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1 INTRODUCTION 

In recent years with the development of powerful 
engines, turbines, reactors and other machines the need 
for materials with high thermal and mechanical 
resistance has been felt. In former years, pure ceramic 
materials for coating components, used in high 
temperature environments, were used. These materials 
were very good insulators, but did not have enough 
resistance against the residual stress. Residual stresses 
in these materials are troublesome, including holes and 
cracks. Later, in order to eliminate these problems, 
laminated composite materials were used. But thermal 
stress caused the lamination phenomenon in these 
materials. Due to these problems, material engineers in 
1984 in Sendai in Japan suggested functionally graded 
materials (FGM) with high thermal resistance [1]. 

FGMs are composite materials with heterogeneous 
microstructure whose mechanical properties vary 
continuously and have specified material property 
variations. The most common type of FGM is 
composed of metal and ceramic. These materials are 
obtained from mixing metal powder and ceramic. 
Variation of metal and ceramic is completely 
continuous so that one surface is pure ceramic material, 
and the other is a pure metal surface. Between the two 
surfaces composition is continuous. These materials 
have better effective mechanical properties than 
laminated composites.  

To obtain the basic and fundamental results in most 
cases, the stress in plates, disks and cylinders have been 
investigated. Yang in 1999 [1], provided an analytical 
solution for creep behaviour of elastic cylinders made 
of FG materials which are just under thermal load. This 
solution can be used to study the dependence of stress 
to temperature and time for FG structures. He assumed 
that the Poisson ratio and material constants in 
Norton’s principle, which vary along the cylinder 
radius, are constant values. Finally, the analytical 
results were compared with FEM. Singh and Ray in 
2002 [2], presented stable creep analysis of anisotropic 
rotating disk made of composite materials, including 
silicon carbide particles in the pure aluminium matrix 
using Hill’s yield criterion. His results were compared 
with that of Von mises yield criterion for isotropic 
composite. 

K. M. Liew and his colleagues in 2003 [3], provided a 
semi-analytical method for thermo-elastic behaviour of 
hollow cylinders made of FG material. They divided 
the cylinder along its radius and assumed each division 
to have homogeneous properties. They finally, 
simplified equations and solved them. S. B. Singh and 

S. Ray in 2003 [4], investigated creep behaviour of 
rotating disk made of FG materials. Their studied disk 
was made of a composite, including silicon carbide 
particles in a pure aluminium matrix. They explained 
steady state creep behaviour using Norton’s principles. 
They showed that in the rotating isotropic disk, 
assuming linear particle distribution, radial and 
tangential creep rate is smaller than the disc with 
uniform particle distribution.  

Islami and colleagues in [5], presented a one-
dimensional analytical solution method for mechanical 
and thermal stress of thick hollow FG spheres. They 
assumed that thermal distribution is a function of 
radius. Moreover, they assumed that material 
properties, except for Poisson’s ratio, vary along the 
radius according to Power-law function.  

Kordkheili and Naghdabadi [6], presented a semi-
analytical thermo-elastic solution for hollow and solid 
rotating axi-symmetric disks made of functionally 
graded materials under plane stress conditions. They 
divided their studied disc along the radius and assumed 
that material properties in each division were constant. 
With this method, they could solve ODEs obtained for 
analysis of displacement and temperature easily. Farshi 
and Bidabadi in 2008 [7], presented a method for 
optimizing the thickness distribution of Heterogeneous 
rotating disk, in order to minimize its weight. They 
controlled secondary creep amount in the disk so that 
stress in the disk didn’t exceed a permissible limit.  

Singh in 2008 [8], offered an analytical method for 
steady state creep behaviour of rotating discs made of 
anisotropic composite materials, including silicon 
carbide particles in the aluminium matrix using 
Norton’s principle. He calculated distribution of stress 
and strain rate for the anisotropic disk and compared it 
with the isotropic disk. Poultangari and his colleagues 
in 2008 [9], presented an analytical method that can be 
used to obtain mechanical and thermal stress responses 
of two-dimensional steady state in a thick  hollow 
sphere made of FGMs. They assumed that material 
properties vary along the radius according to Power 
Law and achieved thermal distribution by solving the 
energy equation for FGMs.  

