shear deformation plate theory under uniform 
radial compression has been investigated by M. M. 
Najafizadeh and H.R. Heydari [20]. 
In this work it is aimed to derive analytical solution for 
FG circular plates having constant thickness while 
subjected to compressive loads. Buckling under critical 
loading and first mode shapes have been obtained by 
mathematical approaching. Increase of critical buckling 
load for the case of FG plate with comparison of 
homogenous plate has been investigated. 

2 BASIC EQUATIONS 

The Poisson’s ratio, ν, across the plate thickness is 
assumed to be constant. The relationship between stress 
and deflection of the plate in axisymmetric bending is 
as follows [21]. 
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ݖሻݖሺܧ
1 െ ଶߥ ቀ߱ᇱᇱ ൅
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Where σ୰ and σ஘ are polar components of stress, and ω 
is the deflection of plate in z-coordinate (Fig. 1). The 
terms ߱ᇱ and ߱ᇱᇱ are first and second derivatives of ߱ 
with respect to ‘ݎ’.  
 

 
Fig. 1 Origin of z-coordinate 
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Fig. 1 shows the neutral plane which is located in 
position ‘e’ from the mid-plane, where the radius of the 
plate is ‘ܽ’.The plate is subjected to pure bending [21], 
and thus the summation of all infinitesimal forces in 
any arbitrary radius must be set equal to zero.  After 
using Eq. (1), the bellow simplified equation will be 
derived. 
 

න ݖ݀ݖሻݖሺܧ ൌ 0
ሺ௧ ଶ⁄ ሻି௘

ିሺ௧ ଶ⁄ ሻି௘
 

(3) 

 
Young’s modulus i.e. Eሺzሻ, varies along the thickness 
of plate and follows Eq. (4) [22].  
 

ሻݖሺܧ ൌ ሺܧ௠ െ ௖ሻܧ ൬
ݐ െ ݖ2 െ 2݁

ݐ2 ൰
௡

൅  ௖ܧ
(4) 

 
Where the subscripts ‘m’ and ‘c’ denote the metallic 
and ceramic constituents, respectively, and ‘n’ is a 
material constant (݊ ൒ 0). After substituting Eq. (4) 
into Eq. (3), amount of ‘e’is obtained as Eq. (5). 
 

݁ ൌ
௖ܧሺݐ݊ െ ௠ሻܧ

2ሺ݊ ൅ 2ሻሺ݊ܧ௖ ൅  ௠ሻܧ
(5) 

 
Strain energy of circular plates with axisymmetric pure 
bending is shown in Eq. (6) [21]. 
 

ܦߨ න ൭ቆ߱ᇱᇱ ൅
߱ᇱ

ݎ ቇ
ଶ

െ
2ሺ1 െ ሻ߱ᇱ߱ᇱᇱߥ

ݎ ൱
௔

଴
 ݎ݀ݎ

(6) 

 
In above equation, ‘D’ is flexural rigidity and can be 
obtained from the bellow equation. 
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(7) 

 
After substituting Eq. (4) into Eq. (7), flexural rigidity 
of FG plate can be obtained as bellow.  
 

ܦ ൌ
ሺܧכܣ௖

ଶ ൅ ௠ܧ௖ܧכܤ ൅ ௠ܧ12
ଶ ሻݐଷ

ሺ1כܥ െ ଶሻ൫ሺ݊ଶߥ ൅ 2݊ሻܧ௖ ൅ ሺ݊ ൅ 2ሻܧ௠൯
  

כܣ ൌ ݊ସ ൅ 4݊ଷ ൅ 7݊ଶ (8) 
כܤ ൌ 4݊ଷ ൅ 16݊ଶ ൅ 28݊  
כܥ ൌ 12݊ଶ ൅ 60݊ ൅ 72  
 
The work done by compressive radial load has been 
defined by the following equation [23]. 
 

ܲߨ න ሺ߱′ሻଶݎ݀ݎ
௔

଴
 

(9) 

 
The work done by compressive radial load is set equal 
to strain energy, and the critical amount of uniform 
compressive load can be obtained as bellow [24]. 
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3 ANALYTICAL BUCKLING ANALYSIS 

For obtaining buckling load, we can use ഥ߱ሺݎሻ instead 
of ߱ሺݎሻ in Eq. (10), where ߟሺݔሻ is an arbitrary 
continuous function that has at least one derivative 
where ߟሺ0ሻ ൌ ሻܮሺߟ ൌ 0. 
 