Pankaj, and Sonia R. Bansal in 2008 [10], achieved 
stress and creep strain rates for thin rotary disk with 
variable density using Seth’s transition theory. Bayat 
and colleagues in 2009 [11], calculated mechanical and 
thermal stress in rotating variable thickness discs made 
of FGMs under constant temperature and radial axi-
symmetric load. In the present article, time-dependent 
creep stress analysis of rotating thin disk made of FG 
materials will be examined. To examine the effect of 
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basic and important factors such as the gradual change 
of thermo-mechanical properties, centrifugal force and 
thermal load on the stress, creep rate and disk 
displacement of axi-symmetric rotating disk made of 
FGM, a precise method has been proposed. Using the 
desired method provides the possibility to solve the 
governing equations without any need to assume some 
properties and variable coefficients to be constant, also 
there will be no need to consider the derivative terms of 
variable parameters in the governing equations to be 
constant. Other advantages of this method are that 
changes in material properties and temperature along 
the disk radius are considered carefully. 

Equilibrium equations based on thermo-elastic theory 
for rotating FG disks are inferred and using them the 
displacement equation is derived. To obtain thermal 
distribution in the disk, nonlinear heat transfer equation 
along the radius is used. Also, using Norton’s principle, 
steady state creep equation for the disk is inferred. To 
solve the mentioned equations, the radial domain of the 
disk is divided into virtual sub-domains where, in each 
sub-domain, the thermo-mechanical property is 
assumed to be constant. This assumption yields the 
governing equilibrium equations in each sub-domain as 
ordinary differential equations with constant 
coefficients whose general solution can be written 
involving certain unknowns. These unknowns can be 
determined as solution of the system of linear algebraic 
equations obtained by imposing the continuity 
conditions at the interface of the adjacent sub-domains 
together with global conditions. Using the response of 
heat transfer equation, thermal distribution in each sub-
domain and thus thermal distribution in the total disk is 
achieved. Inserting the thermal distribution in the 
displacement equation, displacement, stress and strain 
in each sub-domain, and finally in the total disk arise.  

2 GRADATION RELATION 

Consider a thin hollow axi-symmetric FG disk with 
variable thickness with inner radius r1 and outer radius 
r0, as shown in Fig. 1. The disk rotates at an angular 
velocity ω and is subjected to thermal loading ΔT(r) 
from steady state condition. The problem is assumed to 
be plane stress. Due to axial symmetry assumptions in 
geometry and loading, cylindrical coordinate system  
(r, θ, z) is used. The inner and outer surfaces of the FG 
disk are assumed to be metal-rich and ceramic-rich, 
respectively. Between these two surfaces material 
properties vary according to Eq. (1). 

 

 
Fig. 1 Configuration of the thin-walled FG  

rotating disk [11] 
 

The most common model for expressing the variation 
of material properties in FGMs is the power-law 
distribution of the volume fraction. Based on this 
model, the material property gradation through the disk 
radius is represented in terms of the volume fraction 
by: 

n
r riP(r) (P P ) P R r Ro oi i ir ro i

 
       

                                (1) 

where p(r) denotes a generic material property and Po  
and Pi  denote the property of the outer and inner faces 
of the disk, respectively (e.g. elastic modulus) and n is 
a grading index that dictates the material variation 
profile through the thickness. This study assumes that 
the elastic modulus E, thermal coefficient of expansion 
α, density ρ and heat conductivity K and the Poisson’s 
ratio ν vary according to the gradation Eq. (1). 