ഥ߱ሺݎሻ ൌ ߱ሺݎሻ ൅ ሻݔሺߟߦ (11) 
 
For minimizing Eq. (10), the bellow equation must be 
satisfied.  
 

݈݅݉
కื଴

߲ܲ
ߦ߲ ൌ 0 

(12) 

 
After replacing ഥ߱ሺݎሻ into Eq. (13), we have 
integrations in the general form of  
׬ fቀr, ωഥሺrሻ, ωഥ ′ሺrሻ, ωഥ ′′ሺrሻቁdxL

଴  in numerator and 
denominator. After manipulations, we can obtain Eq. 
(13), in which ఠ݂, ݂ఠ′ and ݂ఠ′′ are derivatives of ‘݂’ 
with respect to ߱, ߱′ and ߱′′ respectively. 
 

ఠ݂ െ
߲݂ఠ′

ݎ߲ ൅
߲ଶ݂ఠ′′

ଶݎ߲ ൌ 0  
(13) 

 
The terms of Eq. (13) for the numerator of Eq. (10) are 
as bellow. 
 

ఠ݂ ൌ 0
߲݂ఠ′

ݎ߲ ൌ ሺଷሻ߱ݎ0.6 ൅ 2߱′′ െ 2 ߱′ ⁄ݎ  
߲ଶ݂ఠ′′

ଶݎ߲ ൌ ሺସሻ߱ݎ2 ൅ 4.6߱ሺଷሻ 

(14) 

 
 
After substituting Eqs. (14) and similarly for 
denominator of Eq. (13), and by minimizing Eq. (10), 
the requesting ordinary differential equation will be 
obtained as bellow. 
 
ଷ߱ሺସሻݎ ൅ ଶ߱ሺଷሻݎ2 ൅ ′′߱כܦ ൅ ′߱כܧ ൌ 0   
כܦ ൌ ൫ሺܲ ⁄ܦ ሻݎଷ െ  ൯ (15)ݎ
כܧ ൌ ൫ሺܲ ⁄ܦ ሻݎଶ ൅ 1൯  
 
Solution of above ODE is shown as bellow, where 
,ݒሺܬ ,ݒሻ and ܻሺݔ  ሻ are the Bessel functions of the firstݔ
and second kinds, respectively. They satisfy Bessel’s 
equation: ݔଶݕᇱᇱሺݔሻ ൅ ሻݔᇱሺݕݔ ൅ ሺݔଶ െ ሻݔሺݕଶሻݒ ൌ 0. 
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߱ ൌ ଵܥ ൅ ,ሺ0ܬଶܥ ሻכܩ ൅ ,ଷܻሺ0ܥ ሻכܩ ൅  ሻݎସ݈݊ሺܥ
כܩ ൌ ඥܲݎ  ⁄ܦ  

(16) 

 
For pinned and clamped plates, the first derivative of ߱ 
in Eqs. (16) with respect to ‘ݎ’ at origin of the polar 
coordinate (i.e. ݎ ൌ 0) must be vanished. Therefore Eq. 
(16) changes as bellow. The dimensionless ratio 
ܲܽଶ ⁄ܦ  for pinned and clamped plates has constant 
amount and is assumed equal to ܥ௣ and ܥ௖, 
respectively. In general, ܲܽଶ ⁄,ܦ  is assumed equal to ܥ. 
 
߱ ൌ ଵܥ ൅ ,൫0ܬଶܥ ܥ√ݎ ܽ⁄ ൯ ൅   כܪଷܥ
כܪ ൌ ܻ൫0, ܥ√ݎ ܽ⁄ ൯ െ 2݈݊ሺݎሻ ⁄ߨ  (17) 
 
The expression ߰ሺݎሻ ൌ ߱ሺݎሻ ߱௠௔௫⁄  is dimensionless 
deflection. ߰ሺ0ሻ and ߰ሺܽሻ are equal to 1 and 0 
respectively. The second and third terms in ߰ሺ0ሻ are 
equal to zero and a real number which is a function of 
radius of plate (i.e.݂ሺܽሻ ), respectively. For pinned and 
clamped plates, the constants ܥଶ and ܥଷ in ߰ሺݎሻ can be 
expressed in terms of ܥଵ.  
 