3 CREEP EQUATIONS IN FG DISKS 

Strain rate for radial and tangential direction of rotating 
disks are [7]: 
 

d u u
,rr d r r

   
 

                               (2) 

 

 
(3) 
 
(4) 
 

1
( (r) )rr rr,c rr rr rr,crr,T E
1

( (r) )rr,T ,c ,cE

       

           

    

    
 

 

Here   ,rr  are radial and tangential strain rate 
respectively and TTrr ,, ,    denote radial and 
tangential strain rate due to thermal load and 

ccrr ,, ,    denote radial and tangential creep strain 
rate. In time hardening theory, creep strain rate is [1]: 
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1
q 1eff (2 )rr,c rr

2q

                                 (5) 

1
q 1eff (2 )rr,c 2q

                          (6) 

 

Here  ,  are creep constants also  is creep time and 
q is constant. eff  equals to: 

 
2 2( )rr rreff                           (7) 

 

Radial and tangential stress rate with plane stress 
condition are according to Eq. (8), (9). 

E(r)
( (r) ( (r) ))rr rr rr,c ,c21

            
                    (8) 

E(r)
( (r) ( (r) ))rr rr,c ,c21

             
                (9) 

 

Equilibrium equation for stress rate of a rotating disk 
with angular velocity of   and thickness of h(r) is [7]: 
 

d 2 2
(h(r)r ) h(r) h(r) (r) r 0rr

dr
                          (10) 

where rr ,    is radial and tangential stress rate 
respectively. 

Using Eq. (2) and substituting it in Eq. (8), (9) and 
substituting achieved equations in Eq. (10) we have 
Creep behaviour equation of FG disks (Eq. (11)). 
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In Eq. (11), the displacement u is only a function of r 
due to axial symmetry and the plane stress condition. 

4 BOUNDARY CONDITIONS 

We have 3 kinds of boundary conditions here: 

Hollow disk free–free: 

0 a t r r , r rrr oi                                       (12) 

Hollow disk fixed–free: 

u 0at r r , 0at r rrr oi                                      (13) 

Solid disk: 

u 0 at r 0, 0 at r rrr o                                   (14) 
 

5 CREEP SOLUTION: SEMIANALYTICAL 
SOLUTION 

A closed-form solution of Eq. (11) with variable 
coefficients seems to be difficult. Hence, in this study it 

2
E(r) d u

2 2
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is attempted to find a semi-analytical solution for Eq. 
(11). In this method, a disk is divided into virtual sub-
domains (say m), with kt  denoting the radial-width of 
the kth sub-domain as shown in Fig. 2. Evaluating the 
coefficients of Eq. (11) at r = r(k), the mean radius of 
the kth division, an ordinary differential equation with 
constant coefficients is obtained which is valid in kth 
sub-domain. That is: 

2d dk k k k k(c c c )u c 01 2 3 42 drdr
                    (15) 

where 

k
k

1 k 2

E (r )
c

1 (r )

 
    

             (16) 
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Fig. 2 Dividing radial domain into some finite  
sub-domains [11] 

 

Also we have: 
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Using the above technique, Eq. (11) with variable 
coefficients is changed into a system of m ordinary 
differential equations with constant coefficients with m 
being the number of virtual sub-domains. 
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The solution for Eq. (15) can be written in the form of: 
kck k k k k 4u X exp( r) X exp( r) ;1 1 2 2(r) kc3

k kt tk kr r r
2 2

    

   



                   (22) 

Where kk XX 21 , are unknown constants for kth sub-
domain and 

k k 2 k kc (c ) 4c c2 2 1 3k k,1 2 k2c1

 
   

 
 
  
 

                   (23) 

The unknowns kk XX 21 ,  can be determined by applying 
the necessary conditions between each two adjacent 
sub-domains. For this purpose, the continuity of the 
radial displacement rate u  as well as radial stress rate 

rr is imposed at the interfaces of the adjacent sub-
domains. The continuity conditions at interfaces are 
given by: 

(24)    
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 

 

 

These conditions together with the global boundary 
conditions of Eq. (12), Eq. (13) or Eq. (14) yield a set 
of m linear algebraic equations in the form of: 

 
(26) 

 
(27)  

A X Cm m m 1 m 1

1
X A C

            


          

 

 

Solving these equations for k
iX  and substituting them in 

Eq. (15), the radial displacement rate component, u , is 
determined in each sub-domain. After that we can 
calculate radial and tangential strain and stress rate by 
using Eq. (2), Eq. (8), Eq. (9). 