ଶܥ ൌ ൫כܬ െ ൫כܬ ൅ ଵ൯ܥሺܽሻ൯݂ߨ ⁄כܫ  
ଷܥ ൌ ቀܥכܭଵ ൅ ,൫0ܬߨ ൯ቁܥ√ ⁄כܫ  

כܫ ൌ כܬ ൅ ,൫0ܬߨ  ൯݂ሺܽሻܥ√
כܬ ൌ 2݈݊ሺܽሻ െ ,൫0ܻߨ  ൯ܥ√
כܭ ൌ ߨ ቀ1 െ ,൫0ܬ  ൯ቁܥ√

(18) 

 
In simply-supported plate at ݎ ൌ ܽ, the moment ܯ௥ 
must be vanished. Therefore, Eq. (19) for pinned plates 
must be satisfied. 
 
ܽ߱′′ሺܽሻ ൅ ሺܽሻ′߱ߥ ൌ 0   (19) 
 
After satisfying above equation, for pinned FG, intact 
laminated through the thickness or homogeneous 
plates, the constant ܥଵ can be expressed as follows. 
 
൫ܬߨ൫0, כܮ൯ܥ√ ൅ ൯כܭכܯ ሺכܭכܮ െ ሻൗכܰ  (20) 
 
The parameters כܯ ,כܮand ܰכare as bellow. 
 
כܮ ൌ ቀሺ1 െ כሻܱߥ െ ,൫0ܻܥ ൯ቁܥ√ ܽ⁄  

כܯ ൌ ൬ሺ1 െ ሻߥ ቀ√ܬܥ൫1, ൯ቁܥ√ െ ,൫0ܬܥ ൯൰ܥ√ ܽൗ  

כܰ ൌ כܭ൫כܯ ൅  ሺܽሻ൯݂ߨ
כܱ ൌ 2 ⁄ߨ ൅ ,൫1ܻܥ√  ൯ܥ√

(21) 

 
For clamped plate the first derivative of ߰ሺݎሻ with 
respect to ݎ at ݎ ൌ ܽ must be vanished. Eq. (22) show 

the constant ܥଵ for clamped FG, laminated or 
homogeneous plates. 
ଵܥ ൌ ,൫ܻ൫1ߨ כܬ൯ܥ√ ൅ ,൫0ܬ ൯כ൯ܲܥ√ ൗכܳ  
כܲ ൌ 2 ⁄ܥ√ ൅ ,൫1ܬߨ ൯ܥ√
כܳ ൌ כܬ൫ߨ ൅ ,ሺܽሻ൯ܻ൫1݂ߨ ൯ܥ√ െ  כܲכܭ

(22) 

 
After substituting Eqs. (18) into ߱ in Eqs. (17), in order 
to have a smooth and compatible dimensionless 
deflection for any arbitrary amounts of radius (i.e. ܽ), it 
is obvious that the coefficient ܥଷ must be vanished. Eq. 
(23) for pinned and clamped FG, intact laminated 
through the thickness or homogeneous plates shows the 
dimensionless deflection of first mode shape. 
 
߰ሺݎሻ ൌ ߨ ቀܬ൫0, ܥ√ݎ ܽ⁄ ൯ െ ,൫0ܬ ൯ቁܥ√ ⁄כܭ  (23) 

 
After substituting above equation in Eq. (10), the 
minimum amount of ܲ has been obtained for ܥ௣ ൌ
4.1978. The dimensionless deflection for first mode of 
pinned plates has been shown as bellow.  
 
߰ሺݎሻ ൌ 1.2435 ሺ0,2.049ܬ ݎ ܽ⁄ ሻ െ 0.2435 (24) 
 
Because of symmetry, deflection function of first mode 
in clamped plate is an even function; therefore, the 
Fourier series contain only cosine terms. For this case, 
the terms of the Fourier series are defined as follows. 
 

߱ሺݎሻ ൌ ଴ܣ 2⁄ ൅ ෍ ݎߨሺ݊ݏ݋௡ܿܣ ܽ⁄ ሻ
∞

௡ୀଵ

 
 

(25) 

 
The integral of the multiplication of two orthogonal 
functions (i.e. ω′ሺrሻ and ω′′ሺrሻ) is vanished, as shown 
bellow. 
 

න ߱′ሺݎሻ߱′′ሺݎሻ݀ݎ
௔

଴
ൌ 0 

(26) 

 
After substituting Eq. (23) into Eq. (26), the minimum 
amount of ܥ for satisfying above equation occurs for 
௖ܥ ൌ 14.6820. The dimensionless deflection for first 
mode of clamped plates has been shown as bellow.  
 