 

6 SOLUTION ALGORITHEM 

To solve Eq. (11) for FG rotating disks we have these 
steps: 

1. Calculation of thermal distribution over disks 

2. Calculation of displacement distribution over disks 

3. Calculation of tangential and radial stress and strain 
distribution using material coefficients for transient 
analysis 

4. Calculation of displacement rate distribution 

5. Calculation of tangential and radial stress and strain 
rate distribution 

6. Choosing appropriate time rate   and calculating 
new stresses and strains. For e.g. for radial stress we 
have: 

( ) ( ) ( )rr new rr rrold old                          (28) 

7. Repeating the above mentioned 3rd to 6th step until 
tangential and radial stress and strain rate distribution 
converge to a constant value 

8. Calculation of tangential and radial stress and strain 
rate distribution using material coefficients for steady 
state analysis 

9. Calculation of tangential and radial displacement 
distribution for steady state creep 

7 NUMERICAL RESULTS 

To verify the method presented in this work, at first we 
compare our results with those of A. Loghman et al 
[12] and then we continue our discussion about the 
effects of boundary conditions and other effects on the 
obtained results. 

Now, consider situations assumed in A. Loghman et al 
[12]. A FG disk with inner radius of 31mm and outer 
radius of 152.4 mm subjected to 561 K temperature 
with rpm15000 . The disk was made of a 
composite, including silicon carbide particles in pure 
aluminium matrix. Variations of silicon carbide volume 
fraction along the radius are:  

r RiC C (C C )max max(r) minR Ro i


  



 
 
 
 

                               (29) 

 

Where Cmin=0.35 and Cmax=0.104 are volume fractions 
of silicon carbide at inner and outer radius respectively. 
For this investigation the boundary condition is free-
free condition. 

Fig. 3 and Fig. 4 illustrate rates of radial and tangential 
strains for disk. As can be observed, results of this 
work are similar to those of A. Loghman et al [12]. 
There is a little difference between results due to 
simplifications of A. Loghman et al [12] in their 
approach. 
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Fig. 3 Radial strain rate comparison of the present work 

and A. Loghman et al [12] 
 

 

 
Fig. 4 Tangential strain rate comparison of the present 

work and A. Loghman et al [12] 
 
 
Now we examine the effects of some other parameter 
on the obtained results. We assume FG disk with  
St 37-2 as its inner surface and zirconium ceramic as its 
outer surface. Zirconium properties are:  

 
E E 151Gpa, 0.31,cer cerout out

5K K 2j / KgK, 10 / kcer cerout out
35700Kg / mcerout

     

     

   

                  (30) 

 
In Fig. 5, Fig. 6, Fig. 7 and Fig. 8, properties of St 37-2, 
are presented [10]: 
 

 
Fig. 5 St 37-2 elastic modulus vs. temperature 

 

 
Fig. 6 St 37-2 thermal conductivity vs. temperature 
 

 
Fig. 7 St 37-2 thermal expansion coefficient vs. 

temperature 
 

 
Fig. 8 St 37-2 Poission ratio vs. temperature 

 

The transient and steady state creep values of Eq. (5), 
Eq. (6) are: 

(31) 
 

(32)  

9.9e 56, 5.4, q 0.5

5.2e 56, 5.4, q 1

     

       

To generalize results, we normalize radial and 
tangential stresses by dividing them by 2 2Rcer 0   and 
its rate by 2 2

/0R Ecer cer  . 
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In this work disks have inner and outer radius  
of 15 and 35 centimetres respectively 
and 8000 rpm  . Also inner and outer surface 
temperature of disks is 100 and 500 centigrade degrees. 
According to Eq. (1) elastic modulus is defined as:  

n
r riE(r) (E E ) E R r Ro oi i ir ro i


    



 
 
 
 

                      (33) 

where n = 0.05 [11]. 