߰ሺݎሻ ൌ 0.7129 ሺ0,3.8317ܬ ݎ ܽ⁄ ሻ ൅ 0.2871 (27) 
 
For elaborating the behavior of FGP in comparison to 
homogeneous plates, we may concern dimensionless 
buckling critical load for circular FGP divided by the 
dimensionless buckling critical load for the circular 
homogeneous plate with equal radii. This amount is 
equal to the ratio of the flexural rigidity of FGP divided 
by the flexural rigidity of homogeneous plate (i.e. ܴ). 
By substituting ݊ ൌ 0 into Eq. (8) the flexural rigidity 



Int  J   Advanced Design and Manufacturing Technology, Vol. 6/ No. 4/ December - 2013  45 
 

© 2013 IAU, Majlesi Branch 
 

of FGP turns into the homogeneous plate’s flexural 
rigidity as Eq. (28).  
 
ܦ ൌ ଷݐ௠ܧ ൫12ሺ1 െ ⁄ଶሻ൯ߥ  (28) 
 
The dimensionless parameter ‘ܴ’ has been shown as 
bellow. 
 

ܴ ൌ
௖ܧሺכܣ ⁄௠ܧ ሻଶ ൅ ௖ܧሺכܤ ⁄௠ܧ ሻ ൅ 12
൫ሺ݊ଶכܥ ൅ 2݊ሻሺܧ௖ ⁄௠ܧ ሻ ൅ ݊ ൅ 2൯

 
(29) 

 
The parameter ‘݊’ takes values greater than or equal to 
zero; therefore the parameter ‘ܴ’ is between 1 and 
௖ܧ ⁄௠ܧ . 

4 RESULTS AND DISCUSSIONS 

For numerical solution, homogeneous and functionally 
graded circular plates with arbitrary amounts of ݎ/ܽ, 
and ݊ are assumed. Fig. 2 shows the buckling 
dimensionless first mode shape of pinned 
homogeneous, intact laminated through the thickness 
and functionally graded circular plates in general for 
arbitrary amounts of the ratio ݎ/ܽ.  
 

 
Fig. 2 Dimensionless deflection for pinned plate 

 
 
Fig. 3 shows the buckling dimensionless first mode 
shape of clamped homogeneous, intact laminated 
through the thickness and functionally graded circular 
plates in general for arbitrary amounts of the ratio ݎ/ܽ.  
It has been seen that by increasing the power of the 
function Eሺzሻ, the buckling loads of the pinned and 
clamped plate are increased; and at great powers, the 
ratio of the FG plate’s buckling load to the 
homogeneous plate’s buckling load approaches to 
Eୡ E୫⁄ . The result of this analysis is shown in Fig. 4. 

The above figure shows that the improvement of 
buckling capacity in clamped where pinned circular 
plates are the same and there is no difference between 
them. 
 

 
Fig. 3 Dimensionless deflection for clamped plate 

 
 

 
Fig. 4 Improvement of the buckling capacity 

 
 
Table 1 shows the result validation for FG circular 
pinned and clamped plates [25]. 
 
 

Table 1 Result validation 
 Paଶ D⁄

Pinned Clamped 
Current work 4.2 14.68 

Samsam and Eslami 4.2 14.68 



46                                       Int  J   Advanced Design and Manufacturing Technology, Vol. 6/ No. 4/ December– 2013 
 

© 2013 IAU, Majlesi Branch 
 

7 CONCLUSION 

This paper has presented a novel method for analyzing 
the buckling behavior of circular functionally graded 
plates. Exact analytical solutions for buckling of 
functionally graded circular simply supported or 
clamped plates with constant thickness and Poisson’s 
ratio were presented. The critical buckling load and 
dimensionless first mode shape were obtained using 
variation calculus for two mentioned boundary 
conditions. Validity of solutions was proved by 
surveying the literature. This work proves that 
dimensionless first mode shape of buckling for 
prismatic functionally graded plates is similar to 
prismatic homogeneous plates. Because of symmetrical 
conditions for prismatic functionally graded plates, first 
mode shape in this case is similar to first mode shape of 
homogeneous plates and also is dependant upon 
boundary conditions of the plate. The dimensionless 
first mode shape has been obtained in terms of Bessel 
function of first kind for clamped and simply supported 
boundary conditions. The increase of capacity in using 
FG plates instead of homogenous plates has been 
investigated analytically by calculating buckling loads 
for both kinds of plates.  
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