As shown in Fig. 9, the best thickness profile for 
variable thickness FG disks is a concave profile [11]: 

h(r) 0.019 / r                                                          (34) 

 

 
Fig. 9 Disk thickness distribution [11] 

8 RESULTS AND DISCUSSION 

To check the effects of boundary conditions on steady 
state creep behaviour of FG disks we suppose 4 types 
of boundary conditions: 

1. Hollow disk free–free: 

(35) 
 

(36)  

0 at r r , r rrr oi

0 at r r , r rrr oi

   

   
 

2. Hollow disk fixed–free: 

(37) 
 

(38)  

u 0at r r , 0at r rrr oi

u 0at r r , 0at r rrr oi

    

       

3. Hollow disk internal pressure-free: 

(39) 
 

(40)  
40Mpa at r r , 0 Mpa at r rrr rr oi

0 at r r , 0Mpa at r rrr rr oi

     

      
 

4. Hollow disk free-External pressure: 

(41) 
 

(42)  

0Mpa at r r , 40Mpaat r rrr rr oi

0 at r r , 0at r rrr rr oi

      

      
 

Fig. 10 and Fig. 11 illustrate the non-dimensional radial 
and circumferential strain rate distribution for different 
boundary conditions after 12 hours from creep 
beginning. As depicted, strain rate values for fixed-free 
condition are much higher than those in other boundary 
conditions. 
 

 
 

Fig. 10 Non-dimensional radial strain rate distribution for 
different boundary conditions after 12 hours  

from creep beginning 
 

 
 

Fig. 11 Non-dimensional circumferential strain rate 
distribution for different boundary conditions after 12 hours 

from creep beginning 
 

Fig. 12 and Fig. 13 illustrate the non-dimensional radial 
and circumferential strain rate distribution for different 
thermal gradient after 12 hours from creep beginning. 
As depicted in Fig. 10, radial strain rate begins from 
positive value and tends to zero along radius and 
increases with increase in thermal gradient. In Fig. 13 it 
can be observed that tangential strain rate begins from 
negative value and tends to zero along radius and 
increases in negative value with increase in thermal 
gradient. 
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Fig. 12 Non-dimensional radial strain rate distribution for 
different thermal gradient after 12 hours  

from creep beginning 
 

 

Fig. 13 Non-dimensional tangential strain rate distribution 
for different thermal gradient after 12 hours  

from creep beginning 
 

Fig. 14 and Fig. 15 show normalized radial and 
circumferential stress rate distribution for different 
thermal gradient after 12 hours from creep beginning. 
As can be observed, values of stress rate increase when 
thermal gradient increases. 
 

 

Fig. 14   Non-dimensional radial stress rate distribution for 
different thermal gradient after 12 hours  

from creep beginning 

 

Fig. 15 Non-dimensional circumferential stress rate  
distribution for different thermal gradient after 12 hours  

from creep beginning 

9 CONCLUSION 

In this article, a semi-analytical solution of time-
dependent creep analysis of rotating thin disk made of 
FG materials is examined. Displacement equation and 
steady state creep equation for the disk were derived 
using the thermo-elastic theory and Norton’s principle 
respectively. To solve these equations, the disk is 
divided into virtual sub-domains. Equilibrium 
equations in each sub-domain are ordinary differential 
equations with constant coefficients whose general 
solution can be obtained by imposing the continuity 
conditions at the interface of the adjacent sub-domains 
together with global conditions. Also some case studies 
and verifications were examined to show the accuracy 
of the presented method. Some general observations of 
this study can be summarized as follows: 

- The best creep behaviour of FG disks belongs to 
fixed-free boundary condition. This condition is also 
the most practical condition.  

- Thermal dependency of metal properties used in the 
disk, increases stresses and strains. Notice that 
neglecting this dependency causes glaring errors in 
analysing FG disks that might not compensate with low 
safety factors. 

- It is important to choose appropriate boundary 
conditions during mounting of FG disks. This is 
because of the dependency of FG disks behaviour to 
boundary conditions.  

- The stress and strain rates of creep values differ from 
high to low values along radius. These high values are 
not good criterions to judge. 

- Creep stress and strains increase with increasing 
thermal gradient. 
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